首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Data, both for and against the presence of a mitochondrial nitric-oxide synthase (NOS) isoform, is in the refereed literature. However, irrefutable evidence has not been forthcoming. In light of this controversy, we designed studies to investigate the existence of the putative mitochondrial NOS. Using repeated differential centrifugation followed by Percoll gradient fractionation, ultrapure, never frozen rat liver mitochondria and submitochondrial particles were obtained. Following trypsin digestion and desalting, the mitochondrial samples were analyzed by nano-HPLC-coupled linear ion trap-mass spectrometry. Linear ion trap-mass spectrometry analyses of rat liver mitochondria as well as submitochondrial particles were negative for any peptide from any NOS isoform. However, recombinant neuronal NOS-derived peptides from spiked mitochondrial samples were easily detected, down to 50 fmol on column. The protein calmodulin (CaM), absolutely required for NOS activity, was absent, whereas peptides from CaM-spiked samples were detected. Also, l-[14C]arginine to l-[14C]citrulline conversion assays were negative for NOS activity. Finally, Western blot analyses of rat liver mitochondria, using NOS (neuronal or endothelial) and CaM antibodies, were negative for any NOS isoform or CaM. In conclusion, and in light of our present limits of detection, data from carefully conducted, properly controlled experiments for NOS detection, utilizing three independent yet complementary methodologies, independently as well as collectively, refute the claim that a NOS isoform exists within rat liver mitochondria.Nitric oxide (NO·)2 is a highly diffusible, hydrophobic, and gaseous free radical (1) that is responsible for autocrine and paracrine signaling activities (2). NO· can readily partition into and through membranes (35) to influence biological functions such as blood pressure regulation, platelet aggregation and adhesion, neurotransmission, and cellular defense (4, 611). The mechanism by which NO· influences biological functions is by binding to target proteins that contain heme and/or thiol(s). Alternatively, NO· can combine with to produce the highly reactive species peroxynitrite.Mitochondria are highly compartmentalized, membranous organelles that contain abundant amounts of reactive hemoproteins and thiols (12, 13), to which NO· may bind reversibly (14, 15) or irreversibly (1618). Mitochondria also generate various amounts of during the process of cellular respiration (19, 20). Studies conducted during the past decade have suggested that NO· can diffuse into mitochondria and cause mitochondrial dysfunction by reversibly inhibiting cytochrome c oxidase (14, 21, 22) and NADH dehydrogenase (23).In the mid-90s, a putative variant of NOS was proposed to reside within mitochondria. Initially, Kobzik et al. (24) and Hellsten and co-workers (25) observed an apparent endothelial NOS (eNOS) immunoreactivity in skeletal muscle mitochondria. Simultaneously, Bates et al. (26, 27) observed an apparent eNOS histochemical reactivity in inner mitochondrial membrane preparations, isolated from rat liver, brain, heart, skeletal muscle, and kidney. Tatoyan and Giulivi (28), acting on these initial observations, performed experiments in an attempt to confirm the identity of this putative mtNOS. Relying on immunochemical analysis, Tatoyan and Giulivi (28) claimed that inducible NOS (iNOS) was the NOS isoform present in rat liver mitochondria. This same group using mass spectrometry later presented data in support of the putative mtNOS being a variant of nNOS (29). Ghafourifar and Richter (30) had reported previously that the putative mtNOS was calcium-sensitive and constitutive in nature. Since these reports, different groups have reported the presence of each of the three main isoforms of NOS within mitochondria (29, 31, 32). Also, biochemical characterization of the putative mtNOS performed by Giulivi and co-workers (29) revealed certain post-translational modifications (myristoylation and phosphorylation of the protein) that are thought to be unique to eNOS. During the last decade, various reports have supported the presence of at least one of the three main isoforms of NOS residing in mitochondria. However, the more recent reports tend to question this claim (3336). Because of the contradictory reports regarding the existence of a putative mtNOS, Brookes (33) compiled a critical and thorough review of the literature published up to 2003 dealing with the putative mtNOS. This review brought to light the diverse technical issues involved in the aforementioned studies. Major issues were the degree of purity of mitochondrial preparations (37, 38), shortcomings of measurement methodology (29, 3941), use of inappropriate, or total lack of, experimental controls and confusing technical practices. Lacza et al. (42) has reviewed the more recent developments in the area of mitochondrial NO· production and discussed some of the shortcomings of certain techniques still being used.In light of this ongoing controversy regarding the presence or absence of a mtNOS, we designed and carefully conducted properly controlled studies to either confirm or refute the existence of any NOS isoform within mitochondria. Ultrapure rat liver mitochondria were isolated using repeated differential centrifugation followed by Percoll gradient purification. Proteomic analyses were then performed using a nano-HPLC-coupled nanospray LTQ-MS. To avoid the interfering factors that are rampant in NO· trapping assays (43), the NOS-catalyzed conversion of l-[14C]arginine to l-[14C]citrulline was used to probe for NOS activity in mitochondria. Appropriate controls were employed and, for inhibition studies, high concentrations of l-thiocitrulline (TC) (44) were used. Additionally, immunochemical analyses were performed with ultrapure mitochondria using nNOS, eNOS, and CaM antibodies. The problems faced with the commonly used techniques in mtNOS studies are discussed.  相似文献   

2.
