首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Relationships among biochemical signaling processes involved in Ca2+/calmodulin (CaM)-dependent phosphorylation of smooth muscle myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) were determined. A genetically-encoded biosensor MLCK for measuring Ca2+-dependent CaM binding and activation was expressed in smooth muscles of transgenic mice. We performed real-time evaluations of the relationships among [Ca2+]i, MLCK activation, and contraction in urinary bladder smooth muscle strips neurally stimulated for 3 s. Latencies for the onset of [Ca2+]i and kinase activation were 55 ± 8 and 65 ± 6 ms, respectively. Both increased with RLC phosphorylation at 100 ms, whereas force latency was 109 ± 3 ms. [Ca2+]i, kinase activation, and RLC phosphorylation responses were maximal by 1.2 s, whereas force increased more slowly to a maximal value at 3 s. A delayed temporal response between RLC phosphorylation and force is probably due to mechanical effects associated with elastic elements in the tissue. MLCK activation partially declined at 3 s of stimulation with no change in [Ca2+]i and also declined more rapidly than [Ca2+]i during relaxation. The apparent desensitization of MLCK to Ca2+ activation appears to be due to phosphorylation in its calmodulin binding segment. Phosphorylation of two myosin light chain phosphatase regulatory proteins (MYPT1 and CPI-17) or a protein implicated in strengthening membrane adhesion complexes for force transmission (paxillin) did not change during force development. Thus, neural stimulation leads to rapid increases in [Ca2+]i, MLCK activation, and RLC phosphorylation in phasic smooth muscle, showing a tightly coupled Ca2+ signaling complex as an elementary mechanism initiating contraction.Increases in [Ca2+]i3 in smooth muscle cells lead to Ca2+/CaM-dependent MLCK activation and RLC phosphorylation. Phosphorylation of RLC increases actin-activated myosin MgATPase activity leading to myosin cross-bridge cycling with force development (13).The activation of smooth muscle contraction may be affected by multiple cellular processes. Previous investigations show that free Ca2+/CaM is limiting for kinase activation despite the abundance of total CaM (46). The extent of RLC phosphorylation is balanced by the actions of MLCK and myosin light chain phosphatase, which is composed of three distinct protein subunits (7). The myosin phosphatase targeting subunit, MYPT1, in smooth muscle binds to myosin filaments, thus targeting the 37-kDa catalytic subunit (type 1 serine/threonine phosphatase, PP1c) to phosphorylated RLC. RLC phosphorylation and muscle force may be regulated by additional signaling pathways involving phosphorylation of RLC by Ca2+-independent kinase(s) and inhibition of myosin light chain phosphatase, processes that increase the contraction response at fixed [Ca2+]i (Ca2+-sensitization) (814). Many studies indicate that agonist-mediated Ca2+-sensitization most often reflects decreased myosin light chain phosphatase activity involving two major pathways including MYPT1 phosphorylation by a Rho kinase pathway and phosphorylation of CPI-17 by PKC (8, 1416). Additionally, phosphorylation of MLCK in its calmodulin-binding sequence by a Ca2+/calmodulin-dependent kinase pathway has been implicated in Ca2+ desensitization of RLC phosphorylation (1719). How these signaling pathways intersect the responses of the primary Ca2+/CaM pathway during physiological neural stimulation is not known.There is also evidence that smooth muscle contraction requires the polymerization of submembranous cytoskeletal actin filaments to strengthen membrane adhesion complexes involved in transmitting force between actin-myosin filaments and external force-transmitting structures (2023). In tracheal smooth muscle, paxillin at membrane adhesions undergoes tyrosine phosphorylation in response to contractile stimulation by an agonist, and this phosphorylation increases concurrently with force development in response to agonist. Expression of nonphosphorylatable paxillin mutants in tracheal muscle suppresses acetylcholine-induced tyrosine phosphorylation of paxillin, tension development, and actin polymerization without affecting RLC phosphorylation (24, 25). Thus, paxillin phosphorylation may play an important role in tension development in smooth muscle independently of RLC phosphorylation and cross-bridge cycling.Specific models relating signaling mechanisms