首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Cells from complementation groups A through G of the heritable sun-sensitive disorder xeroderma pigmentosum (XP) show defects in nucleotide excision repair of damaged DNA. Proteins representing groups A, B, C, D, F, and G are subunits of the core recognition and incision machinery of repair. XP group E (XP-E) is the mildest form of the disorder, and cells generally show about 50% of the normal repair level. We investigated two protein factors previously implicated in the XP-E defect, UV-damaged DNA binding protein (UV-DDB) and replication protein A (RPA). Three newly identified XP-E cell lines (XP23PV, XP25PV, and a line formerly classified as an XP variant) were defective in UV-DDB binding activity but had levels of RPA in the normal range. The XP-E cell extracts did not display a significant nucleotide excision repair defect in vitro, with either UV-irradiated DNA or a uniquely placed cisplatin lesion used as a substrate. Purified UV-DDB protein did not stimulate repair of naked DNA by DDB XP-E cell extracts, but microinjection of the protein into DDB XP-E cells could partially correct the repair defect. RPA stimulated repair in normal, XP-E, or complemented extracts from other XP groups, and so the effect of RPA was not specific for XP-E cell extracts. These data strengthen the connection between XP-E and UV-DDB. Coupled with previous results, the findings suggest that UV-DDB has a role in the repair of DNA in chromatin.The heritable human disorder xeroderma pigmentosum (XP) is chiefly characterized by an increased incidence of benign and malignant skin lesions after exposure to sunlight. Affected individuals fall into one of eight different genetic complementation groups. Cells from the seven complementation groups A through G have reduced nucleotide excision repair (NER) of damaged DNA, while cells from the variant, or V, group are defective in a less-defined process of cellular recovery after DNA damage (11). Genes and proteins representing XP groups A (XP-A) B, C, D, F, and G have all been isolated and found to represent some of the subunits of the core NER recognition and incision machinery. XP-E is the mildest form of the disorder, and cells of this group generally have 40 to 60% of the normal repair level, as shown by autoradiographic measurement of unscheduled DNA synthesis (UDS) after UV irradiation. Cell fusion studies have assigned at least 16 individuals to this form of the disorder (6, 19, 23, 40).There are several indications that a DNA damage binding protein denoted UV-DDB (or DDB) is involved in the primary XP-E defect. The protein has been detected in extracts of vertebrate cells as an activity that preferentially binds damaged oligonucleotides in electrophoretic mobility shift or filter binding assays. The protein has a particular affinity for (6-4) photoproducts in UV-irradiated DNA (10, 15, 16, 34, 41, 43), but UV-DDB also binds to DNA damaged by other agents, including cisplatin and nitrogen mustard (32). The activity has been purified as a single 127-kDa protein (2) and as a complex with two subunits of 127 and 48 kDa (21). Damage-binding activity is missing from some cells in the XP-E group, designated DDB, but is present in other XP-E cell lines, designated DDB+ (3, 15, 19, 23). The genes encoding the p127 protein (7, 17, 39) and the p48 protein (7) have been isolated, but DNA sequence features have not yet yielded firm clues about their functions. Microinjection of purified UV-DDB into XP-E cells lacking UV-DDB activity substantially corrects the NER defect, as measured by UDS after UV irradiation, but UV-DDB+ cells are not corrected (22). Sequence alterations in the gene for p48 have been reported for several XP-E cell lines (29), and it is possible that these are causative mutations for XP-E.There are also suggestions that the single-stranded DNA binding activity of replication protein A (RPA) is involved in the XP-E defect. RPA is a heterotrimer of three subunits with sizes of 70, 34, and 14 kDa that plays key roles in DNA replication, recombination, and DNA repair (44). It is one of the core components of the eukaryotic nucleotide excision-incision system (1, 12, 28). With regard to XP, it was recently reported that XP-E cell extracts are severely defective in NER in vitro and that RPA can specifically correct the repair defect of these extracts, but not those of extracts of other complementation groups (20). Moreover, it has been found that RPA copurifies to some extent with UV-DDB protein and that the two proteins interact, showing a tighter association with chromatin after UV irradiation of cells (31).The availability of lymphoblastoid cell lines derived from three newly identified XP-E individuals has given us the opportunity to further investigate the possible relationships of UV-DDB and RPA to the molecular defect in XP-E and the influence of these proteins on NER.  相似文献   

4.
5.
FANCI Binds Branched DNA and Is Monoubiquitinated by UBE2T-FANCL   总被引:1,自引:0,他引:1  
FANCI is integral to the Fanconi anemia (FA) pathway of DNA damage repair. Upon the occurrence of DNA damage, FANCI becomes monoubiquitinated on Lys-523 and relocalizes to chromatin, where it functions with monoubiquitinated FANCD2 to facilitate DNA repair. We show that FANCI and its C-terminal fragment possess a DNA binding activity that prefers branched structures. We also demonstrate that FANCI can be ubiquitinated on Lys-523 by the UBE2T-FANCL pair in vitro. These findings should facilitate future efforts directed at elucidating molecular aspects of the FA pathway.Fanconi anemia (FA)4 is characterized by developmental defects, bone marrow failure, and a strong predisposition to cancer. FA cells exhibit exquisite sensitivity to DNA cross-linking agents and marked genomic instability, indicative of a failure to repair damaged DNA (13). Thirteen FA proteins have been identified, of which eight, FANC-A, -B, -C, -E, -F, -G, -L, and -M, form part of a nuclear core complex that is required to monoubiquitinate two other FA proteins, FANCD2 and FANCI. When monoubiquitinated, FANCD2 and FANCI become chromatin-associated in foci that contain various factors, including the RAD51 recombinase BRCA2 (also known as FANCD1) and PALB2 (also called FANCN), which mediate DNA repair via RAD51-catalyzed homologous recombination (4).Monoubiquitination of FANCD2 appears to be a key event for proper repair of exogenous DNA damage but also occurs during an unperturbed S phase, likely in response to stalled replication forks (47). FANCD2 monoubiquitination depends on the E3 ligase activity of FANCL (8) and on the E2 ubiquitin-conjugating enzyme, UBE2T (9). In vitro, FANCL and UBE2T can monoubiquitinate chicken FANCD2 (10).FANCI was identified recently as a target protein for the ATM/ATR kinase. FANCI is also monoubiquitinated, in a manner that is dependent on the FA core complex (11). In cells, a fraction of FANCD2 and FANCI associates in a complex. Moreover, the amount and monoubiquitination of these two FA proteins are co-dependent in human cells, i.e. the quantity and monoubiquitination of FANCD2 are diminished in FANCI-deficient cells and vice versa (1114). These observations suggest that FANCI and FANCD2 form a complex integral to cellular DNA repair capacity. Mutating the ubiquitinated target lysine of FANCI (Lys-523) renders cells sensitive to DNA damage and impairs the assembly of DNA damage-induced nuclear foci of FANCD2 and FANCI (11, 14). Herein, we document studies that reveal several biochemical attributes of FANCI, including DNA binding, and its monoubiquitination, that are relevant for understanding the biological role of this key FA protein.  相似文献   

6.