The general stress response of Bacillus subtilis can be activated by stimuli such as the addition of salt or ethanol and with blue light. In the latter response, YtvA activates σB through a cascade of Rsb proteins, organized in stressosomes. YtvA is composed of an N-terminal LOV (light, oxygen, and voltage) domain and a C-terminal STAS (sulfate transporter and anti-sigma factor) domain and shows light-modulated GTP binding in vitro. Here, we examine the mechanism of YtvA-mediated activation of σB in vivo with site-directed mutagenesis. Constitutive off and constitutive on mutations have been identified. Disruption of GTP binding in the STAS domain eliminates light activation of σB. In contrast, modification of sites relevant for phosphorylation of STAS domains does not affect the stress response significantly. The data obtained are integrated into a model for the structure of full-length YtvA, which presumably functions as a dimer.LOV2 domains (1), members of the superfamily of PAS domains (2, 3), are abundant in all domains of life and were first identified in plant phototropins (4). These photoreceptors regulate stomatal opening, phototropism, etc. and contain two N-terminal LOV domains that confer light regulation on the C-terminal Ser/Thr kinase domain (4). They also occur in bacteria, in which YtvA from Bacillus subtilis has been best characterized (for a review, see e.g. Ref. 5). Its N-terminal LOV domain binds FMN and shows the typical LOV photochemistry (6, 7): covalent adduct formation between a cysteine and the FMN chromophore. A linker helix, denoted Jα (7), connects the LOV domain to a STAS domain. The latter domain is present in many regulators of the general stress response of B. subtilis (8, 9). Stress via the addition of salt or ethanol (for a review, see Ref. 10) and blue light (11, 12) activates the general stress response via the environmental pathway, which integrates various signals via a large multiprotein complex, called the stressosome (13, 14). YtvA, which mediates light activation of σB (11, 12, 15), co-purifies with other STAS domain proteins in the stressosomes (16).When cells are stressed, STAS domains of several stressosome proteins (e.g. RsbS and RsbR) are phosphorylated by another intrinsic stressosome component, the serine/threonine kinase RsbT (9, 14, 17, 18). Next, RsbT is released from the complex to trigger RsbU, a protein phosphatase, thus (indirectly) activating σB (19). Phosphorylation of YtvA, however, has never been detected. Rather, it has been demonstrated in vitro that YtvA shows light-dependent GTP binding, presumably at its NTP-binding site in the STAS domain (20).Little is known about the mechanism of signal transmission in and by YtvA, except that in the C62A mutant, photochemistry in vitro (12) and light activation of σB in vivo (12, 15) are abolished. More detailed information is available for LOV domains of phototropins. A conserved glutamine, which is in hydrogen-bonding contact with the isoalloxazine ring of FMN, rotates its side chain by 180° upon covalent adduct formation (21). Replacement of this residue by leucine in the LOV2 domain of Phy3 from Adiantum results in a considerable reduction of the light-induced structural change (22). The corresponding mutation in phototropin 1 from Arabidopsis impairs autophosphorylation activity (23). The signal generated in the LOV2 domain is transmitted to the downstream kinase domain of phototropin 1 of Avena sativa through disruption of the interaction between its central β-sheet and the C-terminal linker region, the Jα-helix (24).Here, we study the mechanism of activation of YtvA in vivo, i.e. light-induced activation of the σB response, with site-directed mutagenesis. We focus on three regions of the protein, the flavin-binding pocket, the β-sheet of the LOV domain, and the GTP-binding site, and on potential phosphorylation sites of the STAS domain. We demonstrate that light-activated GTP binding is crucial for functional YtvA. A computational approach was used to model the structure of full-length YtvA. The model suggests that light modulates accessibility of the GTP-binding site of the STAS domain of YtvA.  相似文献   

3.
Calmodulin binds to IQ motifs in the α1 subunit of CaV1.1 and CaV1.2, but the affinities of calmodulin for the motif and for Ca2+ are higher when bound to CaV1.2 IQ. The CaV1.1 IQ and CaV1.2 IQ sequences differ by four amino acids. We determined the structure of calmodulin bound to CaV1.1 IQ and compared it with that of calmodulin bound to CaV1.2 IQ. Four methionines in Ca2+-calmodulin form a hydrophobic binding pocket for the peptide, but only one of the four nonconserved amino acids (His-1532 of CaV1.1 and Tyr-1675 of CaV1.2) contacts this calmodulin pocket. However, Tyr-1675 in CaV1.2 contributes only modestly to the higher affinity of this peptide for calmodulin; the other three amino acids in CaV1.2 contribute significantly to the difference in the Ca2+ affinity of the bound calmodulin despite having no direct contact with calmodulin. Those residues appear to allow an interaction with calmodulin with one lobe Ca2+-bound and one lobe Ca2+-free. Our data also provide evidence for lobe-lobe interactions in calmodulin bound to CaV1.2.The complexity of eukaryotic Ca2+ signaling arises from the ability of cells to respond differently to Ca2+ signals that vary in amplitude, duration, and location. A variety of mechanisms decode these signals to drive the appropriate physiological responses. The Ca2+ sensor for many of these physiological responses is the Ca2+-binding protein calmodulin (CaM).2 The primary sequence of CaM is tightly conserved in all eukaryotes, yet it binds and regulates a broad set of target proteins in response to Ca2+ binding. CaM has two domains that bind Ca2+ as follows: an amino-terminal domain (N-lobe) and a carboxyl-terminal domain (C-lobe) joined via a flexible α-helix. Each lobe of CaM binds two Ca2+ ions, and binding within each lobe is highly cooperative. The two lobes of CaM, however, have distinct Ca2+ binding properties; the C-lobe has higher Ca2+ affinity because of a slower rate of dissociation, whereas the N-lobe has weaker Ca2+ affinity and faster kinetics (1). CaM can also bind to some target proteins in both the presence and absence of Ca2+, and the preassociation of CaM in low Ca2+ modulates the apparent Ca2+ affinity of both the amino-terminal and carboxyl-terminal lobes. Differences in the Ca2+ binding properties of the lobes and in the interaction sites of the amino- and carboxyl-terminal lobes enable CaM to decode local versus global Ca2+ signals (2).Even though CaM is highly conserved, CaM target (or recognition) sites are quite heterogeneous. The ability of CaM to bind to very different targets is at least partially