in the smooth muscle cell to contraction dynamics are limited when cells in tissues are stimulated slowly and asynchronously by agonist diffusing into the preparation. Field stimulation leading to the rapid release of neurotransmitters from nerves embedded in the tissue avoids these problems associated with agonist diffusion (26, 27). In urinary bladder smooth muscle, phasic contractions are brought about by the parasympathetic nervous system. Upon activation, parasympathetic nerve varicosities release the two neurotransmitters, acetylcholine and ATP, that bind to muscarinic and purinergic receptors, respectively. They cause smooth muscle contraction by inducing Ca2+ transients as elementary signals in the process of nerve-smooth muscle communication (2830). We recently reported the development of a genetically encoded, CaM-sensor for activation of MLCK. The CaM-sensor MLCK contains short smooth muscle MLCK fused to two fluorophores, enhanced cyan fluorescent protein and enhanced yellow fluorescent protein, linked by the MLCK calmodulin binding sequence (6, 14, 31). Upon dimerization, there is significant FRET from the donor enhanced cyan fluorescent protein to the acceptor enhanced yellow fluorescent protein. Ca2+/CaM binding dissociates the dimer resulting in a decrease in FRET intensity coincident with activation of kinase activity (31). Thus, CaM-sensor MLCK is capable of directly monitoring Ca2+/CaM binding and activation of the kinase in smooth muscle tissues where it is expressed specifically in smooth muscle cells of transgenic mice. We therefore combined neural stimulation with real-time measurements of [Ca2+]i, MLCK activation, and force development in smooth muscle tissue from these mice. Additionally, RLC phosphorylation was measured precisely at specific times following neural stimulation in tissues frozen by a rapid-release electronic freezing device (26, 27). Results from these studies reveal that physiological stimulation of smooth muscle cells by neurotransmitter release leads to rapid increases in [Ca2+]i, MLCK activation, and RLC phosphorylation at similar rates without the apparent activities of Ca2+-independent kinases, inhibition of myosin light chain phosphatase, or paxillin phosphorylation. Thus, the elemental processes for phasic smooth muscle contraction are represented by this tightly coupled Ca2+ signaling complex.  相似文献   

2.
Helicobacter pylori CagA plays a key role in gastric carcinogenesis. Upon delivery into gastric epithelial cells, CagA binds and deregulates SHP-2 phosphatase, a bona fide oncoprotein, thereby causing sustained ERK activation and impaired focal adhesions. CagA also binds and inhibits PAR1b/MARK2, one of the four members of the PAR1 family of kinases, to elicit epithelial polarity defect. In nonpolarized gastric epithelial cells, CagA induces the hummingbird phenotype, an extremely elongated cell shape characterized by a rear retraction defect. This morphological change is dependent on CagA-deregulated SHP-2 and is thus thought to reflect the oncogenic potential of CagA. In this study, we investigated the role of the PAR1 family of kinases in the hummingbird phenotype. We found that CagA binds not only PAR1b but also other PAR1 isoforms, with order of strength as follows: PAR1b > PAR1d ≥ PAR1a > PAR1c. Binding of CagA with PAR1 isoforms inhibits the kinase activity. This abolishes the ability of PAR1 to destabilize microtubules and thereby promotes disassembly of focal adhesions, which contributes to the hummingbird phenotype. Consistently, PAR1 knockdown potentiates induction of the hummingbird phenotype by CagA. The morphogenetic activity of CagA was also found to be augmented through inhibition of non-muscle myosin II. Because myosin II is functionally associated with PAR1, perturbation of PAR1-regulated myosin II by CagA may underlie the defect of rear retraction in the hummingbird phenotype. Our findings reveal that CagA systemically inhibits PAR1 family kinases and indicate that malfunctioning of microtubules and myosin II by CagA-mediated PAR1 inhibition cooperates with deregulated SHP-2 in the morphogenetic activity of CagA.Infection with Helicobacter pylori strains bearing cagA (cytotoxin-associated gene A)-positive strains is the strongest risk factor for the development of gastric carcinoma, the second leading cause of cancer-related death worldwide (13). The cagA gene is located within a 40-kb DNA fragment, termed the cag pathogenicity island, which