首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian Atg16L1 protein consists of a coiled-coil domain and a tryptophan-aspartic acid (WD) repeat domain and is involved in the process of autophagy. However, the mechanisms underlying the effect of the Atg16L1 isoforms on autophagy remain to be elucidated in humans. In the present study, we successfully cloned three isoforms: Atg16L1-1, which contains the complete sequence; Atg16L1-2, which lacks all of exon 8; and Atg16L1-3, which lacks the coiled-coil domain. Subsequent experiments showed that the three isoforms of Atg16L1 were colocalised with MDC within the cells. Quantitative analysis of fluorescence showed that the average number of dots of Atg16L1-1 that colocalised with MDC was higher than those of Atg16L1-2 and Atg16L1-3. The three isoforms of Atg16L1 also colocalised with the lysosome within the cells. The average number of dots of Atg16L1-1 that colocalised with the lysosome was higher than those of Atg16L1-2 and Atg16L1-3. However, although Atg16L1-1 and Atg16L1-3 colocalised with the mitochondria, Atg16L1-2 did not. Functional analysis showed that overexpression of the three isoforms of Atg16L1 had a stimulative effect on autophagy. Significant increase in the number of positive LC3-II dots per cell was observed in Atg16L1-1 (70.2 ± 2.39 dots); this number was greater than those of the other two isoforms. Atg16L1-2 appeared to have an average of 59.25 ± 2.22 LC3-II dots per cell. Atg16L1-3 appeared to have the least number of LC3-II dots per cell (48.25 ± 2.22 dots) (P < 0.001). Our results indicated that the degree of autophagy varied with different Atg16L1 isoforms. The different domains of Atg16L1 played different roles in the process of autophagy. The coiled-coil domain of Atg16L1 was involved in the process of autophagy.  相似文献   

2.
A coding polymorphism of the critical autophagic effector ATG16L1 (T300A) increases the risk of Crohn disease, but how this mutation influences the function of ATG16L1 has remained unclear. In a recent report, we showed that the A300 allele alters the ability of the C-terminal WD40 domain of ATG16L1 to interact with proteins containing a specific amino acid motif able to recognize this region. This defect impairs the capacity of the motif-containing transmembrane molecule TMEM59 to induce the unconventional autophagic labeling of the same single-membrane vesicles where this protein is located. Such alteration derails the intracellular trafficking of TMEM59 and the xenophagic response against bacterial infection. In contrast, canonical autophagy remains unaffected in the presence of ATG16L1T300A. These data argue that the T300A polymorphism impairs the unconventional autophagic activities carried out by the WD40 domain, a region of ATG16L1 whose function has remained poorly understood.  相似文献   

3.
A hallmark of macroautophagy is the covalent lipidation of LC3 and insertion into the double‐membrane phagophore, which is driven by the ATG16L1/ATG5‐ATG12 complex. In contrast, non‐canonical autophagy is a pathway through which LC3 is lipidated and inserted into single membranes, particularly endolysosomal vacuoles during cell engulfment events such as LC3‐associated phagocytosis. Factors controlling the targeting of ATG16L1 to phagophores are dispensable for non‐canonical autophagy, for which the mechanism of ATG16L1 recruitment is unknown. Here we show that the WD repeat‐containing C‐terminal domain (WD40 CTD) of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non‐canonical autophagy, but dispensable for canonical autophagy. Using this strategy to inhibit non‐canonical autophagy specifically, we show a reduction of MHC class II antigen presentation in dendritic cells from mice lacking the WD40 CTD. Further, we demonstrate activation of non‐canonical autophagy dependent on the WD40 CTD during influenza A virus infection. This suggests dependence on WD40 CTD distinguishes between macroautophagy and non‐canonical use of autophagy machinery.  相似文献   

4.
Autophagy is a bulk degradation system in all eukaryotic cells and regulates a variety of biological activities in higher eukaryotes. Recently involvement of autophagy in the regulation of the secretory pathway has also been reported, but the molecular mechanism linking autophagy with the secretory pathway remains largely unknown. Here we show that Atg16L1, an essential protein for canonical autophagy, is localized on hormone-containing dense-core vesicles in neuroendocrine PC12 cells and that knockdown of Atg16L1 causes a dramatic reduction in the level of hormone secretion independently of autophagic activity. We also find that Atg16L1 interacts with the small GTPase Rab33A and that this interaction is required for the dense-core vesicle localization of Atg16L1 in PC12 cells. Our findings indicate that Atg16L1 regulates not only autophagy in all cell types, but also secretion from dense-core vesicles, presumably by acting as a Rab33A effector, in particular cell types.  相似文献   