due to its flexibility, which allows it to assume different conformations when bound to different targets. CaM also binds to various targets in distinct Ca2+ saturation states as follows: Ca2+-free (3), Ca2+ bound to only one of the two lobes, or fully Ca2+-bound (47). In addition, CaM may bind with both lobes bound to a target (5, 6) or with only a single lobe engaged (8). If a target site can bind multiple conformers of CaM, CaM may undergo several transitions that depend on Ca2+ concentration, thereby tuning the functional response. Identification of stable intermediate states of CaM bound to individual targets will help to elucidate the steps involved in this fine-tuned control.Both CaV1.1 and CaV1.2 belong to the L-type family of voltage-dependent Ca2+ channels, which bind apoCaM and Ca2+-CaM at carboxyl-terminal recognition sites in their α1 subunits (914). Ca2+ binding to CaM, bound to CaV1.2 produces Ca2+-dependent facilitation (CDF) (14). Whether CaV1.1 undergoes CDF is not known. However, both CaV1.2 and CaV1.1 undergo Ca2+- and CaM-dependent inactivation (CDI) (14, 15). CaV1.1 CDI is slower and more sensitive to buffering by 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid than CaV1.2 CDI (15). Ca2+ buffers are thought to influence CDI and/or CDF in voltage-dependent Ca2+ channels by competing with CaM for Ca2+ (16).The conformation of the carboxyl terminus of the α1 subunit is critical for channel function and has been proposed to regulate the gating machinery of the channel (17, 18). Several interactions of this region include intramolecular contacts with the pore inactivation machinery and intermolecular contacts with CaM kinase II and ryanodine receptors (17, 1922). Ca2+ regulation of CaV1.2 may involve several motifs within this highly conserved region, including an EF hand motif and three contiguous CaM-binding sequences (10, 12). ApoCaM and Ca2+-CaM-binding sites appear to overlap at the site designated as the “IQ motif” (9, 12, 13), which are critical for channel function at the molecular and cellular level (14, 23).Differences in the rate at which 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid affects CDI of CaV1.1 and CaV1.2 could reflect differences in their interactions with CaM. In this study we describe the differences in CaM interactions with the IQ motifs of the CaV1.1 and the CaV1.2 channels in terms of crystal structure, CaM affinity, and Ca2+ binding to CaM. We find the structures of Ca2+-CaM-IQ complexes are similar except for a single amino acid change in the peptide that contributes to its affinity for CaM. We also find that the other three amino acids that differ in CaV1.2 and CaV1.1 contribute to the ability of CaV1.2 to bind a partially Ca2+-saturated form of CaM.  相似文献   

4.
Early onset generalized dystonia (DYT1) is an autosomal dominant neurological disorder caused by deletion of a single glutamate residue (torsinA ΔE) in the C-terminal region of the AAA+ (ATPases associated with a variety of cellular activities) protein torsinA. The pathogenic mechanism by which torsinA ΔE mutation leads to dystonia remains unknown. Here we report the identification and characterization of a 628-amino acid novel protein, printor, that interacts with torsinA. Printor co-distributes with torsinA in multiple brain regions and co-localizes with torsinA in the endoplasmic reticulum. Interestingly, printor selectively binds to the ATP-free form but not to the ATP-bound form of torsinA, supporting a role for printor as a cofactor rather than a substrate of torsinA. The interaction of printor with torsinA is completely abolished by the dystonia-associated torsinA ΔE mutation. Our findings suggest that printor is a new component of the DYT1 pathogenic pathway and provide a potential molecular target for therapeutic intervention in dystonia.Early onset generalized torsion dystonia (DYT1) is the most common and severe form of hereditary dystonia, a movement disorder characterized by involuntary movements and sustained muscle spasms (1). This autosomal dominant disease has childhood onset and its dystonic symptoms are thought to result from neuronal dysfunction rather than neurodegeneration (2, 3). Most DYT1 cases are caused by deletion of a single glutamate residue at positions 302 or 303 (torsinA ΔE) of the 332-amino acid protein torsinA (4). In addition, a different torsinA mutation that deletes amino acids Phe323–Tyr328 (torsinA Δ323–328) was identified in a single family with dystonia (5), although the pathogenic significance of this torsinA mutation is unclear because these patients contain a concomitant mutation in another dystonia-related protein, ϵ-sarcoglycan (6). Recently, genetic association studies have implicated polymorphisms in the torsinA gene as a genetic risk factor in the development of adult-onset idiopathic dystonia (7, 8).TorsinA contains an N-terminal endoplasmic reticulum (ER)3 signal sequence and a 20-amino acid hydrophobic region followed by a conserved AAA+ (ATPases associated with a variety of cellular activities) domain (9, 10). Because members of the AAA+ family are known to facilitate conformational changes in target proteins (11, 12), it has been proposed that torsinA may function as a molecular chaperone (13, 14). TorsinA is widely expressed in brain and multiple other tissues (15) and is primarily associated with the ER and nuclear envelope (NE) compartments in cells (1620). TorsinA is believed to mainly reside in the lumen of the ER and NE (1719) and has been shown to bind lamina-associated polypeptide 1 (LAP1) (21), lumenal domain-like LAP1 (LULL1) (21), and nesprins (22). In addition, recent evidence indicates that a significant pool of torsinA exhibits a topology in which the AAA+ domain faces the cytoplasm (20). In support of this topology, torsinA is found in the cytoplasm, neuronal processes, and synaptic terminals (2, 3, 15, 2326) and has been shown to bind cytosolic proteins snapin (27) and kinesin light chain 1 (20). TorsinA has been proposed to play a role in several cellular processes, including dopaminergic neurotransmission (2831), NE organization and dynamics (17, 22, 32), and protein trafficking (27, 33). However, the precise biological function of torsinA and its regulation remain unknown.To gain insights into torsinA function, we performed yeast two-hybrid screens to search for torsinA-interacting proteins in the brain. We report here the isolation and characterization of a novel protein named printor (protein interactor of torsinA) that interacts selectively with wild-type (WT) torsinA but not the dystonia-associated torsinA ΔE mutant. Our data suggest that printor may serve as a cofactor of torsinA and provide a new molecular target for understanding and treating dystonia.  相似文献   

5.
6.