is specifically present in the genome of cagA-positive H. pylori strains (46). In addition to cagA, there are ∼30 genes in the cag pathogenicity island, many of which encode a bacterial type IV secretion system that delivers the cagA-encoded CagA protein into gastric epithelial cells (710). Upon delivery into gastric epithelial cells, CagA is localized to the plasma membrane, where it undergoes tyrosine phosphorylation at the C-terminal Glu-Pro-Ile-Tyr-Ala motifs by Src family kinases or c-Abl kinase (1114). The C-terminal Glu-Pro-Ile-Tyr-Ala-containing region of CagA is noted for the structural diversity among distinct H. pylori isolates. Oncogenic potential of CagA has recently been confirmed by a study showing that systemic expression of CagA in mice induces gastrointestinal and hematological malignancies (15).When expressed in gastric epithelial cells, CagA induces morphological transformation termed the hummingbird phenotype, which is characterized by the development of one or two long and thin protrusions resembling the beak of the hummingbird. It has been thought that the hummingbird phenotype is related to the oncogenic action of CagA (7, 1619). Pathophysiological relevance for the hummingbird phenotype in gastric carcinogenesis has recently been provided by the observation that infection with H. pylori carrying CagA with greater ability to induce the hummingbird phenotype is more closely associated with gastric carcinoma (2023). Elevated motility of hummingbird cells (cells showing the hummingbird phenotype) may also contribute to invasion and metastasis of gastric carcinoma.In host cells, CagA interacts with the SHP-2 phosphatase, C-terminal Src kinase, and Crk adaptor in a tyrosine phosphorylation-dependent manner (16, 24, 25) and also associates with Grb2 adaptor and c-Met in a phosphorylation-independent manner (26, 27). Among these CagA targets, much attention has been focused on SHP-2 because the phosphatase has been recognized as a bona fide oncoprotein, gain-of-function mutations of which are found in various human malignancies (17, 18, 28). Stable interaction of CagA with SHP-2 requires CagA dimerization, which is mediated by a 16-amino acid CagA-multimerization (CM)2 sequence present in the C-terminal region of CagA (29). Upon complex formation, CagA aberrantly activates SHP-2 and thereby elicits sustained ERK MAP kinase activation that promotes mitogenesis (30). Also, CagA-activated SHP-2 dephosphorylates and inhibits focal adhesion kinase (FAK), causing impaired focal adhesions. It has been shown previously that both aberrant ERK activation and FAK inhibition by CagA-deregulated SHP-2 are involved in induction of the hummingbird phenotype (31).Partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) is an evolutionally conserved serine/threonine kinase originally isolated in C. elegans (3234). Mammalian cells possess four structurally related PAR1 isoforms, PAR1a/MARK3, PAR1b/MARK2, PAR1c/MARK1, and PAR1d/MARK4 (3537). Among these, PAR1a, PAR1b, and PAR1c are expressed in a variety of cells, whereas PAR1d is predominantly expressed in neural cells (35, 37). These PAR1 isoforms phosphorylate microtubule-associated proteins (MAPs) and thereby destabilize microtubules (35, 38), allowing asymmetric distribution of molecules that are involved in the establishment and maintenance of cell polarity.In polarized epithelial cells, CagA disrupts the tight junctions and causes loss of apical-basolateral polarity (39, 40). This CagA activity involves the interaction of CagA with PAR1b/MARK2 (19, 41). CagA directly binds to the kinase domain of PAR1b in a tyrosine phosphorylation-independent manner and inhibits the kinase activity. Notably, CagA binds to PAR1b via the CM sequence (19). Because PAR1b is present as a dimer in cells (42), CagA may passively homodimerize upon complex formation with the PAR1 dimer via the CM sequence, and this PAR1-directed CagA dimer would form a stable complex with SHP-2 through its two SH2 domains.Because of the critical role of CagA in gastric carcinogenesis (7, 1619), it is important to elucidate the molecular basis underlying the morphogenetic activity of CagA. In this study, we investigated the role of PAR1 isoforms in induction of the hummingbird phenotype by CagA, and we obtained evidence that CagA-mediated inhibition of PAR1 kinases contributes to the development of the morphological change by perturbing microtubules and non-muscle myosin II.  相似文献   

3.
