首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prion diseases are fatal neurodegenerative disorders for which there is no effective treatment. Because the cellular prion protein (PrPC) is required for propagation of the infectious scrapie form of the protein, one therapeutic strategy is to reduce PrPC expression. Recently FK506, an inhibitor of the FKBP family of peptidyl prolyl isomerases, was shown to increase survival in animal models of prion disease, with proposed mechanisms including calcineurin inhibition, induction of autophagy, and reduced PrPC expression. We show that FK506 treatment results in a profound reduction in PrPC expression due to a defect in the translocation of PrPC into the endoplasmic reticulum with subsequent degradation by the proteasome. These phenotypes could be bypassed by replacing the PrPC signal sequence with that of prolactin or osteopontin. In mouse cells, depletion of ER luminal FKBP10 was almost as potent as FK506 in attenuating expression of PrPC. However, this occurred at a later stage, after translocation of PrPC into the ER. Both FK506 treatment and FKBP10 depletion were effective in reducing PrPSc propagation in cell models. These findings show the involvement of FKBP proteins at different stages of PrPC biogenesis and identify FKBP10 as a potential therapeutic target for the treatment of prion diseases.  相似文献   

2.
Prion diseases or transmissible spongiform encephalopathies (TSEs) are infectious and fatal neurodegenerative disorders in humans and animals. Pathological features of TSEs include the conversion of cellular prion protein (PrP(C)) into an altered disease-associated conformation generally designated PrP(Sc), abnormal deposition of PrP(Sc) aggregates, and spongiform degeneration of the brain. The molecular steps leading to PrP(C) aggregation are unknown. Here, we have utilized an inducible oligomerization strategy to test if, in the absence of any infectious prion particles, the encounter between PrP(C) molecules may trigger its aggregation in neuronal cells. A chimeric PrP(C) composed of one (Fv1) or two (Fv2) modified FK506-binding protein (Fv) fused with PrP(C) were created, and transfected in N2a cells. Similar to PrP(C), Fv1-PrP and Fv2-PrP were glycosylated, displayed normal localization, and anti-apoptotic function. When cells were treated with the dimeric Fv ligand AP20187, to induce dimerization (Fv1) or oligomerization (Fv2) of PrP(C), both dimerization and oligomerization of PrP(C) resulted in the de novo production, release and deposition of extracellular PrP aggregates. Aggregates were insoluble in non-ionic detergents and partially resistant to proteinase K. These findings demonstrate that homologous interactions between PrP(C) molecules may constitute a minimal and sufficient molecular event leading to PrP(C) aggregation and extracellular deposition.  相似文献   

3.
FK506 is an efficient immunosuppressive agent with an increasing number of clinical applications. It has been approved to prevent rejection in transplant patients and be efficacious in several autoimmune diseases. Its immunosuppressive activity results from binding to receptor proteins designated as immunophilins (i.e., FKBP12, FK506 binding protein). Recent studies have suggested that FK506 can promote neurite outgrowth as a 2nd activity. Furthermore, it has been shown that the neurotrophic property of FK506 is independent of its immunosuppressive action. Although the mechanism of its neurotrophic activity has not yet been well elucidated, FKBP12 is identified as a drug target, and much effort has been directed toward the design of FKBP12-binding molecules, which are neurotrophic but non-immunosuppressive, for clinical use. In this present study, the authors constructed a stable cell line, which underwent apoptosis upon treatment by AP20187, a wholly synthesized, cell-permeable dimeric FK506 derivative, based on FKBP12-mBax dimerization. This AP20187-mediated apoptosis was rapidly reversed by the addition of an FKBP12-binding competitor molecule (FK506 or rapamycin), indicating that this cell line might be used to screen FK506 derivatives. Using the screening model, hundreds of synthetic FK506 analogs were analyzed. A promising compound, named N308, was obtained. The results showed that N308 could inhibit AP20187-induced gene-modified target cell apoptosis and elicit augmentation of neurite extension from both cultured PC-12 cells and chicken dorsal root ganglia cultures.  相似文献   