STIM1 and ORAI1, the two limiting components in the Ca2+ release-activated Ca2+ (CRAC) signaling cascade, have been reported to interact upon store depletion, culminating in CRAC current activation. We have recently identified a modulatory domain between amino acids 474 and 485 in the cytosolic part of STIM1 that comprises 7 negatively charged residues. A STIM1 C-terminal fragment lacking this domain exhibits enhanced interaction with ORAI1 and 2–3-fold higher ORAI1/CRAC current densities. Here we focused on the role of this CRAC modulatory domain (CMD) in the fast inactivation of ORAI1/CRAC channels, utilizing the whole-cell patch clamp technique. STIM1 mutants either with C-terminal deletions including CMD or with 7 alanines replacing the negative amino acids within CMD gave rise to ORAI1 currents that displayed significantly reduced or even abolished inactivation when compared with STIM1 mutants with preserved CMD. Consistent results were obtained with cytosolic C-terminal fragments of STIM1, both in ORAI1-expressing HEK 293 cells and in RBL-2H3 mast cells containing endogenous CRAC channels. Inactivation of the latter, however, was much more pronounced than that of ORAI1. The extent of inactivation of ORAI3 channels, which is also considerably more prominent than that of ORAI1, was also substantially reduced by co-expression of STIM1 constructs missing CMD. Regarding the dependence of inactivation on Ca2+, a decrease in intracellular Ca2+ chelator concentrations promoted ORAI1 current fast inactivation, whereas Ba2+ substitution for extracellular Ca2+ completely abrogated it. In summary, CMD within the STIM1 cytosolic part provides a negative feedback signal to Ca2+ entry by triggering fast Ca2+-dependent inactivation of ORAI/CRAC channels.The Ca2+ release-activated Ca2+ (CRAC)5 channel is one of the best characterized store-operated entry pathways (17). Substantial efforts have led to identification of two key components of the CRAC channel machinery: the stromal interaction molecule 1 (STIM1), which is located in the endoplasmic reticulum and acts as a Ca2+ sensor (810), and ORAI1/CRACM1, the pore-forming subunit of the CRAC channel (1113). Besides ORAI1, two further homologues named ORAI2 and ORAI3 belong to the ORAI channel family (12, 14).STIM1 senses endoplasmic reticulum store depletion primarily by its luminal EF-hand in its N terminus (8, 15), redistributes close to the plasma membrane, where it forms puncta-like structures, and co-clusters with ORAI1, leading to inward Ca2+ currents (12, 1619). The STIM1 C terminus, located in the cytosol, contains two coiled-coil regions overlapping with an ezrin-radixin-moesin (ERM)-like domain followed by a serine/proline- and a lysine-rich region (2, 8, 2022). Three recent studies have described the essential ORAI-activating region within the ERM domain, termed SOAR (Stim ORAI-activating region) (23), OASF (ORAI-activating small fragment) (24), and CAD (CRAC-activating domain) (25), including the second coiled coil domain and the following ∼55 amino acids. We and others have provided evidence that store depletion leads to a dynamic coupling of STIM1 to ORAI1 (2628) that is mediated by a direct interaction of the STIM1 C terminus with ORAI1 C terminus probably involving the putative coiled-coil domain in the latter (27).Furthermore, different groups have proven that the C terminus of STIM1 is sufficient to activate CRAC as well as ORAI1 channels independent of store depletion (2225, 27, 29). We have identified that OASF-(233–474) or shorter fragments exhibit further enhanced coupling to ORAI1 resulting in 3-fold increased constitutive Ca2+ currents. A STIM1 fragment containing an additional cluster of anionic amino acids C-terminal to position 474 displays weaker interaction with ORAI1 as well as reduced Ca2+ current comparable with that mediated by wild-type STIM1 C terminus. Hence, we have suggested that these 11 amino acids (474–485) act in a modulatory manner onto ORAI1; however, their detailed mechanistic impact within the STIM1/ORAI1 signaling machinery has remained so far unclear.In this study, we focused on the impact of this negative cluster on fast inactivation of STIM1-mediated ORAI Ca2+ currents. Lis et al. (30) have shown that all three ORAI homologues display distinct inactivation profiles, where ORAI2 and ORAI3 show a much more pronounced fast inactivation than ORAI1. Moreover, it has been reported (31) that different expression levels of STIM1 to ORAI1 affect the properties of CRAC current inactivation. Yamashita et al. (32) have demonstrated a linkage between the selectivity filter of ORAI1 and its Ca2+-dependent fast inactivation. Here we provide evidence that a cluster of acidic residues within the C terminus of STIM1 is involved in the fast inactivation of ORAI1 and further promotes that of ORAI3 and native CRAC currents.  相似文献   

7.