5.
6.
《Autophagy》2013,9(6):824-826
Atg16L is a factor that is essential for elongation of the isolation membrane (also called phagophore), a precursor of the autophagosome. Atg16L facilitates LC3/Atg8-conjugation to phosphatidylethanolamine by forming an oligomeric complex with Atg12-conjugated Atg5 and recruiting an LC3-Atg3 intermediate to elongating isolation membranes. Although Atg16L is responsible for the isolation membrane localization of the complex, the mechanism by which Atg16L is targeted to or recognizes isolation membranes remains largely unknown. We recently reported finding that Atg16L specifically and directly interacts with the Golgi-resident small GTPase Rab33B (and Rab33A) via the coiled-coil domain of Atg16L. Since expression of a GTPase-deficient mutant of Rab33B or the coiled-coil domain of Atg16L modulates macroautophagy (simply referred to as autophagy below), Atg16L (or the Atg12-5/16L complex) is likely to function as a specific effector molecule for Rab33 in autophagosome formation. Future study of the cross talk between Atg16L-mediated autophagosome formation and Rab33-mediated membrane trafficking should provide an important clue to unresolved issues in autophagosome formation, specifically, the membrane source of autophagosomes.

Addendum to: Itoh T, Fujita N, Kanno E, Yamamoto A, Yoshimori T, Fukuda M. Golgiresident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell 2008; 19:2916–25.  相似文献   

7.
Fukuda M  Itoh T 《Autophagy》2008,4(6):824-826
Atg16L is a factor that is essential for elongation of the isolation membrane (also called phagophore), a precursor of the autophagosome. Atg16L facilitates LC3/Atg8-conjugation to phosphatidylethanolamine by forming an oligomeric complex with Atg12-conjugated Atg5 and recruiting an LC3-Atg3 intermediate to elongating isolation membranes. Although Atg16L is responsible for the isolation membrane localization of the complex, the mechanism by which Atg16L is targeted to or recognizes isolation membranes remains largely unknown. We recently reported finding that Atg16L specifically and directly interacts with the Golgi-resident small GTPase Rab33B (and Rab33A) via the coiled-coil domain of Atg16L. Since expression of a GTPase-deficient mutant of Rab33B or the coiled-coil domain of Atg16L modulates macroautophagy (simply referred to as autophagy below), Atg16L (or the Atg12-5/16L complex) is likely to function as a specific effector molecule for Rab33 in autophagosome formation. Future study of the cross talk between Atg16L-mediated autophagosome formation and Rab33-mediated membrane trafficking should provide an important clue to unresolved issues in autophagosome formation, specifically, the membrane source of autophagosomes.  相似文献   

8.
Individuals who harbor a common coding polymorphism (Thr300Ala) within a structurally unclassified region of ATG16L1 are at increased risk for the development of Crohn disease. Recently, we reported on the generation and characterization of knockin mice carrying the ATG16L1 T300A variant. We demonstrate that multiple cell types from T300A knock-in mice exhibit reduced selective autophagy, and we mechanistically link this phenotype with an increased susceptibility of ATG16L1 T300A to CASP3- and CASP7-mediated cleavage. These findings demonstrate how a single polymorphism can result in cell type- and pathway-specific disruptions of selective autophagy and alterations in the inflammatory milieu that can contribute to disease.  相似文献   

9.
《Autophagy》2013,9(10):1858-1860
Individuals who harbor a common coding polymorphism (Thr300Ala) within a structurally unclassified region of ATG16L1 are at increased risk for the development of Crohn disease. Recently, we reported on the generation and characterization of knockin mice carrying the ATG16L1 T300A variant. We demonstrate that multiple cell types from T300A knock-in mice exhibit reduced selective autophagy, and we mechanistically link this phenotype with an increased susceptibility of ATG16L1 T300A to CASP3- and CASP7-mediated cleavage. These findings demonstrate how a single polymorphism can result in cell type- and pathway-specific disruptions of selective autophagy and alterations in the inflammatory milieu that can contribute to disease.  相似文献   