Proinflammatory cytokines induce nitric oxide-dependent DNA damage and ultimately β-cell death. Not only does nitric oxide cause β-cell damage, it also activates a functional repair process. In this study, the mechanisms activated by nitric oxide that facilitate the repair of damaged β-cell DNA are examined. JNK plays a central regulatory role because inhibition of this kinase attenuates the repair of nitric oxide-induced DNA damage. p53 is a logical target of JNK-dependent DNA repair; however, nitric oxide does not stimulate p53 activation or accumulation in β-cells. Further, knockdown of basal p53 levels does not affect DNA repair. In contrast, expression of growth arrest and DNA damage (GADD) 45α, a DNA repair gene that can be regulated by p53-dependent and p53-independent pathways, is stimulated by nitric oxide in a JNK-dependent manner, and knockdown of GADD45α expression attenuates the repair of nitric oxide-induced β-cell DNA damage. These findings show that β-cells have the ability to repair nitric oxide-damaged DNA and that JNK and GADD45α mediate the p53-independent repair of this DNA damage.Insulin-dependent diabetes mellitus is an autoimmune disease characterized by the selective destruction of insulin-secreting pancreatic β-cells found in the islets of Langerhans (1). Cytokines, released from invading leukocytes during insulitis, are believed to participate in the initial destruction of β-cells, precipitating the autoimmune response (2, 3). Treatment of rat islets with the macrophage-derived cytokine interleukin-1 (IL-1)2 results in the inhibition of glucose-stimulated insulin secretion and oxidative metabolism and in the induction of DNA damage that ultimately results in β-cell death (46). Nitric oxide, produced in micromolar levels following enhanced expression of the inducible nitric-oxide synthase in β-cells, mediates the damaging actions of cytokines on β-cell function (79). Nitric oxide inhibits insulin secretion by attenuating the oxidation of glucose to CO2, reducing cellular levels of ATP and, thereby, attenuating ATP-inhibited K+ channel activity (10, 11). The net effect is the inhibition of β-cell depolarization, calcium entry, and calcium-dependent exocytosis. In addition to the inhibition of β-cell function, nitric oxide induces DNA damage in β-cells (4, 12, 13). Nitric oxide or the oxidation products N2O3 and ONOO induce DNA damage through direct strand breaks and base modification (1416) and by inhibition of DNA repair enzymes, thereby enhancing the damaging actions of nitric oxide (17, 18).Recent studies have shown that β-cells maintain a limited ability to recover from cytokine-mediated damage (19, 20). The addition of a nitric-oxide synthase inhibitor to islets treated for 24 h with cytokine and continued culture with the nitric-oxide synthase inhibitor and cytokine results in a time-dependent restoration of insulin secretion, mitochondrial aconitase activity, and the repair of nitric oxide-damaged DNA (20, 21). Nitric oxide plays a dual role in modifying β-cell responses to cytokines. Nitric oxide induces β-cell damage and also activates a JNK-dependent recovery response that requires new gene expression (22). The ability of β-cells to recover from cytokine-mediated damage is temporally limited because cytokine-induced β-cell damage becomes irreversible following a 36-h incubation, and islets at this point are committed to degeneration (19).The purpose of this study was to determine the mechanisms by which β-cells repair nitric oxide-damaged DNA. Previous reports have shown that DNA damage induced by oxidizing agents, such as nitric oxide, is repaired through the base excision repair pathway (23), but how this pathway is activated in response to nitric oxide is unknown. Similar to the recovery of metabolic function, we now show that the activation of JNK by nitric oxide is required for repair of cytokine-induced DNA damage in β-cells. p53 is a logical candidate to mediate this repair because it plays a central role in DNA repair, is a target of JNK, and is activated by nitric oxide (2427). However, we show that cytokines do not stimulate p53 phosphorylation, and nitric oxide fails to stimulate p53 accumulation and phosphorylation. Growth arrest and DNA damage (GADD) 45α is a DNA damage-inducible gene that can be regulated by both p53-dependent and p53-independent mechanisms (2831). In contrast to p53, we show that cytokines stimulate GADD45α expression in a nitric oxide- and JNK-dependent manner and that siRNA-mediated knockdown of GADD45α results in an attenuation in the repair of nitric oxide-mediated DNA damage. These findings support a role for JNK in the regulation of GADD45α-dependent and p53-independent repair of nitric oxide-damaged β-cell DNA.  相似文献   

7.
8.