The Ca2+-binding protein calmodulin (CaM) has been shown to bind directly to cytoplasmic domains of some G protein-coupled receptors, including the dopamine D2 receptor. CaM binds to the N-terminal portion of the long third intracellular loop of the D2 receptor, within an Arg-rich epitope that is also involved in the binding to Gi/o proteins and to the adenosine A2A receptor, with the formation of A2A-D2 receptor heteromers. In the present work, by using proteomics and bioluminescence resonance energy transfer (BRET) techniques, we provide evidence for the binding of CaM to the A2A receptor. By using BRET and sequential resonance energy transfer techniques, evidence was obtained for CaM-A2A-D2 receptor oligomerization. BRET competition experiments indicated that, in the A2A-D2 receptor heteromer, CaM binds preferentially to a proximal C terminus epitope of the A2A receptor. Furthermore, Ca2+ was found to induce conformational changes in the CaM-A2A-D2 receptor oligomer and to selectively modulate A2A and D2 receptor-mediated MAPK signaling in the A2A-D2 receptor heteromer. These results may have implications for basal ganglia disorders, since A2A-D2 receptor heteromers are being considered as a target for anti-parkinsonian agents.G-protein-coupled receptors are able to form homo- and hetero-oligomers with unique biochemical and functional characteristics (17), and they are easily detected in vitro by using biophysical techniques (810). Heteromers of adenosine A2A and dopamine D2 receptors were one of the first G-protein-coupled receptor heteromers to be described (11). A close physical interaction between both receptors was shown using co-immunoprecipitation and co-localization assays (11) and fluorescence and bioluminescence resonance energy transfer (FRET2 or BRET) techniques (1214). At the biochemical level, two types of antagonistic A2A-D2 receptor interactions have been discovered that may explain the A2A-D2 receptor interactions described both at the neuronal and behavioral level (11, 1518). First, by means of an allosteric interaction in the receptor heteromer, stimulation of A2A receptor decreases the affinity of D2 receptor for their agonists (12). Second, the stimulation of the Gi/o-protein-coupled D2 receptor inhibits the cAMP accumulation induced by the stimulation of the Gs/olf-protein-coupled A2A receptor (11, 17, 18). In view of the well known role of dopamine in Parkinson disease, schizophrenia, and drug addiction, it has been suggested that the A2A-D2 receptor interactions in the central nervous system may provide new therapeutic approaches to combat these disorders (16, 19).An epitope-epitope electrostatic interaction between an Arg-rich epitope of the N terminus of the third intracellular loop (3IL) of the D2 receptor and an epitope containing a phosphorylated Ser localized in the distal part of the C terminus of the A2A receptor is involved in A2A-D2 receptor heteromer interface (14, 20, 21). The same Arg-rich epitope of the D2 receptor is able to interact with CaM (2225). In the absence of phosphorylated residues, adjacent aspartates or glutamates, which are abundant in CaM, may also form non-covalent complexes with Arg-rich epitopes (26). Therefore, CaM can potentially convey a Ca2+ signal to the D2 receptor through direct binding to the 3IL of the D2 receptor (22). Mass spectrometry data have shown that bovine CaM can form multiple non-covalent complexes with an Arg-rich peptide corresponding to the N-terminal region of the 3IL of the D2 receptor (VLRRRRKRVN) (24) as well as a peptide from the proximal C terminus of the A2A receptor (24). This epitope, whose sequence is 291RIREFRQTFR300 in the human A2A receptor, also contains several Arg residues. Since the suspected interaction between the A2A receptor and CaM was awaiting confirmation by assays using complete proteins, the present study was undertaken to demonstrate the existence of interactions between the A2A receptor and CaM both in a recombinant protein expression cell system and in the brain. A proteomics approach was used for the discovery of protein-protein interactions between the A2A receptor and CaM in rat brain, whereas BRET in transfected cells demonstrated a direct interaction between CaM and this receptor. Furthermore, by using BRET and sequential resonance energy transfer (SRET) techniques and analyzing MAPK signaling in transfected cells, evidence was obtained for CaM-A2A-D2 receptor oligomerization and a selective Ca2+-mediated modulation of A2A and D2 receptor function in the A2A-D2 receptor heteromer.  相似文献   

8.
We have previously reported that growth factor receptor-bound protein-7 (Grb7), an Src-homology 2 (SH2)-containing adaptor protein, enables interaction with focal adhesion kinase (FAK) to regulate cell migration in response to integrin activation. To further elucidate the signaling events mediated by FAK·Grb7 complexes in promoting cell migration and other cellular functions, we firstly examined the phos pho ryl a ted tyrosine site(s) of Grb7 by FAK using an in vivo mutagenesis. We found that FAK was capable of phos pho rylating at least 2 of 12 tyrosine residues within Grb7, Tyr-188 and Tyr-338. Moreover, mutations converting the identified Tyr to Phe inhibited integrin-dependent cell migration as well as impaired cell proliferation but not survival compared with the wild-type control. Interestingly, the above inhibitory effects caused by the tyrosine phos pho ryl a tion-deficient mutants are probably attributed to their down-regulation of phospho-Tyr-397 of FAK, thereby implying a mechanism by competing with wild-type Grb7 for binding to FAK. Consequently, these tyrosine phos pho ryl a tion-deficient mutants evidently altered the phospho-Tyr-118 of paxillin and phos pho ryl a tion of ERK1/2 but less on phospho-Ser-473 of AKT, implying their involvement in the FAK·Grb7-mediated cellular functions. Additionally, we also illustrated that the formation of FAK·Grb7 complexes and Grb7 phos pho ryl a tion by FAK in an integrin-dependent manner were essential for cell migration, proliferation and anchorage-independent growth in A431 epidermal carcinoma cells, indicating the importance of FAK·Grb7 complexes in tumorigenesis. Our data provide a better understanding on the signal transduction event for FAK·Grb7-mediated cellular functions as well as to shed light on a potential therapeutic in cancers.Growth factor receptor bound protein-7 (Grb7)2 is initially identified as a SH2 domain-containing adaptor protein bound to the activated EGF receptor (1). Grb7 is composed of an N-terminal proline-rich region, following a putative RA (Ras-associating) domain and a central PH (pleckstrin homology) domain and a BPS motif (between PH and SH2 domains), and a C-terminal SH2 domain (26). Despite the lack of enzymatic activity, the presence of multiple protein-protein interaction domains allows Grb7 family adaptor proteins to participate in versatile signal transduction pathways and, therefore, to regulate many cellular functions (46). A number of signaling molecules has been reported to interact with these featured domains, although most of the identified Grb7 binding partners are mediated through its SH2 domain. For example, the SH2 domain of Grb7 has been demonstrated to be capable of binding to the phospho-tyrosine sites of EGF receptor (1), ErbB2 (7), ErbB3 and ErbB4 (8), Ret (9), platelet-derived growth factor receptor (10), insulin receptor (11), SHPTP2 (12), Tek/Tie2 (13), caveolin (14), c-Kit (15), EphB1 (16), G6f immunoreceptor protein (17), Rnd1 (18), Shc (7), FAK (19), and so on. The proceeding α-helix of the PH domain of Grb7 is the calmodulin-binding domain responsible for recruiting Grb7 to plasma membrane in a Ca2+-dependent manner (20), and the association between the PH domain