Myosin II disassembly in Dictyostelium discoideum is regulated by three structurally related myosin heavy chain kinases (myosin II heavy chain kinase A [MHCK-A], -B, and -C). We show that the WD repeat domain of MHCK-C is unique in that it mediates both substrate targeting and subcellular localization, revealing a target for regulation that is distinct from those of the other MHCKs.The ability of a cell to undergo highly specific modifications in shape during processes such as cytokinesis, cell migration, cell adhesion, and receptor capping is dependent, in large part, on the proper control of where and when myosin II contracts actin filaments in the cell (3, 4). In Dictyostelium discoideum, myosin II filament disassembly is regulated by at least three myosin II heavy chain kinases (myosin II heavy chain kinase A [MHCK-A], MHCK-B, and MHCK-C). The Dictyostelium MHCKs possess alpha kinase domains and carboxyl-terminal WD repeat domains (11, 13, 17). The WD repeat domains of MHCK-A and MHCK-B facilitate myosin II heavy chain phosphorylation by these kinases by binding directly to myosin II filaments (14, 15). However, the WD repeat domains play no detectable role in determining the subcellular localization of these kinases. Similar functions for the WD repeat domain of MHCK-C have not been explored, and there is nothing known about the signaling events regulating MHCK-C localization and activity, thus limiting comparisons among the MHCKs that could ultimately reveal distinct functions and mechanisms of regulation for these seemingly redundant enzymes.  相似文献   

4.
Smooth muscle myosin is activated by regulatory light chain (RLC) phosphorylation. In the unphosphorylated state the activity of both heads is suppressed due to an asymmetric, intramolecular interaction between the heads. The properties of myosin with only one of its two RLCs phosphorylated, a state likely to be present both during the activation and the relaxation phase of smooth muscle, is less certain despite much investigation. Here we further characterize the mechanical properties of an expressed heavy meromyosin (HMM) construct with only one of its RLCs phosphorylated (HMM-1P). This construct was previously shown to have more than 50% of the ATPase activity of fully phosphorylated myosin (HMM-2P) and to move actin at the same speed in a motility assay as HMM-2P (Rovner, A. S., Fagnant, P. M., and Trybus, K. M. (2006) Biochemistry 45, 5280–5289). Here we show that the unitary step size and attachment time to actin of HMM-1P is indistinguishable from that of HMM-2P. Force-velocity measurements on small ensembles show that HMM-1P can generate approximately half the force of HMM-2P, which may relate to the observed duty ratio of HMM-1P being approximately half that of HMM-2P. Therefore, single-phosphorylated smooth muscle HMM molecules are active species, and the head associated with the unphosphorylated RLC is mechanically competent, allowing it to make a substantial contribution to both motion and force generation during smooth muscle contraction.Myosin motors are involved in a diverse array of actin-based cellular functions including muscle contraction, cargo transport, and cytokinesis. To accomplish any of these processes successfully, there needs to be strict control of when the motor is activated and when it is turned “off.” Smooth muscle myosin, which powers smooth muscle contraction in both vascular and visceral tissues, is no exception, and the mechanism by which it is regulated has been studied for many years (for review, see Ref. 2). Smooth muscle myosin is activated when the calcium-calmodulin-myosin light chain kinase complex phosphorylates Ser-19 of the regulatory light chain (RLC)2 bound to the neck of the myosin head. In the unphosphorylated state, smooth muscle myosin is unable to move actin, and the actomyosin ATPase activity is rate-limited by phosphate release so that the motor can only weakly interact with actin in the M·ADP·Pi state (3).Early studies characterized the inhibited state of myosin at physiologic ionic strength as a species that sedimented at 10 S in the ultracentrifuge, indicating that the rod must adopt a compact conformation (4, 5). Consistent with the hydrodynamic studies, metal-shadowed images showed a structure with the rod bent into nearly equal thirds and heads bent back toward the rod (6). Higher resolution cryoelectron microscopic images of two-dimensional arrays of unphosphorylated HMM revealed an asymmetric intramolecular interaction between the heads called the “blocked” and “free” heads that proposed a molecular basis for inhibition (7). The actin binding domain of the blocked head interacts