Single-stranded DNA-binding protein 1 (SSB1) plays an important role in the DNA damage response and maintenance of genomic stability. Here, by using protein affinity purification, we have identified Integrator3 (INT3) as a novel partner of SSB1. INT3 forms a complex with SSB1 by constitutively interacting with SSB1 regardless of DNA damage. However, following DNA damage, along with SSB1, INT3 relocates to the DNA damage sites and regulates the accumulation of TopBP1 and BRCA1 there. Moreover, INT3 controls DNA damage-induced Chk1 activation and G2/M checkpoint activation. In addition, INT3 is involved in homologous recombination repair by regulating Rad51 foci formation following DNA damage. Taken together, these results demonstrate that INT3 plays a key role in the DNA damage response.The DNA damage response, including DNA damage checkpoint activation and DNA damage repair, ensures genomic stability under genotoxic stress. Among various types of DNA damage, DNA double-strand breaks (DSBs)3 are the most deleterious, easily causing chromosomal loss, fusion, and translocation. However, cells can sense and repair DNA DSBs by activating evolutionarily conserved pathways (13). Following DNA DSBs, ATM, ATR, and DNAPK, a family homologous to phosphoinositide 3-kinases (4, 5), are activated and phosphorylate histone H2AX at the DNA damage sites (6). Subsequently, phospho-H2AX (γH2AX) provides the platform for accumulation of a larger group of DNA damage response factors, such as MDC1, BRCA1, 53BP1, and TopBP1 (2, 79), at the DNA damage sites. Translocalization of these proteins to the DNA DSBs facilitates DNA damage checkpoint activation by activating downstream Chk1/Chk2 kinases, which arrest the cell cycle at G1, S, or G2 phase (10). In addition, it also enhances the efficiency of DNA damage repair by recruiting and stabilizing the DNA repair machinery at the DNA damage sites (11).Among these important mediators, single-stranded DNA (ssDNA)-binding proteins play important roles during the DNA damage response. For example, following DNA damage, the MRN complex recognizes DNA DSB ends and processes the blunt ends into ssDNA overhangs (12). The replication protein A (RPA) complex, a group of ssDNA-binding proteins, immediately coats these ssDNA overhangs and loads and activates the ATR·ATRIP complex at the DNA damage sites (13). Meanwhile, the RPA complex protects ssDNA from nucleolytic resection and facilitates Rad51 filament formation along ssDNA overhangs, which is a key step for homologous recombination repair (14). Moreover, RPA70 and RPA32 subunits in the complex could recruit several DNA damage response factors to the DNA damage sites that enhance the efficacy of DNA damage repair (15).Besides the RPA complex, several other ssDNA-binding proteins have been identified to participate in the DNA damage response recently. One of them is ssDNA-binding protein 1 (SSB1) (16). Human SSB1 is a 211-amino acid polypeptide with an N-terminal oligosaccharide/oligonucleotide-binding (OB) domain. It has been shown that SSB1 is phosphorylated by ATM and relocates to the DNA damage site following DNA DSBs. Loss of SSB1 impairs DNA damage-induced checkpoint activation and induces genomic instability. Like the RPA complex, SSB1 participates in homologous recombination by facilitating Rad51·ssDNA filament formation and stabilizing Rad51 at the DNA damage sites. Interestingly, SSB1 has a homolog SSB2 that contains an almost identical OB domain at the N terminus. However, the function of SSB2 in the DNA damage response is not clear yet.To examine the molecular mechanism and functional pathway of SSB1 and SSB2 in the DNA damage response, we have searched for functional partners of SSB1 and SSB2 by using protein affinity purification. We have found Integrator3 (INT3) to be a common partner of both SSB1 and SSB2. Like SSB1, following DNA damage, INT3 relocates to the DNA damage sites and regulates ATR activation. Moreover, INT3 not only participates in DNA damage checkpoint activation but also regulates homologous recombination repair. Taken together, we have found a novel mediator in the DNA damage response.  相似文献   

9.
10.
11.
Genomic stability requires a functional Fanconi anemia (FA) pathway composed of an upstream “core complex” (FA proteins A/B/C/E/F/G/L/M) that mediates monoubiquitination of the downstream targets FANCD2 and FANCI. Unique among FA core complex members, FANCM has processing activities toward replication-associated DNA structures, suggesting a vital role for FANCM during replication. Using Xenopus egg extracts, we analyzed the functions of FANCM in replication and the DNA damage response. xFANCM binds chromatin in a replication-dependent manner and is phosphorylated in response to DNA damage structures. Chromatin binding and DNA damage-induced phosphorylation of xFANCM are mediated in part by the downstream FA pathway protein FANCD2. Moreover, phosphorylation and chromatin recruitment of FANCM is regulated by two mayor players in the DNA damage response: the cell cycle checkpoint kinases ATR and ATM. Our results indicate that functions of FANCM are controlled by FA- and non-FA pathways in the DNA damage response.Fanconi anemia is a genetic disease characterized by genomic instability and cancer predisposition. Cells from FA3 patients show hypersensitivity to DNA interstrand cross-links and have highly elevated chromosomal breakage rates, indicating a role for FA proteins in the cellular DNA damage response. The FA pathway consists of an upstream FA core complex containing at least eight proteins (FANCA, -B, -C, -E, -F, -G, -L, and -M) that is required for the DNA damage-induced monoubiquitination of two downstream proteins, FANCD2 and FANCI. Although the molecular function of the FA pathway is unknown, the identification of additional FA genes FANCD1 (BRCA2), FANCN (PALB2), and the DNA helicase FANCJ (BRIP1) as breast cancer (BRCA) susceptibility genes suggests convergence of the FA/BRCA pathway with a larger network of proteins involved in DNA repair (reviewed in