4.
To investigate the function of dimerization of the TRH receptor, a controlled dimerization system was developed. A variant FK506 binding protein (FKBP) domain was fused to the receptor C terminus and dimerization induced by incubating cells with dimeric FKBP ligand, AP20187. The TRH receptor-fusion bound hormone and signaled normally. Addition of dimerizer to cells expressing the receptor-FKBP fusion dramatically increased the fraction of receptor running as dimer on SDS-PAGE. AP20187 caused dimerization in a time- and concentration-dependent manner, acting within 1 min. Dimerizer had no effect on TRH receptors lacking the FKBP domain, and its effects were blocked by excess monomeric FKBP ligand. AP20187-induced dimerization did not cause receptor phosphorylation, inositol phosphate production, or ERK1/2 activation, and dimerizer did not alter signaling by TRH. Induced dimerization did, however, alter TRH receptor trafficking. TRH promoted greater receptor internalization in cells treated with AP20187 but not monomeric ligand, based on loss of surface binding sites and immunostaining. Dimerization increased the rate of internalization of TRH receptors and decreased the apparent rate of receptor recycling. AP20187 enhanced the small amount of TRH-induced receptor internalization when the receptor-FKBP fusion protein was expressed in cells lacking beta-arrestins. The results show that controlled dimerization of the TRH receptor potentiates hormone-induced receptor trafficking.  相似文献   

5.
Herein, we report the development of a photocleavable analog of AP20187, a cell-permeable molecule used to dimerize FK506-binding protein (FKBP) fusion proteins and initiate biological signaling cascades and gene expression or disrupt protein-protein interactions. We demonstrate that this reagent permits the unique ability to rapidly and specifically antagonize a molecular interaction in vitro and follow a biological process due to this acute antagonism (e.g. endosome dispersion) and to release the trap upon photocleavage to follow the cell''s return to homeostasis. In addition, this photocleavable AP20187 analog can be used in other systems where the dimerization of FKBP has been used to initiate signaling pathways, offering the ability to correlate the duration of a signaling event and a cellular response.  相似文献   

6.
Daxx enhances Fas-mediated apoptosis in a murine pro-B cell line,BAF3   总被引:3,自引:0,他引:3  
Daxx has been shown to play an essential in type I interferon (IFN-/β)-mediated suppression of B cell development and apoptosis. Recently, we demonstrated that Tyk2 is directly involved in IFN signaling for the induction and nuclear translocation of Daxx, which may result in growth arrest and/or apoptosis of B lymphocyte progenitors. To clarify the mechanism of Daxx-mediated apoptosis signaling in B lymphocyte progenitors, here we introduced an efficient suicide switch in a murine pro-B cell line, BAF3, by expressing FK506-binding protein-fused Fas intracellular domain (FKBP-Fas) and Daxx. It allows us to monitor Fas/Daxx-mediated signal by induction of Fas dimerization with the dimerizer drug AP20187. AP20187-mediated Fas dimerization induced not only apoptosis but also Jun N-terminal kinase (JNK) activation. However, AP20187 had no effect on cells expressing either Fas or Daxx only. Furthermore, expression of a JNK inhibitor, the JNK-binding domain of JIP-1, resulted in resistance to AP20187-mediated apoptosis in cells expressing FKBP-Fas and Daxx. These results imply that our novel suicide switch system may provide a powerful tool to delineate or identify the signaling molecules for Daxx-mediated apoptotic machinery in B lymphocyte progenitors through JNK activation.  相似文献   