of Grb7 and phosphoinositides is required for the phosphorylation by FAK (21). Two additional proteins, NIK (nuclear factor κB-inducing kinase) and FHL2 (four and half lim domains isoform 2), in association with the GM region (Grb and Mig homology region) of Grb7 are also reported, although the physiological functions for these interactions remain unknown (22, 23). Recently, other novel roles in translational controls and stress responses through the N terminus of Grb7 are implicated for the findings of Grb7 interacting with the 5′-untranslated region of capped targeted KOR (kappa opioid receptor) mRNA and the Hu antigen R of stress granules in an FAK-mediated phosphorylation manner (24, 25).Unlike its member proteins Grb10 and Grb14, the role of Grb7 in cell migration is unambiguous and well documented. This is supported by a series of studies. Firstly, Grb7 family members share a significantly conserved molecular architecture with the Caenorhabditis elegans Mig-10 protein, which is involved in neuronal cell migration during embryonic development (4, 5, 26), suggesting that Grb7 may play a role in cell migration. Moreover, Grb7 is often co-amplified with Her2/ErbB2 in certain human cancers and tumor cell lines (7, 27, 28), and its overexpression resulted in invasive and metastatic consequences of various cancers and tumor cells (23, 2933). On the contrary, knocking down Grb7 by RNA interference conferred to an inhibitory outcome of the breast cancer motility (34). Furthermore, interaction of Grb7 with autophosphorylated FAK at Tyr-397 could promote integrin-mediated cell migration in NIH 3T3 and CHO cells, whereas overexpression of its SH2 domain, an dominant negative mutant of Grb7, inhibited cell migration (19, 35). Recruitment and phosphorylation of Grb7 by EphB1 receptors enhanced cell migration in an ephrin-dependent manner (16). Recently, G7–18NATE, a selective Grb7-SH2 domain affinity cyclic peptide, was demonstrated to efficiently block cell migration of tumor cells (32, 36). In addition to cell migration, Grb7 has been shown to play a role in a variety of physiological and pathological events, for instance, kidney development (37), tumorigenesis (7, 14, 3841), angiogenic activity (20), proliferation (34, 42, 43), anti-apoptosis (44), gene expression regulation (24), Silver-Russell syndrome (45), rheumatoid arthritis (46), atopic dermatitis (47), and T-cell activation (17, 48). Nevertheless, it remains largely unknown regarding the downstream signaling events of Grb7-mediated various functions. In particular, given the role of Grb7 as an adaptor molecule and its SH2 domain mainly interacting with upstream regulators, it will be interesting to identify potential downstream effectors through interacting with the functional GM region or N-terminal proline-rich region.In this report, we identified two tyrosine phosphorylated sites of Grb7 by FAK and deciphered the signaling targets downstream through these phosphorylated tyrosine sites to regulate various cellular functions such as cell migration, proliferation, and survival. In addition, our study sheds light on tyrosine phosphorylation of Grb7 by FAK involved in tumorigenesis.  相似文献   

9.
10.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

11.
12.
Cav1.4 channels are unique among the high voltage-activated Ca2+ channel family because they completely lack Ca2+-dependent inactivation and display very slow voltage-dependent inactivation. Both properties are of crucial importance in ribbon synapses of retinal photoreceptors and bipolar cells, where sustained Ca2+ influx through Cav1.4 channels is required to couple slow graded changes of the membrane potential with tonic glutamate release. Loss of Cav1.4 function causes severe impairment of retinal circuitry function and has been linked to night blindness in humans and mice. Recently, an inhibitory domain (ICDI: inhibitor of Ca2+-dependent inactivation) in the C-terminal tail of Cav1.4 has been discovered that eliminates Ca2+-dependent inactivation by binding to upstream regulatory motifs within the proximal C terminus. The mechanism underlying the action of ICDI is unclear. It was proposed that ICDI competitively displaces the Ca2+ sensor calmodulin. Alternatively, the ICDI domain and calmodulin may bind to different portions of the C terminus and act independently of each other. In the present study, we used fluorescence resonance energy transfer experiments with genetically engineered cyan fluorescent protein variants to address this issue. Our data indicate that calmodulin is preassociated with the C terminus of Cav1.4 but may be tethered in a different steric orientation as compared with other Ca2+ channels. We also find that calmodulin is important for Cav1.4 function because it increases current density and slows down voltage-dependent inactivation. Our data show that the ICDI domain selectively abolishes Ca2+-dependent inactivation, whereas it does not interfere with other calmodulin effects.Retinal photoreceptors and bipolar cells contain a highly specialized type of synapse designated ribbon synapses. Glutamate release in these synapses is controlled via graded and sustained changes in membrane potential that are maintained throughout the duration of a light stimulus (1, 2). In recent years, it became clear that Cav1.4 L-type Ca2+ channels are the main channel subtype converting these analog input signals into corresponding permanent glutamate release (1, 35). In support of this mechanism, mutations in the Cav1.4 gene have been identified in patients suffering from congenital stationary night blindness type 2 and X-linked cone rod dystrophy (68). Individuals displaying congenital stationary night blindness type 2 as well as mice deficient in Cav1.4 typically have abnormal electroretinograms that indicate a loss of neurotransmission from the rods to second order bipolar cells, which is attributable to a loss of Cav1.4 (3).Retinal Cav1.4 channels are set apart from other high voltage-activated (HVA)3 Ca2+ channels by their total lack of Ca2+-dependent inactivation (CDI) and their very slow voltage-dependent inactivation (VDI). Recently, we and others discovered an inhibitory domain (ICDI: inhibitor of CDI) in the C-terminal tail of the Cav1.4 channel that eliminates Ca2+-dependent inactivation in this channel by binding to upstream regulatory motifs (9, 10). Importantly, introducing the ICDI into the backbone of Cav1.2 or Cav1.3 almost completely abolishes the CDI of these channels. Contrasting with the clear cut function, the underlying mechanism by which ICDI abolishes CDI remains controversial. It was suggested that ICDI displaces the Ca2+ sensor calmodulin (CaM) from binding to the proximal C terminus (10), suggesting that the binding sites of CaM and ICDI are largely overlapping or allosterically coupled to each other. Alternatively, our own data rather suggested that CaM and the ICDI domain bind to different portions of the proximal C terminus (9). We proposed that the interaction between the ICDI domain and the EF-hand, a motif with a central role for transducing CDI (1116), switches off CDI without impairing binding of CaM to the channel. In this study, we designed experiments to differentiate between these two models. Here, using FRET in HEK293 cells, we provide evidence that in living cells, CaM is bound to the full-length C terminus of Cav1.4 (i.e. in the presence of ICDI). Furthermore, our data suggest that the steric orientation of the CaM/Cav channel complex differs between Cav1.2 and Cav1.4 channels. We show that CaM preassociation with Cav1.4 controls current density and also affects VDI. Thus, although CaM does not trigger CDI in Cav1.4 as it does in other HVA Ca2+ channels, it is still an important regulator of this channel.  相似文献   

13.