Ref. 1).In addition to monoubiquitination by the FA core complex, FANCD2 and FANCI are phosphorylated by the two major cell cycle checkpoint kinases, ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related),y in response to DNA damage (26). ATM-dependent phosphorylation of FANCD2 occurs following ionizing irradiation and is required for activation of the ionizing irradiation-induced intra-S phase checkpoint (4). ATR-dependent phosphorylation of FANCD2 is triggered by various types of DNA damage, including replication stress, and is required for the interstrand cross-link-induced intra-S phase checkpoint response (2, 3). Moreover, phosphorylation by ATR is required for efficient FANCD2 monoubiquitination in response to DNA damage, suggesting that the FA pathway might participate in ATR-dependent coordination of the S phase of the cell cycle (3, 7).The recent identification of a highly conserved FA core complex member, FANCM (8, 9), indicates a direct role of FA pathway proteins in repair steps at sites of DNA damage. FANCM is a homolog of the archaebacterial Hef protein (helicase-associated endonuclease for fork-structured DNA) and contains two DNA processing domains: a DEAH box helicase domain and an XPF/ERCC4-like endonuclease domain. FANCM has ATP-dependent DNA translocase activity and can dissociate DNA triple helices in vitro (8). Moreover, FANCM binds Holliday junctions and DNA replication fork structures in vitro and promotes ATP-dependent branch point migration, suggesting that FANCM might be involved in DNA processing at stalled replication forks (10, 11). In human cells, FANCM localizes to chromatin and is required for chromatin recruitment of other FA core complex proteins (8, 12). FANCM is phosphorylated during both the M and S phases and in response to DNA-damaging agents (8, 12, 13). Interestingly, DNA damage-induced phosphorylation of FANCM is independent of the FA core complex (8), suggesting that FANCM is controlled by other, as yet unknown upstream components of the DNA damage response. Here, we used cell-free Xenopus egg extracts to investigate the role of FANCM during replication and in the DNA damage response. We show that Xenopus FANCM (xFANCM) binds chromatin in a replication-dependent manner and is phosphorylated during unperturbed replication as well as in response to various DNA damage structures. Both chromatin recruitment and phosphorylation of xFANCM are partially controlled by xFANCD2, suggesting feedback signaling from xFANCD2 to the upstream xFA core complex via regulation of xFANCM. In addition, chromatin recruitment during unperturbed replication and activation of xFANCM in response to DNA damage are controlled by the xATR and xATM cell cycle kinases.  相似文献   

12.
Although PTIP is implicated in the DNA damage response, through interactions with 53BP1, the function of PTIP in the DNA damage response remain elusive. Here, we show that RNF8 controls DNA damage-induced nuclear foci formation of PTIP, which in turn regulates 53BP1 localization to the DNA damage sites. In addition, SMC1, a substrate of ATM, could not be phosphorylated at the DNA damage sites in the absence of PTIP. The PTIP-dependent pathway is important for DNA double strand breaks repair and DNA damage-induced intra-S phase checkpoint activation. Taken together, these results suggest that the role of PTIP in the DNA damage response is downstream of RNF8 and upstream of 53BP1. Thus, PTIP regulates 53BP1-dependent signaling pathway following DNA damage.The DNA damage response pathways are signal transduction pathways with DNA damage sensors, mediators, and effectors, which are essential for maintaining genomic stability (13). Following DNA double strand breaks, histone H2AX at the DNA damage sites is rapidly phosphorylated by ATM/ATR/DNAPK (410), a family homologous to phosphoinositide 3-kinases (11, 12). Subsequently, phospho-H2AX (γH2AX) provides the platform for accumulation of a larger group of DNA damage response factors, such as MDC1, BRCA1, 53BP1, and the MRE11·RAD50·NBS1 complex (13, 14), at the DNA damage sites. Translocalization of these proteins to the DNA double strand breaks (DSBs)3 facilitates DNA damage checkpoint activation and enhances the efficiency of DNA damage repair (14, 15).Recently, PTIP (Pax2 transactivation domain-interacting protein, or Paxip) has been identified as a DNA damage response protein and is required for cell survival when exposed to ionizing radiation (IR) (1, 1618). PTIP is a 1069-amino acid nuclear protein and has been originally identified in a yeast two-hybrid screening as a partner of Pax2 (19). Genetic deletion of the PTIP gene in mice leads to early embryonic lethality at embryonic day 8.5, suggesting that PTIP is essential for early embryonic development (20). Structurally, PTIP contains six tandem BRCT (BRCA1 carboxyl-terminal) domains (1618, 21). The BRCT domain is a phospho-group binding domain that mediates protein-protein interactions (17, 22, 23). Interestingly, the BRCT domain has been found in a large number of proteins involved in the cellular response to DNA damages, such as BRCA1, MDC1, and 53BP1 (7, 2429). Like other BRCT domain-containing proteins, upon exposure to IR, PTIP forms nuclear foci at the DSBs, which is dependent on its BRCT domains (1618). By protein affinity purification, PTIP has been found in two large complexes. One includes the histone H3K4 methyltransferase ALR and its associated cofactors, the other contains DNA damage response proteins, including 53BP1 and SMC1 (30, 31). Further experiments have revealed that DNA damage enhances the interaction between PTIP and 53BP1 (18, 31).To elucidate the DNA damage response pathways, we have examined the upstream and downstream partners of PTIP. Here, we report that PTIP is downstream of RNF8 and upstream of 53BP1 in response to DNA damage. Moreover, PTIP and 53BP1 are required for the phospho-ATM association with the chromatin, which phosphorylates SMC1 at the DSBs. This PTIP-dependent pathway is involved in DSBs repair.  相似文献   

13.
14.
15.