7.
A variety of antiprion compounds have been reported that are effective in ex vivo and in vivo treatment experiments. However, the molecular mechanisms for most of these compounds remain unknown. Here we classified antiprion mechanisms into four categories: I, specific conformational stabilization; II, nonspecific stabilization; III, aggregation; and IV, interaction with molecules other than PrPC. To characterize antiprion compounds based on this classification, we determined their binding affinities to PrPC using surface plasmon resonance and their binding sites on PrPC using NMR spectroscopy. GN8 and GJP49 bound specifically to the hot spot in PrPC, and acted as “medical chaperones” to stabilize the native conformation. Thus, mechanisms I was predominant. In contrast, quinacrine and epigallocathechin bound to PrPC rather nonspecifically; these may stabilize the PrPC conformation nonspecifically including the interference with the intermolecular interaction following mechanism II. Congo red and pentosan polysulfate bound to PrPC and caused aggregation and precipitation of PrPC, thus reducing the effective concentration of prion protein. Thus, mechanism III was appropriate. Finally, CP‐60, an edarabone derivative, did not bind to PrPC. Thus these were classified into mechanism IV. However, their antiprion activities were not confirmed in the GT + FK system, whose details remain to be elucidated. This proposed antiprion mechanisms of diverse antiprion compounds could help to elucidate their antiprion activities and facilitate effective antiprion drug discovery.  相似文献   

8.
Prion diseases are characterized biochemically by protein aggregation of infectious prion isoforms (PrPSc), which result from the conformational conversion of physiological prion proteins (PrPC). PrPC are variable post-translationally modified glycoproteins, which exist as full length and as aminoterminally truncated glycosylated proteins and which exhibit differential detergent solubility. This implicates the presence of heterogeneous phenotypes, which overlap as protein complexes at the same molecular masses. Although the biological function of PrPC is still enigmatic, evidence reveals that PrPC exhibits metal-binding properties, which result in structural changes and decreased solubility. In this study, we analyzed the yield of PrPC metal binding affiliated with low solubility and changes in protein banding patterns. By implementing a high-speed centrifugation step, the interaction of zinc ions with PrPC was shown to generate large quantities of proteins with low solubility, consisting mainly of full-length glycosylated PrPC; whereas unglycosylated PrPC remained in the supernatants as well as truncated glycosylated proteins which lack of octarepeat sequence necessary for metal binding. This effect was considerably lower when PrPC interacted with copper ions; the presence of other metals tested exhibited no effect under these conditions. The binding of zinc and copper to PrPC demonstrated differentially soluble protein yields within distinct PrPC subtypes. PrPC–Zn2+-interaction may provide a means to differentiate glycosylated and unglycosylated subtypes and offers detailed analysis of metal-bound and metal-free protein conversion assays.  相似文献   

9.
The prion protein (PrP) is implicated in the Transmissible Spongiform Encephalopathies (TSEs), which comprise a group of fatal neurodegenerative diseases affecting humans and other mammals. Conversion of cellular PrP (PrPC) into the scrapie form (PrPSc) is the hallmark of TSEs. Once formed, PrPSc aggregates and catalyzes PrPC misfolding into new PrPSc molecules. Although many compounds have been shown to inhibit the conversion process, so far there is no effective therapy for TSEs. Besides, most of the previously evaluated compounds failed in vivo due to poor pharmacokinetic profiles. In this work we propose a combined in vitro/in silico approach to screen for active anti-prion compounds presenting acceptable drugability and pharmacokinetic parameters. A diverse panel of aromatic compounds was screened in neuroblastoma cells persistently infected with PrPSc (ScN2a) for their ability to inhibit PK-resistant PrP (PrPRes) accumulation. From ∼200 compounds, 47 were effective in decreasing the accumulation of PrPRes in ScN2a cells. Pharmacokinetic and physicochemical properties were predicted in silico, allowing us to obtain estimates of relative blood brain barrier permeation and mutagenicity. MTT reduction assays showed that most of the active compounds were non cytotoxic. Compounds that cleared PrPRes from ScN2a cells, were non-toxic in the MTT assay, and presented a good pharmacokinetic profile were investigated for their ability to inhibit aggregation of an amyloidogenic PrP peptide fragment (PrP109–149). Molecular docking results provided structural models and binding affinities for the interaction between PrP and the most promising compounds. In summary, using this combined in vitro/in silico approach we have identified new small organic anti-scrapie compounds that decrease the accumulation of PrPRes in ScN2a cells, inhibit the aggregation of a PrP peptide, and possess pharmacokinetic characteristics that support their drugability. These compounds are attractive candidates for prion disease therapy.  相似文献   