10.
Autophagosome formation is a dynamic process that is strictly controlled by autophagy‐related (Atg) proteins. However, how these Atg proteins are recruited to the autophagosome formation site or autophagic membranes remains poorly understood. Here, we found that FIP200, which is involved in proximal events, directly interacts with Atg16L1, one of the downstream Atg factors, in an Atg14‐ and phosphatidylinositol 3‐kinase‐independent manner. Atg16L1 deletion mutants, which lack the FIP200‐interacting domain, are defective in proper membrane targeting. Thus, FIP200 regulates not only early events but also late events of autophagosome formation through direct interaction with Atg16L1.  相似文献   

11.
Genetic variations in the autophagic pathway influence genetic predispositions to Crohn disease. Autophagy, the major lysosomal pathway for degrading and recycling cytoplasmic material, constitutes an important homeostatic cellular process. Of interest, single-nucleotide polymorphisms in ATG16L1 (autophagy-related 16-like 1 [S. cerevisiae]), a key component in the autophagic response to invading pathogens, have been associated with an increased risk of developing Crohn disease. The most common and well-studied genetic variant of ATG16L1 (rs2241880; leading to a T300A conversion) exhibits a strong association with risk for developing Crohn disease. The rs2241880 variant plays a crucial role in pathogen clearance, resulting in imbalanced cytokine production, and is linked to other biological processes, such as the endoplasmic reticulum stress/unfolded protein response. In this review, we focus on the importance of ATG16L1 and its genetic variant (T300A) within the elementary biological processes linked to Crohn disease.  相似文献   

12.
Host resistance to viral infection requires type I (α/β) and II (γ) interferon (IFN) production. Another important defense mechanism is the degradative activity of macroautophagy (herein autophagy), mediated by the coordinated action of evolutionarily conserved autophagy proteins (Atg). We show that the Atg5-Atg12/Atg16L1 protein complex, whose prior known function is in autophagosome formation, is required for IFNγ-mediated host defense against murine norovirus (MNV) infection. Importantly, the direct antiviral activity of IFNγ against MNV in macrophages required Atg5-Atg12, Atg7, and Atg16L1, but not induction of autophagy, the degradative activity of lysosomal proteases, fusion of autophagosomes and lysosomes, or the Atg8-processing protein Atg4B. IFNγ, via Atg5-Atg12/Atg16L1, inhibited formation of the membranous cytoplasmic MNV replication complex, where Atg16L1 localized. Thus, the Atg5-Atg12/Atg16L1 complex performs a pivotal, nondegradative role in IFNγ-mediated antiviral defense, establishing that multicellular organisms have evolved to use portions of the autophagy pathway machinery in a cassette-like fashion for host defense.  相似文献   

13.
Hepatitis B virus morphogenesis is accompanied by the production and release of non‐enveloped capsids/nucleocapsids. Capsid particles are formed inside the cell cytosol by multimerization of core protein subunits and ultimately exported in an uncommon coatless state. Here, we investigated potential roles of Rab GTPases in capsid formation and trafficking by using RNA interference and overexpression studies. Naked capsid release does not require functions of the endosome‐associated Rab5, Rab7 and Rab27 proteins, but depends on functional Rab33B, a GTPase participating in autophagosome formation via interaction with the Atg5‐Atg12/Atg16L1 complex. During capsid formation, Rab33B acts in conjunction with its effector, as silencing of Atg5, Atg12 and Atg16L1 also impaired capsid egress. Analysis of capsid maturation steps revealed that Rab33B and Atg5/12/16L1 are required for proper particle assembly and/or stability. In support, the capsid protein was found to interact with Atg5 and colocalize with Atg5/12/16L1, implicating that autophagy pathway functions are involved in capsid biogenesis. However, a complete and functional autophagy pathway is dispensable for capsid release, as judged by knockdown analysis of Atg8/LC3 family members and pharmaceutical ablation of canonical autophagy. Experiments aimed at analysing the capsid release‐stimulating activity of the Alix protein provide further evidence for a link between capsid formation and autophagy.  相似文献   