The reversible phosphorylation of proteins on serine, threonine, and tyrosine residues is an important biological regulatory mechanism. In the context of genome integrity, signaling cascades driven by phosphorylation are crucial for the coordination and regulation of DNA repair. The two serine/threonine protein kinases ataxia telangiectasia-mutated (ATM) and Ataxia telangiectasia-mutated and Rad3-related (ATR) are key factors in this process, each specific for different kinds of DNA lesions. They are conserved across eukaryotes, mediating the activation of cell-cycle checkpoints, chromatin modifications, and regulation of DNA repair proteins. We designed a novel mass spectrometry-based phosphoproteomics approach to study DNA damage repair in Arabidopsis thaliana. The protocol combines filter aided sample preparation, immobilized metal affinity chromatography, metal oxide affinity chromatography, and strong cation exchange chromatography for phosphopeptide generation, enrichment, and separation. Isobaric labeling employing iTRAQ (isobaric tags for relative and absolute quantitation) was used for profiling the phosphoproteome of atm atr double mutants and wild type plants under either regular growth conditions or challenged by irradiation. A total of 10,831 proteins were identified and 15,445 unique phosphopeptides were quantified, containing 134 up- and 38 down-regulated ATM/ATR dependent phosphopeptides. We identified known and novel ATM/ATR targets such as LIG4 and MRE11 (needed for resistance against ionizing radiation), PIE1 and SDG26 (implicated in chromatin remodeling), PCNA1, WAPL, and PDS5 (implicated in DNA replication), and ASK1 and HTA10 (involved in meiosis).In eukaryotes, the reversible phosphorylation of serine, threonine, and tyrosine residues within proteins is a wide-spread post-translational modification, essential for controlling a multitude of cellular processes. During the last decade, sequencing projects unexpectedly unraveled that plant genomes encode for a considerable larger number of protein kinases than the other kingdoms of life. Arabidopsis thaliana contains 1112 PKs (4% of all genes), twice the number encoded by the human genome (518 or 2% of all genes) and other plants have an even higher number of kinases (1).Phosphatidyl inositol 3′ kinase related kinases are important players in DNA damage response (DDR)1 and crucial for genome integrity (2). Key to DNA double strand break (DSB) repair is a chain of events starting with detection of the lesion, activation of a signaling cascade, cell cycle arrest, and recruitment of the repair machinery. The cascade is triggered by the Phosphatidyl inositol 3′ kinase related kinases family kinases ataxia telangiectasia-mutated (ATM) (3) and Ataxia telangiectasia-mutated and Rad3-related (ATR) (4). Both kinases are conserved across eukaryotes. Their downstream targets have been systematically identified in yeast (5) and human cells (6, 7). Their essential role in mediating DNA repair in higher plants has been established (810). In Arabidopsis, loss of function mutants are viable (11); however, atm mutants are highly sensitive to genotoxic stress and have a reduced fertility. atr mutant plants have a cell-cycle checkpoint defect upon exposure to genotoxic chemicals (12). Somatic growth under nonchallenging conditions is not affected in the double mutant but plants are sterile, highlighting the role of both kinases coordinating meiotic DNA repair. In plants, systematic phosphoproteomic studies of the involved pathways have not been reported but would contribute to further elucidating the molecular mechanism of the observed phenotypes. Interestingly, plants lack clear homologs for many downstream regulatory components in the signaling cascade (e.g. CHK1, CHK2, p53, and MDC1) (13). In this context, it should be noted that DNA-PKcs (DNA-dependent protein kinase), another Phosphatidyl inositol 3′ kinase related kinases family member involved in DNA repair, has not been identified in plant genomes (14, 15), underscoring the significance of ATM and ATR as master regulators.ATM is recruited to DSBs via its interaction with NBS1/XRS2, a member of the MRN/X complex (MRE11/RAD50/NBS1-XRS2). In plants, the detailed molecular base for ATM recruitment has remained unknown. The complex acts as damage sensor in yeast, first to be detected at DNA double strand break (DSB) sites and essential for resection of DNA (16). In all organisms analyzed, the MRN/X complex is required for genotoxic stress resistance (17). The Mre11 endonuclease activity is critical for ATM activation, likely triggered by the generation of short oligo-nucleotides (18). In higher eukaryotes, ATM activation relies on MRN binding to DSBs via MRE11, subsequent tethering of DSB ends via RAD50 and recruitment of ATM. This interaction leads to monomerisation of inactive ATM dimers, followed by autophosphorylation. The MRN subcomplex member NBS1 interacts with monomeric ATM leading to its localization in close proximity of the DSB site (19). NBS1, H2AX, the checkpoint kinase CHK2, and the trimeric replication protein A (RPA) are important downstream targets of ATM (6).In yeast, ATR is activated by RPA coated single-stranded DNA (ssDNA) that is generated by 5′ resection mediated by MRX/N, Exo1, Sgs1, and Dna2 during DSB processing (20). Furthermore, ssDNA may become exposed because of replication fork break down during DNA replication or nucleotide excision repair (21). Exposed ssDNA is rapidly bound by RPA, attracting ATRIP, and the Rad17-RFC complex. ATRIP interacts with ATR and is essential for its activation and function (22). The Rad17-RFC complex is functional in loading the 9–1-1 protein complex (Rad9, Rad1, and Hus1) to 5′ dsDNA-ssDNA junctions, in turn stimulating ATR activity at the site of the exposed ssDNA (23). In human cells, TopBP1 is required for activation of ATR and localizing to DNA lesion sites. Rad17, TopBP1, RPA, and the checkpoint kinase CHK1 are known downstream targets of activated ATR.The core effectors of DNA repair (e.g. RAD51), the proteins detecting DNA damage and mediating initiation of repair (e.g. MRX) and the two master regulators ATM and ATR are conserved in plants but many downstream components have diverged considerably. Yet, a comprehensive model for DDR in plants requires identification of all components to delineate the involved signaling pathways and their cross-talk with other regulatory processes.Mass spectrometry-based methods are powerful and hypothesis-free approaches for protein characterization, enabling high-throughput studies of protein complexes (24), protein expression profiling (25), or large-scale identification of protein kinase targets (26). Also, the identification and quantification of thousands of phosphopeptides has become feasible by technological and methodological advances. As a consequence, system-wide analyses of signaling networks has become possible (27). Despite above mentioned advances, comprehensive phosphoproteomic studies remain challenging in regards to sample preparation and phosphopeptide enrichment. An additional complication in large-scale studies is imposed by the requirement for correct automatic localization of