10.
Different transmissible spongiform encephalopathy (TSE)-associated forms of prion protein (e.g. PrPSc) can vary markedly in ultrastructure and biochemical characteristics, but each is propagated in the host. PrPSc propagation involves conversion from its normal isoform, PrPC, by a seeded or templated polymerization mechanism. Such a mechanism is also the basis of the RT-QuIC and eQuIC prion assays which use recombinant PrP (rPrPSen) as a substrate. These ultrasensitive detection assays have been developed for TSE prions of several host species and sample tissues, but not for murine models which are central to TSE pathogenesis research. Here we have adapted RT-QuIC and eQuIC to various murine prions and evaluated how seeding activity depends on glycophosphatidylinositol (GPI) anchoring and the abundance of amyloid plaques and protease-resistant PrPSc (PrPRes). Scrapie brain dilutions up to 10−8 and 10−13 were detected by RT-QuIC and eQuIC, respectively. Comparisons of scrapie-affected wild-type mice and transgenic mice expressing GPI anchorless PrP showed that, although similar concentrations of seeding activity accumulated in brain, the heavily amyloid-laden anchorless mouse tissue seeded more rapid reactions. Next we compared seeding activities in the brains of mice with similar infectivity titers, but widely divergent PrPRes levels. For this purpose we compared the 263K and 139A scrapie strains in transgenic mice expressing P101L PrPC. Although the brains of 263K-affected mice had little immunoblot-detectable PrPRes, RT-QuIC indicated that seeding activity was comparable to that associated with a high-PrPRes strain, 139A. Thus, in this comparison, RT-QuIC seeding activity correlated more closely with infectivity than with PrPRes levels. We also found that eQuIC, which incorporates a PrPSc immunoprecipitation step, detected seeding activity in plasma from wild-type and anchorless PrP transgenic mice inoculated with 22L, 79A and/or RML scrapie strains. Overall, we conclude that these new mouse-adapted prion seeding assays detect diverse types of PrPSc.  相似文献   

11.
The conformational conversion of the cellular prion protein (PrPC) to the β-rich infectious isoform PrPSc is considered a critical and central feature in prion pathology. Although PrPSc is the critical component of the infectious agent, as proposed in the “protein-only” prion hypothesis, cellular components have been identified as important cofactors in triggering and enhancing the conversion of PrPC to proteinase K resistant PrPSc. A number of in vitro systems using various chemical and/or physical agents such as guanidine hydrochloride, urea, SDS, high temperature, and low pH, have been developed that cause PrPC conversion, their amplification, and amyloid fibril formation often under non-physiological conditions. In our ongoing efforts to look for endogenous and exogenous chemical mediators that might initiate, influence, or result in the natural conversion of PrPC to PrPSc, we discovered that lipopolysaccharide (LPS), a component of gram-negative bacterial membranes interacts with recombinant prion proteins and induces conversion to an isoform richer in β sheet at near physiological conditions as long as the LPS concentration remains above the critical micelle concentration (CMC). More significant was the LPS mediated conversion that was observed even at sub-molar ratios of LPS to recombinant ShPrP (90–232).  相似文献   

