首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mansouri S  Kutky M  Hudak KA 《PloS one》2012,7(5):e36369
Pokeweed antiviral protein (PAP) is a plant-derived N-glycosidase that exhibits antiviral activity against several viruses. The enzyme removes purine bases from the messenger RNAs of the retroviruses Human immunodeficiency virus-1 and Human T-cell leukemia virus-1. This depurination reduces viral protein synthesis by stalling elongating ribosomes at nucleotides with a missing base. Here, we transiently expressed PAP in cells with a proviral clone of HIV-1 to examine the effect of the protein on virus production and quality. PAP reduced virus production by approximately 450-fold, as measured by p24 ELISA of media containing virions, which correlated with a substantial decline in virus protein synthesis in cells. However, particles released from PAP-expressing cells were approximately 7-fold more infectious, as determined by single-cycle infection of 1G5 cells and productive infection of MT2 cells. This increase in infectivity was not likely due to changes in the processing of HIV-1 polyproteins, RNA packaging efficiency or maturation of virus. Rather, expression of PAP activated the ERK1/2 MAPK pathway to a limited extent, resulting in increased phosphorylation of viral p17 matrix protein. The increase in infectivity of HIV-1 particles produced from PAP-expressing cells was compensated by the reduction in virus number; that is, virus production decreased upon de novo infection of cells over time. However, our findings emphasize the importance of investigating the influence of heterologous protein expression upon host cells when assessing their potential for antiviral applications.  相似文献   

3.
4.
5.
6.
7.
8.
Human T-cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T-cell leukemia, and the clonally derived leukemic cells all contain proviral genomes. Polymerase chain reaction with a variety of primers which span the HTLV-I genome was used to determine that a significant fraction of patients (at least 32%) carry deleted viral genomes in their leukemic cells. The pX region of the HTLV-I genome encoding the regulatory genes tax and rex was preferentially retained. The fact that the tax coding region was retained provides supporting evidence that the tax protein contributes to leukemogenesis in vivo. The reasonably high fraction of patients with adult T-cell leukemia carrying deleted genomes in their tumor cells suggests that the deletions have a role in leukemogenesis.  相似文献   

9.
The presence of a high number of activated T cells in the bloodstream and spontaneous proliferation of peripheral blood mononuclear cells in vitro are striking characteristics of human T-cell leukemia virus type I (HTLV-I) infection. The HTLV-I regulatory protein Tax and the envelope protein gp46 have been implicated in mediating the activation process. In this study, HTLV-I-producing cell lines and purified virus from the cell lines were examined for the ability to activate peripheral blood lymphocytes (PBLs) and Jurkat cells. Antisera and monoclonal antibodies against several cellular adhesion proteins involved in T-cell activation and against viral proteins were used to identify which molecules may be participating in the activation process. First, neither virus from a T-cell line, MT2, nor virus produced from the human osteosarcoma cell line HOS/PL was able to induce PBLs to proliferate. In contrast, both fixed and irradiated HTLV-I-producing T-cell lines induced proliferation of PBLs; HOS/PL cells did not activate PBLs. Second, HTLV-I-positive T-cell lines were capable of activating interleukin-2 mRNA expression in Jurkat cells. Induction of interleukin-2 expression was inhibited by anti-CD2 and anti-lymphocyte function-associated antigen 3 (LFA-3) monoclonal antibodies but not anti-human leukocyte antigen-DR, anti-CD4, anti-LFA-1, or anti-intercellular adhesion molecule 1. Similar results were obtained with PBLs as the responder cells. Furthermore, monoclonal antibodies and antisera against various regions of the HTLV-I envelope proteins gp46 and gp21 as well as p40tax did not block activation. These data indicate that HTLV-I viral particles are not intrinsically mitogenic and that infection of target T cells is not necessary for activation. Instead, the mitogenic activity is restricted to virus-producing T cells, requires cell-to-cell contact, and may be mediated through the LFA-3/CD2 activation pathway.  相似文献   

10.
The causative agent behind adult T-cell leukemia and tropical spastic paraparesis/HTLV-I-associated myelopathy is the human T-cell leukemia virus type 1 (HTLV-I). Tetrapeptidic HTLV-I protease inhibitors were designed on a previously reported potent inhibitor KNI-10516, with modifications at the P(3)-cap moieties. All the inhibitors showed high HIV-1 protease inhibitory activity (over 98% inhibition at 50nM) and most exhibited highly potent inhibition against HTLV-I protease (IC(50) values were less than 100nM).  相似文献   

11.
Programmed ribosomal frameshifting is a molecular mechanism that is used by many RNA viruses to produce Gag-Pol fusion proteins. The efficiency of these frameshift events determines the ratio of viral Gag to Gag-Pol proteins available for viral particle morphogenesis, and changes in ribosomal frameshift efficiencies can severely inhibit virus propagation. Since ribosomal frameshifting occurs during the elongation phase of protein translation, it is reasonable to hypothesize that agents that affect the different steps in this process may also have an impact on programmed ribosomal frameshifting. We examined the molecular mechanisms governing programmed ribosomal frameshifting by using two viruses of the yeast Saccharomyces cerevisiae. Here, we present evidence that pokeweed antiviral protein (PAP), a single-chain ribosomal inhibitory protein that depurinates an adenine residue in the α-sarcin loop of 25S rRNA and inhibits translocation, specifically inhibits Ty1-directed +1 ribosomal frameshifting in intact yeast cells and in an in vitro assay system. Using an in vivo assay for Ty1 retrotransposition, we show that PAP specifically inhibits Ty1 retrotransposition, suggesting that Ty1 viral particle morphogenesis is inhibited in infected cells. PAP does not affect programmed −1 ribosomal frameshift efficiencies, nor does it have a noticeable impact on the ability of cells to maintain the M1-dependent killer virus phenotype, suggesting that −1 ribosomal frameshifting does not occur after the peptidyltransferase reaction. These results provide the first evidence that PAP has viral RNA-specific effects in vivo which may be responsible for the mechanism of its antiviral activity.  相似文献   