phosphorylation sites (28). Abundant metabolites make sample preparation in plants especially difficult; however, a number of large-scale phosphoproteomic studies have been reported (2934).Phosphorylation sites in proteins are in most cases substoichiometric. As a consequence, the comprehensive analysis requires enrichment of phosphopeptides prior to LC-MS/MS. From the large number of developed methods (35), metal-based affinity chromatography such as immobilized metal affinity chromatography (IMAC) and metal oxide affinity chromatography (MOAC) have become most widely used. Both materials have different specificities, resulting in a substantial increase of identified phosphopeptides when employed consecutively (36).Here we delineate a methodology to identify and relatively quantify phosphorylation events proteome-wide in higher plants (Fig. 1). We demonstrate its applicability in the context of ATM and ATR dependent DNA damage repair in Arabidopsis thaliana. The approach combines filter assisted sample preparation (FASP) (37), isobaric labeling via iTRAQ, phosphopeptide enrichment using IMAC and TiO2, strong cation exchange (SCX) chromatography, followed by LC-MS/MS. We compared the relative differences between the phosphoproteomes of wild type plants with the double mutant (atm atr), studying both irradiated and nonirradiated plants. In addition, we performed an independent analysis based on peptide generation after protein precipitation.Open in a separate windowFig. 1.Workflow for identification of ATM/ATR dependent and independent phosphorylations. Wild type and atm atr double mutant plants were either exposed to irradiation or grown under regular conditions. Extracted proteins were purified via FASP and labeled with iTRAQ. Phosphopeptides were enriched by consecutive application of IMAC and TiO2. Both, the phosphopeptide-enriched fraction and the flow-through of the TiO2 chromatography, were separated by SCX chromatography and fractions were analyzed by reversed phase LC-MS/MS.All together, we identified 10,831 proteins. Four-hundred and 13 phosphoproteins are phosphorylated upon ionizing radiation, among them 108 in an ATM/ATR dependent manner. The acquired data-set represents a unique resource for plant researchers and extends the current knowledge on ATM/ATR dependent DNA repair pathways.  相似文献   

16.
Loss or inactivation of BLM, a helicase of the RecQ family, causes Bloom syndrome, a genetic disorder with a strong predisposition to cancer. Although the precise function of BLM remains unknown, genetic data has implicated BLM in the process of genetic recombination and DNA repair. Previously, we demonstrated that BLM can disrupt the RAD51-single-stranded DNA filament that promotes the initial steps of homologous recombination. However, this disruption occurs only if RAD51 is present in an inactive ADP-bound form. Here, we investigate interactions of BLM with the active ATP-bound form of the RAD51-single-stranded DNA filament. Surprisingly, we found that BLM stimulates DNA strand exchange activity of RAD51. In contrast to the helicase activity of BLM, this stimulation does not require ATP hydrolysis. These data suggest a novel BLM function that is stimulation of the RAD51 DNA pairing. Our results demonstrate the important role of the RAD51 nucleoprotein filament conformation in stimulation of DNA pairing by BLM.Mutations of BLM helicase cause Bloom syndrome (BS),2 a rare autosomal disorder, which is associated with stunted growth, facial sun sensitivity, immunodeficiency, fertility defects, and a greatly elevated incidence of many types of cancer occurring at an early age (1). BLM belongs to the highly conserved family of RecQ helicases that are required for the maintenance of genome integrity in all organisms (2, 3). There are five RecQ helicases in humans; mutations in three of them, WRN, RECQ4, and BLM, have been associated with the genetic abnormalities known as Werner, Rothmund-Thomson, and Bloom syndrome, respectively (4, 5). The cells from BS patients display genomic instability; the hallmark of BS is an increase in the frequency of sister chromatid and interhomolog exchanges (1, 6). Because homologous recombination (HR) is responsible for chromosomal exchanges, it is thought that BLM helicase functions in regulating HR (79). Also, BLM helicase is required for faithful chromosome segregation (10) and repair of stalled replication forks (11, 12), the processes that are linked to HR (1315). BLM was found to interact physically with RAD51, a key protein of HR (16) that catalyzes the central steps in HR including the search for homology and the exchange of strands between homologous ssDNA and dsDNA sequences (17). In cells, BLM forms nuclear foci, a subset of which co-localize with RAD51. Interestingly, the extent of RAD51 and BLM co-localization increases in response to ionizing radiation, indicating a possible role of BLM in the repair of DNA double-strand breaks (16).Biochemical studies suggest that BLM may perform several different functions in HR. BLM was shown to promote the dissociation of HR intermediates (D-loops) (1820), branch migration of Holliday junctions (21), and dissolution of double Holliday junctions acting in a complex with TopoIIIα and BLAP75 (2224). BLM may also facilitate DNA synthesis during the repair process by unwinding the DNA template in front of the replication fork (25). In addition, BLM and its yeast homolog Sgs1 may play a role at the initial steps of DNA double-strand break repair by participating in exonucleolitic resection of the DNA ends to generate DNA molecules with the 3′-ssDNA tails, a substrate for RAD51 binding (2629).In vivo, the process of HR is tightly regulated by various mechanisms (30). Whereas some proteins promote HR (14, 31), others inhibit this process, thereby preventing its untimely initiation (32, 33). Disruption of the Rad51-ssDNA nucleoprotein filament appears to be an especially important mechanism of controlling HR. This filament disruption activity was demonstrated for the yeast Srs2 helicase (34, 35) and human RECQ5 helicase (36). Recently, we found that BLM can also catalyze disruption of the RAD51-ssDNA filament (25). This disruption only occurs if the filament is present in an inactive ADP-bound form, e.g. in the presence of Mg2+. Conversion of RAD51 into an active ATP-bound form, e.g. in the presence of Ca2+ (37), renders the filament resistant to BLM disruption (25). In this study, we analyze the interactions of BLM with an active ATP-bound RAD51-ssDNA filament. Surprisingly, we found that BLM stimulates the DNA strand exchange activity of RAD51. Thus, depending on the conformational state of the RAD51 nucleoprotein filament, BLM may either inhibit or stimulate the DNA strand exchange activity of RAD51. Our analysis demonstrated that, in contrast to several known stimulatory proteins that act by promoting formation of the RAD51-ssDNA filament, BLM stimulates the DNA strand exchange activity of RAD51 at a later stage, during synapsis. Stimulation appears to be independent of the ATPase activity of BLM. We suggest that this stimulation of RAD51 may represent a novel function of BLM in homologous recombination.  相似文献   

17.