12.
In prion diseases, the cellular form of the prion protein, PrPC, undergoes a conformational conversion to the infectious isoform, PrPSc. PrPC associates with lipid rafts through its glycosyl-phosphatidylinositol (GPI) anchor and a region in its N-terminal domain which also binds to heparan sulfate proteoglycans (HSPGs). We show that heparin displaces PrPC from rafts and promotes its endocytosis, suggesting that heparin competes with an endogenous raft-resident HSPG for binding to PrPC. We then utilised a transmembrane-anchored form of PrP (PrP-TM), which is targeted to rafts solely by its N-terminal domain, to show that both heparin and phosphatidylinositol-specific phospholipase C can inhibit its association with detergent-resistant rafts, implying that a GPI-anchored HSPG targets PrPC to rafts. Depletion of the major neuronal GPI-anchored HSPG, glypican-1, significantly reduced the raft association of PrP-TM and displaced PrPC from rafts, promoting its endocytosis. Glypican-1 and PrPC colocalised on the cell surface and both PrPC and PrPSc co-immunoprecipitated with glypican-1. Critically, treatment of scrapie-infected N2a cells with glypican-1 siRNA significantly reduced PrPSc formation. In contrast, depletion of glypican-1 did not alter the inhibitory effect of PrPC on the β-secretase cleavage of the Alzheimer''s amyloid precursor protein. These data indicate that glypican-1 is a novel cellular cofactor for prion conversion and we propose that it acts as a scaffold facilitating the interaction of PrPC and PrPSc in lipid rafts.  相似文献   

13.
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein amyloids in several regions of the brain. α-Synuclein fibrils are able to spread via cell-to-cell transfer, and once inside the cells, they can template the misfolding and aggregation of the endogenous α-synuclein. Multiple mechanisms have been shown to participate in the process of propagation: endocytosis, tunneling nanotubes and macropinocytosis. Recently, we published a research showing that the cellular form of the prion protein (PrPC) acts as a receptor for α-synuclein amyloid fibrils, facilitating their internalization through and endocytic pathway. This interaction occurs by a direct interaction between the fibrils and the N-terminal domain of PrPC. In cell lines expressing the pathological form of PrP (PrPSc), the binding between PrPC and α-synuclein fibrils prevents the formation and accumulation of PrPSc, since PrPC is no longer available as a substrate for the pathological conversion templated by PrPSc. On the contrary, PrPSc deposits are cleared over passages, probably due to the increased processing of PrPC into the neuroprotective fragments N1 and C1. Starting from these data, in this work we present new insights into the role of PrPC in the internalization of protein amyloids and the possible therapeutic applications of these findings.  相似文献   

14.
Prion diseases are fatal neurodegenerative diseases associated with the conversion of cellular prion protein (PrPC) in the central nervous system into the infectious isoform (PrPSc). The mechanics of conversion are almost entirely unknown, with understanding stymied by the lack of an atomic-level structure for PrPSc. A number of pathogenic PrPC mutants exist that are characterized by an increased propensity for conversion into PrPSc and that differ from wild-type by only a single amino-acid point mutation in their primary structure. These mutations are known to perturb the stability and conformational dynamics of the protein. Understanding of how this occurs may provide insight into the mechanism of PrPC conversion. In this work we sought to explore wild-type and pathogenic mutant prion protein structure and dynamics by analysis of the current fluctuations through an organic α-hemolysin nanometer-scale pore (nanopore) in which a single prion protein has been captured electrophoretically. In doing this, we find that wild-type and D178N mutant PrPC, (a PrPC mutant associated with both Fatal Familial Insomnia and Creutzfeldt-Jakob disease), exhibit easily distinguishable current signatures and kinetics inside the pore and we further demonstrate, with the use of Hidden Markov Model signal processing, accurate discrimination between these two proteins at the single molecule level based on the kinetics of a single PrPC capture event. Moreover, we present a four-state model to describe wild-type PrPC kinetics in the pore as a first step in our investigation on characterizing the differences in kinetics and conformational dynamics between wild-type and D178N mutant PrPC. These results demonstrate the potential of nanopore analysis for highly sensitive, real-time protein and small molecule detection based on single molecule kinetics inside a nanopore, and show the utility of this technique as an assay to probe differences in stability between wild-type and mutant prion proteins at the single molecule level.  相似文献   