12.
13.
A fusion peptide containing 95 amino acid residues from the carboxyl terminus of the χ-Lor (χ) protein of human T-cell lymphotropic virus type I (HTLV-I) was produced in quantity in Escherichia coli and purified to >95% homogeneity by reverse-phase high-performance liquid chromatography with a yield of approximately 15 mg protein from 3.3 g wet cell paste of 1.5 liter induced cell culture. The purified recombinant peptide is immunogenic or selectively immunogenic in adult T-cell leukemia patients and individuals who are seropositive normals. Rabbit polyclonal antisera prepared against the purified χ gene fusion peptide react strongly and specifically against the peptide. This approach is highly suitable for scale-up production of abundant and pure HTLV-I reagents for subsequent application in serodiagnostic, functional, and structural approaches relating to the etiology of the virus.  相似文献   

14.
15.
Intrinsic immunity relies on specific recognition of viral epitopes to mount a cell-autonomous defense against viral infections. Viral recognition determinants in intrinsic immunity genes are expected to evolve rapidly as host genes adapt to changing viruses, resulting in a signature of adaptive evolution. Zinc-finger antiviral protein (ZAP) from rats was discovered to be an intrinsic immunity gene that can restrict murine leukemia virus, and certain alphaviruses and filoviruses. Here, we used an approach combining molecular evolution and cellular infectivity assays to address whether ZAP also acts as a restriction factor in primates, and to pinpoint which protein domains may directly interact with the virus. We find that ZAP has evolved under positive selection throughout primate evolution. Recurrent positive selection is only found in the poly(ADP-ribose) polymerase (PARP)–like domain present in a longer human ZAP isoform. This PARP-like domain was not present in the previously identified and tested rat ZAP gene. Using infectivity assays, we found that the longer isoform of ZAP that contains the PARP-like domain is a stronger suppressor of murine leukemia virus expression and Semliki forest virus infection. Our study thus finds that human ZAP encodes a potent antiviral activity against alphaviruses. The striking congruence between our evolutionary predictions and cellular infectivity assays strongly validates such a combined approach to study intrinsic immunity genes.  相似文献   

16.
The Rex regulatory proteins of human T-cell leukemia virus type I (HTLV-I) and bovine leukemia virus (BLV), and the Rev protein of human immunodeficiency virus type 1 (HIV-1), promote the cytoplasmic accumulation and translation of viral messenger mRNAs encoding structural proteins. Rev and Rex act through cis-acting elements on the viral RNA; these elements are named Rev- and Rex-responsive elements, or RRE and RXRE, respectively. We show that the Rex proteins of HTLV-I and BLV are interchangeable, but only the Rex protein of HTLV-I can substitute for Rev of HIV-1. Rex of HTLV-I and Rev of HIV-1 appear to act on RRE by similar mechanisms. Rev of HIV-1 does not act on the RXRE of HTLV-I or BLV. The nonreciprocal action of Rev and Rex suggests that these factors interact directly with the cis-acting RNA elements of the two viruses.  相似文献   

17.
18.
19.
Pokeweed antiviral protein (PAP) is a naturally occurring broad-spectrum antiviral agent with potent anti-human immunodeficiency virus (HIV)-1 activity by an as yet undeciphered molecular mechanism. In the present study, we sought to determine if PAP is capable of recognizing and depurinating viral RNA. Depurination of viral RNA was monitored by directly measuring the amount of the adenine base released from the viral RNA species using quantitative high-performance liquid chromatography. Our findings presented herein provide direct evidence that three different PAP isoforms from Phytolacca americana (PAP-I from spring leaves, PAP-II from early summer leaves, and PAP-III from late summer leaves) cause concentration-dependent depurination of genomic RNA (63 to 400 pmols of adenine released per micrograms of RNA) purified from human immunodeficiency virus type-I (HIV-I), plant virus (tobacco mosaic virus (TMV), and bacteriophage (MS 2). In contrast to the three PAP isoforms, ricin A chain (RTA) failed to cause detectable depurination of viral RNA even at 5 microM, although it was as effective as PAP in inhibiting protein synthesis in cell-free translation assays. PAP-I, PAP-II, and PAP-III (but not RTA) inhibited the replication of HIV-1 in human peripheral blood mononuclear cells with IC(50) values of 17 nM, 25 nM, and 16 nM, respectively. These findings indicate that the highly conserved active site residues responsible for the depurination of rRNA by PAP or RTA are not sufficient for the recognition and depurination of viral RNA. Our study prompts the hypothesis that the potent antiviral activity of PAP may in part be due to its unique ability to extensively depurinate viral RNA, including HIV-1 RNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号