STIM1 and Orai1 have been reported to interact upon store depletion culminating in Ca2+ release-activated Ca2+ current activation. Recently, the essential region has been identified within the STIM1 C terminus that includes the second coiled-coil domain C-terminally extended by ∼50 amino acids and exhibits a strong binding to the Orai1 C terminus. Based on the homology within the Orai family, an analogous scenario might be assumed for Orai2 as well as Orai3 channels as both are activated in a similar STIM1-dependent manner. A combined approach of electrophysiology and Foerster resonance energy transfer microscopy uncovered a general mechanism in the communication of STIM1 with Orai proteins that involved the conserved putative coiled-coil domains in the respective Orai C terminus and the second coiled-coil motif in the STIM1 C terminus. A coiled-coil single mutation in the Orai1 C terminus abrogated communication with the STIM1 C terminus, whereas an analogous mutation in Orai2 and Orai3 still allowed for their moderate activation. However, increasing coiled-coil probability by a gain of function deletion in Orai1 or by generating an Orai1-Orai3 chimera containing the Orai3 C terminus recovered stimulation to a similar extent as with Orai2/3. At the level of STIM1, decreasing probability of the second coiled-coil domain by a single mutation within the STIM1 C terminus abolished activation of Orai1 but still enabled partial stimulation of Orai2/3 channels. A double mutation within the second coiled-coil motif of the STIM1 C terminus fully disrupted communication with all three Orai channels. In aggregate, the impairment in the overall communication between STIM1 and Orai channels upon decreasing probabilities of either one of the putative coiled-coil domains in the C termini might be compatible with the concept of their functional, heteromeric interaction.Store-operated Ca2+ entry is a key to cellular regulation of short term responses such as contraction and secretion as well as long term processes like proliferation and cell growth (1). The prototypic and best characterized store-operated channel is the Ca2+ release-activated Ca2+ (CRAC)5 channel (26). However, its molecular components have remained elusive until 4 years ago; the STIM1 (stromal interacting molecule 1) (7, 8) and later on Orai1 (911) have been identified as the two limiting components for CRAC activation. STIM1 is an ER-located Ca2+ sensor, and store depletion triggers its aggregation into punctae close to the plasma membrane, resulting in stimulation of CRAC currents (12, 13). Its N terminus is located in the ER lumen and contains an EF-hand Ca2+-binding motif, which senses the ER Ca2+ level, and a sterile α-motif, which is suggested to mediate homomeric STIM1 aggregation (1416). In the cytosolic STIM1 C terminus, two coiled-coil regions overlapping with the ezrin-radixin-moesin-like domain and a lysine-rich region are essential for CRAC activation (14, 17, 18). Three recent studies have independently identified the ezrin-radixin-moesin domain as the essential Orai activating domain, named SOAR (STIM1 Orai-activating region) (20) which represents so far the shortest active fragment, OASF (Orai-activating small fragment) (21) or CAD (CRAC-activating domain) (22), which includes the second, more C terminally located coiled-coil domain and the following ∼55 amino acids. The latter amino acids are suggested to contain an additional cytosolic homomerization domain indispensable for OASF homomerization and Orai activation (21).The Orai family includes three highly Ca2+-selective ion channels (Orai1–3) that locate to the plasma membrane, and each protein contains four predicted transmembrane segments with cytosolic N and C termini (10). All three Orai proteins possess a conserved putative coiled-coil domain in the C terminus (23, 24), whereas only the N terminus of Orai1 consists of a proline/arginine-rich region (25). Orai1 has been assumed to act in concert with STIM1 (10, 27)-activating inward Ca2+ currents after store depletion. The two other members of the Orai family, Orai2 and Orai3, display similar but smaller store-operated inward Ca2+ currents when co-expressed with STIM1 with distinct inactivation profiles, permeability properties, and 2-aminoethoxydiphenyl borate sensitivity (2832). Recently, we have provided evidence for a store depletion-induced, dynamic coupling of STIM1 to Orai1 that involves the putative coiled-coil domain in the C terminus of Orai1 (33). Furthermore, the C terminus of STIM1, in particular the essential cytosolic region 344–442 as narrowed down by SOAR, OASF, and CAD (2022), has been established as the key fragment for CRAC as well as Orai1 activation, because its expression alone, without the necessity to deplete ER store, is sufficient for constitutive current activation (18, 32, 33). These fragments SOAR, OASF, and CAD when co-expressed with Orai1 (2022) exhibit enhanced plasma membrane localization in comparison with the complete STIM1 C terminus in the presence of Orai1. Specificity of interaction of SOAR to the Orai1 C terminus has been shown by its disruption (20) employing the Orai1 L273S mutant (33). Park et al. (22) have provided additional, conclusive evidence for a direct binding by combining multiple biochemical approaches demonstrating CAD interaction with Orai1.This study focused specifically on the role of the putative coiled-coil domains of STIM1 as well as Orai proteins in their coupling. Coiled-coils generally function as protein-protein interaction sites with the ability of dynamic protein assembly and disassembly (3537). We suggest the C-terminal, putative coiled-coil domains in all three Orai proteins and the second coiled-coil motif of STIM1 as essential for STIM1/Orai communication. Moreover, the single point coiled-coil STIM1 L373S mutant allowed for differential activation of Orai channels partially stimulating Orai2 as well as Orai3 but not Orai1.  相似文献   

14.