15.
Molecular logic gates, which have attracted increasing research interest and are crucial for the development of molecular-scale computers, simplify the results of measurements and detections, leaving the diagnosis of disease either “yes” or “no”. Prion diseases are a group of fatal neurodegenerative disorders that happen in human and animals. The main problem with a diagnosis of prion diseases is how to sensitively and selectively discriminate and detection of the minute amount of PrPRes in biological samples. Our previous work had demonstrated that dual-aptamer strategy could achieve highly sensitive and selective discrimination and detection of prion protein (cellular prion protein, PrPC, and the diseases associated isoform, PrPRes) in serum and brain. Inspired by the advantages of molecular logic gate, we further conceived a new concept for dual-aptamer logic gate that responds to two chemical input signals (PrPC or PrPRes and Gdn-HCl) and generates a change in fluorescence intensity as the output signal. It was found that PrPRes performs the “OR” logic operation while PrPC performs “XOR” logic operation when they get through the gate consisted of aptamer modified reusable magnetic microparticles (MMPs-Apt1) and quantum dots (QDs-Apt2). The dual-aptamer logic gate simplifies the discrimination results of PrPRes, leaving the detection of PrPRes either “yes” or “no”. The development of OR logic gate based on dual-aptamer strategy and two chemical input signals (PrPRes and Gdn-HCl) is an important step toward the design of prion diseases diagnosis and therapy systems.  相似文献   

16.
Increasing evidence suggests that proteins exhibiting “prion-like” behavior cause distinct neurodegenerative diseases, including inherited, sporadic and acquired types. The conversion of cellular prion protein (PrPC) to its infectious protease resistant counterpart (PrPRes) is the essential feature of prion diseases. However, PrPC also performs important functions in transmembrane signaling, especially in neurodegenerative processes. Beta-amyloid (Aβ) synaptotoxicity and cognitive dysfunction in mouse models of Alzheimer disease are mediated by a PrPC-dependent pathway. Here we review how this pathway converges with proinflammatory cytokine signaling to activate membrane NADPH oxidase (NOX) and generate reactive oxygen species (ROS) leading to dynamic remodeling of the actin cytoskeleton. The NOX signaling pathway may also be integrated with those of other transmembrane receptors clustered in PrPC-enriched membrane domains. Such a signal convergence along the PrPC-NOX axis could explain the relevance of PrPC in a broad spectrum of neurodegenerative disorders, including neuroinflammatory-mediated alterations in synaptic function following traumatic brain injury. PrPC overexpression alone activates NOX and generates a local increase in ROS that initiates cofilin activation and formation of cofilin-saturated actin bundles (rods). Rods sequester cofilin from synaptic regions where it is required for plasticity associated with learning and memory. Rods can also interrupt vesicular transport by occluding the neurite within which they form. Through either or both mechanisms, rods may directly mediate the synaptic dysfunction that accompanies various neurodegenerative disorders.  相似文献   

17.
Skeletal myoblast grafts can form contractile tissue to replace scar and repair injured myocardium. Although potentially therapeutic, generating reproducible and sufficiently large grafts remains a challenge. To control myoblast proliferation in situ, we created a chimeric receptor composed of a modified FK506-binding protein (F36V) fused with the fibroblast growth factor receptor-1 cytoplasmic domain. Mouse MM14 myoblasts were transfected with this construct and treated with AP20187, a dimeric F36V ligand, to induce receptor dimerization. Transfected myoblasts proliferated in response to dimerizer (comparable with basic fibroblast growth factor (bFGF) treatment), whereas the dimerizer had no effect on non-transfected cells. Similar to bFGF treatment, dimerizer treatment blocked myotube formation and myosin heavy chain expression and stimulated mitogen-activated protein (MAP) kinase phosphorylation in transfected cells. Non-transfected cells differentiated normally and showed no MAP kinase phosphorylation with dimerizer treatment. Furthermore, myoblasts treated with dimerizer for 30 days in culture reduced MAP kinase phosphorylation, withdrew from the cell cycle, and differentiated normally upon drug withdrawal, demonstrating reversibility of the effect. Thus, forced dimerization of the fibroblast growth factor receptor-1 cytoplasmic domain reproduces critical aspects of bFGF signaling in myoblasts. We hypothesize that in vivo administration of AP20187 following myoblast grafting may allow control over graft size and ultimately improve cardiac function.  相似文献   