18.
19.
Coordinated execution of DNA replication, checkpoint activation, and postreplicative chromatid cohesion is intimately related to the replication fork machinery. Human AND-1/chromosome transmission fidelity 4 is localized adjacent to replication foci and is required for efficient DNA synthesis. In S phase, AND-1 is phosphorylated in response to replication arrest in a manner dependent on checkpoint kinase, ataxia telangiectasia-mutated, ataxia telangiectasia-mutated and Rad3-related protein, and Cdc7 kinase but not on Chk1. Depletion of AND-1 increases DNA damage, delays progression of S phase, leads to accumulation of late S and/or G2 phase cells, and induces cell death in cancer cells. It also elevated UV-radioresistant DNA synthesis and caused premature recovery of replication after hydroxyurea arrest, indicating that lack of AND-1 compromises checkpoint activation. This may be partly due to the decreased levels of Chk1 protein in AND-1-depleted cells. Furthermore, AND-1 interacts with cohesin proteins Smc1, Smc3, and Rad21/Scc1, consistent with proposed roles of yeast counterparts of AND-1 in sister chromatid cohesion. Depletion of AND-1 leads to significant inhibition of homologous recombination repair of an I-SceI-driven double strand break. Based on these data, we propose that AND-1 coordinates multiple cellular events in S phase and G2 phase, such as DNA replication, checkpoint activation, sister chromatid cohesion, and DNA damage repair, thus playing a pivotal role in maintenance of genome integrity.Replication fork is not only the site of DNA synthesis but also the center for coordinated execution of various chromosome transactions. The preparation for replication forks starts in the G1 phase, when the prereplicative complex composed of origin recognition and minichromosome maintenance assembles on the chromosome. At the G1-S boundary, Cdc45, GINS complex, and other factors join the prereplicative complex to generate a complex capable of initiating DNA replication. A series of phosphorylation events mediated by cyclin-dependent kinase and Cdc7 kinase play crucial roles in this process and facilitate the generation of active replication forks (16). Purification of the putative replisome complex in yeast indicated the presence of the checkpoint mediator Mrc1 and fork protection complex proteins Tof1 and Csm3 in the replication fork machinery (7), consistent with a previous report on the genome-wide analyses with chromatin immunoprecipitation analyses on chip (microarray) (8). Mcm10 is another factor present in the isolated complex, required for loading of replication protein A (RPA)2 and primase-DNA polymerase α onto the replisome complex (7, 9, 10).Replication fork machinery can cope with various stresses, including shortage of the cellular nucleotide pool and replication fork blockages that interfere with its progression. Stalled replication forks activate checkpoint pathways, leading to cell cycle arrest, DNA repair, restart of DNA replication, or cell death in some cases (1114). Single-stranded DNAs coated with RPA at the stalled replication forks are recognized by the ATR-ATR-interacting protein kinase complex and Rad17 for loading of the Rad9-Rad1-Hus1 checkpoint clamp (1416). Factors present in the replisome complex are also known to be required for checkpoint activation. Claspin, Tim, and Tipin functionally and physically associate with sensor and effector kinases and serve as mediator/adaptors (1723). Mcm7, a component of the replicative DNA helicase in eukaryotes, was reported to associate with the checkpoint clamp loader Rad17 (24) and to have a distinct function in checkpoint (24, 25). We recently reported that Cdc7 kinase, known to be required for DNA replication initiation, plays a role in activation of DNA replication checkpoint possibly through regulating Claspin phosphorylation (26). Thus, it appears that DNA replication and checkpoint activation functionally and physically interact with each other.Another crucial cellular event for maintenance of genome stability is sister chromatid cohesion. The cohesin complex, a conserved apparatus required for sister chromatid cohesion, contains Smc1, Smc3, and Rad21/Scc1/Mcd1 proteins. The assembled cohesin complexes are loaded onto chromatin prior to DNA replication in G1 phase and link the sister chromosomes during S and G2 phase until mitosis when they separate (27, 28). The mitotic cohesion defects are not rescued by supplementing cohesin in G2 phase, and it has been suggested that establishment of sister chromatid cohesion is coupled with DNA replication (29, 30). Indeed, yeast mutants in some replisome components show defect in sister chromosome cohesion or undergo chromosome loss (3133). Cdc7 kinase is also required for efficient mitotic chromosome cohesion (34, 35).Human AND-1 is the putative homolog of budding yeast CTF4/Pob1/CHL15 and fission yeast Mcl1/Slr3. The budding yeast counterpart was identified as a replisome component described above (7), which travels along with the replication fork (29). CTF4 is nonessential for viability, but its interactions with primase, Rad2 (FEN1 family of nuclease), and Dna2 have implicated CTF4 in lagging strand synthesis and/or Okazaki fragment processing (3639). Yeast CTF4 and Mcl1 are involved in chromosome cohesion (33, 40, 41) and genetically interact with a cohesin, Mcd1/Rad21 (40, 42). Recently, it was reported that human AND-1 protein interacts with human primase-DNA polymerase α and Mcm10 and is required for DNA synthesis (43).Here we confirm that human AND-1 protein is required for DNA replication and efficient progression of S phase, and we further show that it facilitates replication checkpoint. Depletion of AND-1 causes accumulation of DNA damage and cell cycle arrest at late S to G2 phase, ultimately leading to cell death. Furthermore, we also show that human AND-1 physically interacts with cohesin proteins Smc1, Smc3, Rad21/Scc1, suggesting a possibility that AND-1 may physically and functionally link replisome and cohesin complexes in vivo. Recent studies indicate that sister chromatid cohesion is required for recombinational DNA repair (4447). Thus, we examined the requirement of AND-1 for repair of artificially induced double-stranded DNA breaks and showed that AND-1 depletion leads to significant reduction of the double strand break repair. Possible roles of AND-1 in coordination of various chromosome transactions at a replication fork and in maintenance of genome integrity during S phase will be discussed.  相似文献   

20.