14.
Structure of Atg5.Atg16, a complex essential for autophagy   总被引:2,自引:0,他引:2  
Atg5 is covalently modified with a ubiquitin-like modifier, Atg12, and the Atg12-Atg5 conjugate further forms a complex with the multimeric protein Atg16. The Atg12-Atg5.Atg16 multimeric complex plays an essential role in autophagy, the bulk degradation system conserved in all eukaryotes. We have reported here the crystal structure of Atg5 complexed with the N-terminal region of Atg16 at 1.97A resolution. Atg5 comprises two ubiquitin-like domains that flank a helix-rich domain. The N-terminal region of Atg16 has a helical structure and is bound to the groove formed by these three domains. In vitro analysis showed that Arg-35 and Phe-46 of Atg16 are crucial for the interaction. Atg16, with a mutation at these residues, failed to localize to the pre-autophagosomal structure and could not restore autophagy in Atg16-deficient yeast strains. Furthermore, these Atg16 mutants could not restore a severe reduction in the formation of the Atg8-phosphatidylethanolamine conjugate, another essential factor for autophagy, in Atg16-deficient strains under starvation conditions. These results taken together suggest that the direct interaction between Atg5 and Atg16 is crucial to the performance of their roles in autophagy.  相似文献   

15.
Atg16 interacts with the Atg12-Atg5 protein conjugate through its N-terminal domain and self-assembles through its coiled-coil domain (CCD). Formation of the Atg12-Atg5·Atg16 complex is essential for autophagy, the bulk degradation process conserved among most eukaryotes. Here, we report the crystal structures of full-length Saccharomyces cerevisiae Atg16 at 2.8 Å resolution and its CCD at 2.5 Å resolution. The CCD and full-length Atg16 each exhibit an extended α-helix, 90 and 130 Å, respectively, and form a parallel coiled-coil dimer in the crystals. Although the apparent molecular weight of Atg16 observed by gel-filtration chromatography suggests that Atg16 is tetrameric, an analytical ultracentrifugation study showed Atg16 as a dimer in solution, consistent with the crystal structure. Evolutionary conserved surface residues clustered at the C-terminal half of Atg16 CCD were shown to be crucial for autophagy. These results will give a structural basis for understanding the molecular functions and significance of Atg16 in autophagy.  相似文献   

16.
Macroautophagy is a mechanism of degradation of cytoplasmic components in all eukaryotic cells. In macroautophagy, cytoplasmic components are wrapped by double-membrane structures called autophagosomes, whose formation involves unique membrane dynamics, i.e., de novo formation of a double-membrane sac called the isolation membrane and its elongation. However, the precise regulatory mechanism of isolation membrane formation and elongation remains unknown. In this study, we showed that Golgi-resident small GTPase Rab33B (and Rab33A) specifically interacts with Atg16L, an essential factor in isolation membrane formation, in a guanosine triphosphate-dependent manner. Expression of a GTPase-deficient mutant Rab33B (Rab33B-Q92L) induced the lipidation of LC3, which is an essential process in autophagosome formation, even under nutrient-rich conditions, and attenuated macroautophagy, as judged by the degradation of p62/sequestosome 1. In addition, overexpression of the Rab33B binding domain of Atg16L suppressed autophagosome formation. Our findings suggest that Rab33 modulates autophagosome formation through interaction with Atg16L.  相似文献   

17.
Several coding variants of NOD2 and ATG16L1 are associated with increased risk of Crohn disease (CD). NOD2, a cytosolic receptor of the innate immune system activates pro-inflammatory signalling cascades upon recognition of bacterial muramyl dipeptide, but seems also to be involved in antiviral and anti-parasitic defence programs. The CD associated variant L1007fsinsC leads to impaired pro-inflammatory signalling and diminished bacterial clearance. ATG16L1 is a protein essential for autophagosome formation at the phagophore assembly site. The CD associated T300A variant is located in the c-terminal WD40 domain, whose function is still unknown. Basal autophagy is not affected by the T300A variant, but antibacterial autophagy (xenophagy) is impaired, a finding that relates ATG16L1 as well as NOD2 to pathogen defence. Notably, combination of disease-associated alleles of ATG16L1 and NOD2/CARD15 leads to synergistically increased susceptibility for CD, indicating a possible crosstalk between NOD2- and ATG16L1-mediated processes in the pathogenesis of CD. This review surveys current research results and discusses the functional models of potential interplay between NLR-pathways and xenophagy. Interaction between pathways is discussed in the context of reactive oxygen species (ROS), membrane co-localisation, antigen processing and implications of disturbed Paneth cell vesicle export. These effects on pathogen response might imbalance the intestinal barrier epithelia towards chronic inflammation and promote development of Crohn disease. Further elucidation of NOD2/ATG16L1 interplay in xenophagy is relevant for understanding the aetiology of chronic intestinal inflammation and host-microbe interaction in general and could lead to principal new insights to xenophagy induction.  相似文献   