with the converter domain of the free head, so that the blocked head cannot bind actin and be actin-activated. The free head is prevented from progressing through its ATPase cycle because rotation of the converter domain cannot occur due to the binding of the blocked head, and thus, the free head is locked in a weak binding state (7). These asymmetric head interactions were also observed by single particle analysis of negatively stained images of smooth muscle myosin (8). This motif appears to be a general mechanism widely used by class II myosins to maintain a relaxed or inhibited state, as it was also observed in native striated muscle myosin thick filaments from tarantula, which are regulated by phosphorylation (9), as well as in striated myosins from both vertebrates and invertebrates (10).RLC phosphorylation abolishes these interactions, allowing both heads to freely interact with actin (7, 11). Although these two endpoints are well characterized, much less is agreed upon with regard to smooth muscle myosin that has only one of its two RLCs phosphorylated. RLC phosphorylation by myosin light chain kinase is random (1214), so myosin with only one phosphorylated RLC is a predominant species during muscle activation and perhaps during relaxation. The hydrolytic and mechanical activity of this state has been investigated for decades. In the early studies, the activity of single-phosphorylated myosin was inferred from ensemble measurements in which it existed in a mixture with both unphosphorylated and double-phosphorylated myosin. Some of these studies suggested that it has less than half the actin-activated ATPase activity of the double-phosphorylated state (15, 16), whereas others suggested that both the hydrolytic and actin filament motility was approximately half (17, 18). The former studies imply that the activation of one head does not activate the whole molecule, whereas the latter was consistent with each head acting independently of its partner.Recently, the approach to this problem has been improved by employing various methods that allow isolation of a single-phosphorylated species (1, 19, 20). Single-phosphorylated heavy meromyosin (HMM) had much less than half the hydrolytic and mechanical activity of double-phosphorylated HMM when prepared using light chain exchange or stripping protocols (19, 20). Using differential tagging of constructs expressed in Sf9 cells followed by sequential affinity columns, the single-phosphorylated HMM (HMM-1P) had more than half the ATPase activity and actin filament speeds in the in vitro motility assay that were similar to double-phosphorylated HMM (1).Here, we further characterize the mechanical properties of the expressed HMM-1P construct. An optical trap assay was used to show that the unitary step size and attachment time of an expressed single HMM-1P molecule was indistinguishable from that of double-phosphorylated HMM (HMM-2P) (1), suggesting that at least one of the heads of HMM-1P is equivalent to a head of HMM-2P. The optical trap was further used to characterize the force-velocity relationship for a small ensemble of HMM-1P molecules (21). These data showed that HMM-1P can generate approximately half the force of HMM-2P, which may relate to the observed duty ratio of HMM-1P being approximately half that of HMM-2P. The results are discussed in terms of two mechanisms that cannot be distinguished from one another based on the current data. The ability of HMM-1P to generate motion and force implies that it likely contributes to smooth muscle contraction both during activation at low phosphorylation levels as well as in maintaining tension when phosphorylation levels start to decline.  相似文献   

5.
6.
7.
8.
9.
10.
11.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

12.
13.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

14.
15.
16.
Presentation of the Mtv-1 superantigen (vSag1) to specific Vβ-bearing T cells requires association with major histocompatibility complex class II molecules. The intracellular route by which vSag1 trafficks to the cell surface and the site of vSag1-class II complex assembly in antigen-presenting B lymphocytes have not been determined. Here, we show that vSag1 trafficks independently of class II to the plasma membrane by the exocytic secretory pathway. At the surface of B cells, vSag1 associates primarily with mature peptide-bound class II αβ dimers, which are stable in sodium dodecyl sulfate. vSag1 is unstable on the cell surface in the absence of class II, and reagents that alter the surface expression of vSag1 and the conformation of class II molecules affect vSag1 stimulation of superantigen reactive T cells.