18.
Prion diseases are fatal neurodegenerative disorders, which are not curable and no effective treatment exists so far. The major neuropathological change in diseased brains is the conversion of the normal cellular form of the prion protein PrPcC into a disease-associated isoform PrPSc. PrPSc accumulates into multimeres and fibrillar aggregates, which leads to the formation of amyloid plaques. Increasing evidence indicates a fundamental role of PrPSc species and its aggregation in the pathogenesis of prion diseases, which initiates the pathological cascade and leads to neurodegeneration accompanied by spongiform changes. In search of compounds that have the potential to interfere with PrPSc formation and propagation, we used a cell based assay for the screening of potential aggregation inhibitors. The assay deals with a permanently prion infected cell line that was adapted for a high-throughput screening of a compound library composed of 10,000 compounds (DIVERset 2, ChemBridge).  相似文献   

19.

Background

Prion diseases are fatal neurodegenerative disorders characterized by misfolding and aggregation of the normal prion protein PrPC. Little is known about the details of the structural rearrangement of physiological PrPC into a still-elusive disease-associated conformation termed PrPSc. Increasing evidence suggests that the amino-terminal octapeptide sequences of PrP (huPrP, residues 59–89), though not essential, play a role in modulating prion replication and disease presentation.

Methodology/Principal Findings

Here, we report that trypsin digestion of PrPSc from variant and sporadic human CJD results in a disease-specific trypsin-resistant PrPSc fragment including amino acids ∼49–231, thus preserving important epitopes such as the octapeptide domain for biochemical examination. Our immunodetection analyses reveal that several epitopes buried in this region of PrPSc are exposed in PrPC.

Conclusions/Significance

We conclude that the octapeptide region undergoes a previously unrecognized conformational transition in the formation of PrPSc. This phenomenon may be relevant to the mechanism by which the amino terminus of PrPC participates in PrPSc conversion, and may also be exploited for diagnostic purposes.  相似文献   

20.
Prion diseases are a group of neurodegenerative illnesses caused by conformational conversion of benign, α-helix rich cellular prion protein (PrPC) into the highly stable, β-sheet rich scrapie prion protein (PrPSc) isoform. To date, the role of RNA on the conformational conversion of ovine prion protein in vitro remains unknown. To examine the effect of the interaction between RNA and PrPC, conformations of recombinant ovine prion protein PrP23–256 (OvPrP23–256) binding various concentrations of RNA were analyzed by circular dichroism (CD) spectrum. The results indicated that the conformational conversion of OvPrP23–256 was triggered by RNA with a decrease in α-helix content and increase in β-sheet. Moreover, the conformation of OvPrP23–256 interacting with both RNA and CuCl2 was also examined by CD spectrum, which showed that α-helix content decreased while β-sheet increased dramatically. Proteinase K digestion assay disclosed that the recombinant ovine PrPC acquired PK resistance after RNA and/or Cu2+ treatment. It confirmed that the RNA/Cu2+ treatment in vitro altered the biochemical properties of ovine PrPC. The implication of this finding, with respect to PrPSc, is that a dysfunctional state of a normal physiological process possibly facilitates diseases. The information gained from this study may provide useful approaches to study the pathogenesis of prion diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号