18.
NOD2 (nucleotide-binding oligomerization domain containing 2) functions as a pathogen sensor and is involved in development of Crohn disease, a form of inflammatory bowel disease. NOD2 functions in concert with the autophagy protein ATG16L1, which is also implicated in Crohn disease. Recently, we identified a novel protective role of ATG16L1 deficiency in uropathogenic Escherichia coli-induced urinary tract infections (UTIs), which are common infectious diseases in humans. Given the known roles of NOD2 in recruiting ATG16L1 to the bacterial entry site, autophagy induction, and Crohn disease, we hypothesized that NOD2 may also play an important role in UTI pathogenesis. Instead, we found evidence that NOD2 is dispensable in the pathogenesis of UTIs in mice and humans. First, loss of Nod2 did not affect the clearance of bacteriuria and the recruitment of innate immune cells to the bladder. Second, we showed that, although nod2 −/− mice display increased kidney abscesses in the upper urinary tract, there were no increased bacterial loads or persistence in this niche. Third, although a previous study indicates that loss of Nod2 reverses the protection from intestinal infection afforded by loss of ATG16L1 in mice, we found NOD2 deficiency did not reverse the ATG16L1-deficiency-induced protection from UTI. Finally, a population-based study of a cohort of 1819 patients did not reveal any association of NOD2 polymorphisms with UTI incidence. Together, our data indicated that NOD2 is dispensable for UTI pathogenesis in both mice and humans and does not contribute to ATG16L1-deficiency-induced resistance to UTI in mice.  相似文献   

19.
In eukaryotic cells, nutrient starvation induces the bulk degradation of cellular materials; this process is called autophagy. In the yeast Saccharomyces cerevisiae, most of the ATG (autophagy) genes are involved in not only the process of degradative autophagy, but also a biosynthetic process, the cytoplasm to vacuole (Cvt) pathway. In contrast, the ATG17 gene is required specifically in autophagy. To better understand the function of Atg17, we have performed a biochemical characterization of the Atg17 protein. We found that the atg17delta mutant under starvation condition was largely impaired in autophagosome formation and only rarely contained small autophagosomes, whose size was less than one-half of normal autophagosomes in diameter. Two-hybrid analyses and coimmunoprecipitation experiments demonstrated that Atg17 physically associates with Atg1-Atg13 complex, and this binding was enhanced under starvation conditions. Atg17-Atg1 binding was not detected in atg13delta mutant cells, suggesting that Atg17 interacts with Atg1 through Atg13. A point mutant of Atg17, Atg17(C24R), showed reduced affinity for Atg13, resulting in impaired Atg1 kinase activity and significant defects in autophagy. Taken together, these results indicate that Atg17-Atg13 complex formation plays an important role in normal autophagosome formation via binding to and activating the Atg1 kinase.  相似文献   

20.
Plantinga TS  Joosten LA  Netea MG 《Autophagy》2011,7(9):1074-1075
In recent years considerable advances in understanding the pathogenesis of Crohn disease have been achieved, with the identification of susceptibility variants of genes that are part of the autophagy machinery, i.e., ATG16L1 and IRGM. Subsequent functional studies have been conducted to unravel the underlying mechanism of this genetic association. For the ATG16L1 Thr300Ala polymorphism (c.898A > G, rs2241880), it was demonstrated that the risk variant is associated with a reduced capacity of innate immune cells to induce autophagy upon triggering with specific microbial structures such as peptidoglycans, that are specifically recognized by the intracellular pattern-recognition receptor nucleotide oligomerization domain-2 (NOD2). Due to the impaired autophagy activation, autophagosome formation and the subsequent antigen presentation through the major histocompatibility complex are diminished, leading to decreased immune activation. However, these findings arguing for defective host defense mechanisms in individuals bearing the ATG16L1 300Ala variant, and subsequent bacterial persistence in the gut mucosa, provide no conclusive explanation for the excessive inflammation observed in Crohn disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号