T lymphocytes respond to peptide antigens presented by either major histocompatibility complex (MHC) class I or class II molecules. Many viruses have evolved sophisticated strategies that interfere with antigen presentation by infected cells in order to escape recognition by T lymphocytes. Most strategies studied rely on disrupting MHC class I presentation, either by affecting components of the processing machinery that generate and transport viral peptides into the endoplasmic reticulum (ER) or by retarding transport or targeting class I molecules into the degradation pathway (for a review, see reference 73).In contrast, mouse mammary tumor virus (MMTV) utilizes T-cell stimulation to promote its life cycle. MMTVs encode within their 3′ long terminal repeat a viral superantigen (vSag), and coexpression of the Sag glycoprotein with MHC class II molecules on the surface of virally infected B cells induces Vβ-specific T-cell stimulation, generating an immune response which is critical for amplification of MMTV and ensures vertical transmission of virus to the next generation (13, 29, 30). In the absence of B cells, MHC class II, or Sag-reactive T cells, the infection is short-lived (5, 6, 24, 28). The assembly and functional expression of vSag-class II complexes are therefore essential to the viral life cycle. When inherited as germ line elements, Mtv proviruses expressing vSags during ontogeny trigger Vβ-specific clonal elimination of immature T cells and profoundly shape the T-cell repertoire (for a review, see reference 1).vSags are type II integral membrane glycoproteins (14, 36). They possess up to six potential N-linked glycosylation sites, and carbohydrate addition is essential for vSag stability and activity (45). Their protein sequence is highly conserved among all MMTV strains except at the C-terminal 29 to 32 residues, which vary and confer T-cell Vβ specificity (77). Biochemical analyses of vSag7 (minor lymphocyte stimulating locus 1, Mls-1a) molecular forms after transfection into a murine B-cell line have identified a predominant 45-kDa endo-β-N-acetylglucosaminidase H (endo H)-sensitive ER-resident glycoprotein, as well as multiple highly glycosylated forms (74). It is thought that an 18-kDa C-terminal fragment binds MHC class II products (75). It has also been suggested that vSags associate weakly with class II in the ER and that proteolytic processing is required for the efficient assembly of vSag-class II complexes for presentation to T cells (46, 49, 75). As yet, the intracellular route that vSags take to the cell surface, the compartment in which they bind class II, and whether they associate with peptide-loaded class II dimers have been enigmatic.Newly synthesized MHC class II αβ heterodimers assemble with invariant chain (Ii), a type II integral membrane protein, to form an oligomeric complex in the ER (37). Ii prevents class II heterodimers from binding peptides in the ER and Golgi complex (55), and signals in its cytoplasmic tail sort the complex into the endocytic pathway (4, 42). In this acidic, protease-rich compartment, Ii is degraded and class II binds antigenic peptides. After the formation of peptide-class II dimers, the complexes are exported to the plasma membrane (8, 48). In the absence of Ii, class II αβ heterodimers exhibit defective post-ER transport, and their conversion into functionally mature, sodium dodecyl sulfate (SDS)-stable compact dimers by peptide antigens is affected (7, 16, 22, 70).A specialized endosomal compartment where class II peptide loading occurs, termed the MHC class II-enriched compartment (MIIC or CIIV), has been found recently in antigen-presenting cells (2, 50, 53, 58, 68, 71). Whether nascent Ii-class II complexes traffic directly to the MIIC from the trans-Golgi network (TGN) or transit first to early endosomes, either directly or via the cell surface, before entering late endocytic vesicles and MIIC is still under debate (26, 56, 57). Transport by all these routes most probably occurs to ensure the capture and loading of antigenic peptides throughout the endocytic pathway (12). MIIC vesicles are positive for lysosome-associated membrane proteins (LAMPs) and cathepsin D and are enriched for HLA-DM or H-2M (18, 32, 59), proteins that facilitate the catalytic exchange of class II-associated invariant peptide chain (CLIP) for antigenic peptides (19, 61, 62). The ultrastructural colocalization of DM with intracellular peptide-class II complexes suggests that the MIIC is a main site where class II dimers bind exogenous and endogenous peptide antigens (47, 58).Determining the route by which vSag protein(s) trafficks to the cell surface and the cellular location where vSag1 processing and assembly with class II molecules occurs is central to understanding the mechanism whereby vSags activate T cells to maintain the viral life cycle. It has been unclear whether vSags traffic independently by the constitutive exocytic pathway or with class II and Ii to the MIIC before reaching the cell surface. Reagents that alter class II expression have been shown to affect vSag presentation (43, 46). Furthermore, mice lacking Ii show reduced intrathymic Vβ-specific T-cell deletion (70), suggesting that Ii may play a role, either by ensuring proper maturation of class II dimers or by targeting vSag-class II complexes to the MIIC, in promoting efficient vSag-induced immune responses.To investigate these issues, we used immunochemical detection of vSag1 protein in combination with subcellular fractionation and surface reexpression assays. We show that class II is required for stable vSag1 surface expression. vSag1 trafficks directly to the cell surface independently of class II, and reagents that alter the conversion of newly synthesized class II into peptide-loaded SDS-stable dimers affect functional vSag1 surface expression.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号