Proliferating cell nuclear antigen (PCNA) has been demonstrated to interact with multiple proteins involved in several metabolic pathways such as DNA replication and repair. However, there have been fewer reports about whether these PCNA-binding proteins influence stability of PCNA. Here, we observed a physical interaction between PCNA and MutT homolog2 (MTH2), a new member of the MutT-related proteins that hydrolyzes 8-oxo-7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP). In several unstressed human cancer cell lines and in normal human fibroblast cells, PCNA and MTH2 formed a complex and their mutual binding fragments were confirmed. It was intriguing that PCNA and MTH2 were dissociated dependent on acetylation of PCNA, which in turn induced degradation of PCNA in response to UV irradiation, but not in response to other forms of DNA-damaging stress. To further explore the link between dissociation of PCNA-MTH2 and degradation of PCNA, RNAi against MTH2 was performed to mimic the dissociated status of PCNA to evaluate changes in the half-life of PCNA. Knockdown of MTH2 significantly promoted degradation of PCNA, suggesting that the physiological interaction of PCNA-MTH2 may confer protection from degradation for PCNA, whereas UV irradiation accelerates PCNA degradation by inducing dissociation of PCNA-MTH2. Moreover, secondary to degradation of PCNA, UV-induced inhibition of DNA synthesis or cell cycle progression was enhanced. Collectively, our data demonstrate for the first time that PCNA is protected by this newly identified partner molecule MTH2, which is related to DNA synthesis and cell cycle progression.Proliferating cell nuclear antigen (PCNA)3 is a member of the DNA sliding clamp family and consists of a ring-shaped trimeric complex (13). Three PCNA monomers, each comprising two similar domains, are joined in a head-to-tail arrangement to form a closed ring (4, 5). Because of this unique structure, PCNA encircles the DNA double helix and slides freely along it. PCNA was originally characterized as a DNA polymerase processivity factor and it increases the processivity of DNA synthesis by interacting with polymerase δ (6, 7). Subsequent studies revealed that PCNA plays an important role in DNA replication (8, 9). For example, PCNA not only functions as a protein binding platform to interact with the DNA polymerases, flap endonuclease-1 (Fen1) or DNA ligase I (1012), but also coordinates complicated processes in DNA replication (2, 13). In addition, PCNA also plays a role in DNA damage repair (1417) and cell cycle control (1820).Because PCNA is essential for DNA synthesis both in DNA replication and repair, a dynamic balance between PCNA synthesis and degradation is critical for maintaining normal DNA synthesis. Up-regulation of PCNA accelerates DNA synthesis and promotes cell proliferation, such that PCNA is regarded as a general proliferation marker in tumor development. On the other hand, degradation of PCNA leads to inhibition of DNA synthesis (9, 21). In this case, in response to inhibition of DNA synthesis by PCNA degradation, both cell proliferation and DNA repair are inhibited, and cells are thus subject to death.In Escherichia coli, MutT protein encoded by the mutT gene has 8-oxo-dGTPase activity, and hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, which is nonutilizable for DNA synthesis, thus preventing misincorporation of 8-oxo-dGTP into DNA (22). 8-Oxo-dGTP is a product of dGTP oxidation and can be inserted into opposite dA or dC residues of template DNA at almost equal efficiencies. As a result, G:C to T:A or T:A to G:C transversion mutations occur (2224). In a mutT-deficient strain, the rate of spontaneous occurrence of A:T to C:G transversion increases by 1000-fold compared with that of cells with wild type mutT (2527). Therefore, MutT protein is required for preventing mutations and maintaining high fidelity of DNA replication (28). In addition, RibA is a backup enzyme for MutT in E. coli and also plays a role in maintaining high fidelity of DNA replication (29). The MutT homologue MTH1 is the first MutT-related protein found in mammalian cells (30). The spontaneous mutation frequency in MTH1-deficient cells showed an increase of ∼2-fold as compared with that in wild type MTH1 cells (31). Comparing the mutation frequency in mutT-deficient E. coli cells with that in MTH1-deficient mammalian cells suggests that there must be other proteins responsible for preventing occurrence of high numbers of oxidative damage induced mutations in mammalian cells. By searching the GenBankTM EST data base, our research group and others (32) have cloned a new member of MutT-related protein, MTH2. The increased mutation frequency in mutT-deficient cells was significantly reduced by overexpression of MTH2 cDNA (32). Therefore, MTH2 may help to ensure cells achieve accurate DNA synthesis. However, aside from the activity of 8-oxo-dGTPase, the exact mechanism by which MTH2 influences DNA synthesis has not been explored.The functions of both PCNA and MTH2 partially overlap in DNA synthesis, thus warranting exploration of whether MTH2 works together with PCNA to regulate DNA replication or repair. In this study, we found that MTH2 directly interacts with PCNA, and this interaction enhances PCNA stability. However, when cells were exposed to UV light, the interaction of MTH2 and PCNA was disrupted, and PCNA degradation was accelerated. Consequently, DNA synthesis was reduced, and cell cycling was arrested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号