15.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

16.
Prion propagation involves a conformational transition of the cellular form of prion protein (PrPC) to a disease-specific isomer (PrPSc), shifting from a predominantly α-helical conformation to one dominated by β-sheet structure. This conformational transition is of critical importance in understanding the molecular basis for prion disease. Here, we elucidate the conformational properties of a disulfide-reduced fragment of human PrP spanning residues 91–231 under acidic conditions, using a combination of heteronuclear NMR, analytical ultracentrifugation, and circular dichroism. We find that this form of the protein, which similarly to PrPSc, is a potent inhibitor of the 26 S proteasome, assembles into soluble oligomers that have significant β-sheet content. The monomeric precursor to these oligomers exhibits many of the characteristics of a molten globule intermediate with some helical character in regions that form helices I and III in the PrPC conformation, whereas helix II exhibits little evidence for adopting a helical conformation, suggesting that this region is a likely source of interaction within the initial phases of the transformation to a β-rich conformation. This precursor state is almost as compact as the folded PrPC structure and, as it assembles, only residues 126–227 are immobilized within the oligomeric structure, leaving the remainder in a mobile, random-coil state.Prion diseases, such as Creutzfeldt-Jacob and Gerstmann-Sträussler-Scheinker in humans, scrapie in sheep, and bovine spongiform encephalopathy in cattle, are fatal neurological disorders associated with the deposition of an abnormally folded form of a host-encoded glycoprotein, prion (PrP)2 (1). These diseases may be inherited, arise sporadically, or be acquired through the transmission of an infectious agent (2, 3). The disease-associated form of the protein, termed the scrapie form or PrPSc, differs from the normal cellular form (PrPC) through a conformational change, resulting in a significant increase in the β-sheet content and protease resistance of the protein (3, 4). PrPC, in contrast, consists of a predominantly α-helical structured domain and an unstructured N-terminal domain, which is capable of binding a number of divalent metals (512). A single disulfide bond links two of the main α-helices and forms an integral part of the core of the structured domain (13, 14).According to the protein-only hypothesis (15), the infectious agent is composed of a conformational isomer of PrP (16) that is able to convert other isoforms to the infectious isomer in an autocatalytic manner. Despite numerous studies, little is known about the mechanism of conversion of PrPC to PrPSc. The most coherent and general model proposed thus far is that PrPC fluctuates between the dominant native state and minor conformations, one or a set of which can self-associate in an ordered manner to produce a stable supramolecular structure composed of misfolded PrP monomers (3, 17). This stable, oligomeric species can then bind to, and stabilize, rare non-native monomer conformations that are structurally complementary. In this manner, new monomeric chains are recruited and the system can propagate.In view of the above model, considerable effort has been devoted to generating and characterizing alternative, possibly PrPSc-like, conformations in the hope of identifying common properties or features that facilitate the formation of amyloid oligomers. This has been accomplished either through PrPSc-dependent conversion reactions (1820) or through conversion of PrPC in the absence of a PrPSc template (2125). The latter approach, using mainly disulfide-oxidized recombinant PrP, has generated a wide range of novel conformations formed under non-physiological conditions where the native state is relatively destabilized. These conformations have ranged from near-native (14, 26, 27), to those that display significant β-sheet content (21, 23, 2833). The majority of these latter species have shown a high propensity for aggregation, although not all are on-pathway to the formation of amyloid. Many of these non-native states also display some of the characteristics of PrPSc, such as increased β-sheet content, protease resistance, and a propensity for oligomerization (28, 29, 31) and some have been claimed to be associated with the disease process (34).One such PrP folding intermediate, termed β-PrP, differs from the majority of studied PrP intermediate states in that it is formed by refolding the PrP molecule from the native α-helical conformation (here termed α-PrP), at acidic pH in a reduced state, with the disulfide bond broken (22, 35). Although no covalent differences between the PrPC and PrPSc have been consistently identified to date, the role of the disulfide bond in prion propagation remains disputed (25, 3639). β-PrP is rich in β-sheet structure (22, 35), and displays many of the characteristics of a PrPSc-like precursor molecule, such as partial resistance to proteinase K digestion, and the ability to form amyloid fibrils in the presence of physiological concentrations of salts (40).The β-PrP species previously characterized, spanning residues 91–231 of PrP, was soluble at low ionic strength buffers and monomeric, according to elution volume on gel filtration (22). NMR analysis showed that it displayed radically different spectra to those of α-PrP, with considerably fewer observable peaks and markedly reduced chemical shift dispersion. Data from circular dichroism experiments showed that fixed side chain (tertiary) interactions were lost, in contrast to the well defined β-sheet secondary structure, and thus in conjunction with the NMR data, indicated that β-PrP possessed a number of characteristics associated with a “molten globule” folding intermediate (22). Such states have been proposed to be important in amyloid and fibril formation (41). Indeed, antibodies raised against β-PrP (e.g. ICSM33) are capable of recognizing native PrPSc (but not PrPC) (4244). Subsequently, a related study examining the role of the disulfide bond in PrP folding confirmed that a monomeric molten globule-like form of PrP was formed on refolding the disulfide-reduced protein at acidic pH, but reported that, under their conditions, the circular dichroism response interpreted as β-sheet structure was associated with protein oligomerization (45). Indeed, atomic force microscopy on oligomeric full-length β-PrP (residues 23–231) shows small, round particles, showing that it is capable of formation of oligomers without forming fibrils (35). Notably, however, salt-induced oligomeric β-PrP has been shown to be a potent inhibitor of the 26 S proteasome, in a similar manner to PrPSc (46). Impairment of the ubiquitin-proteasome system in vivo has been linked to prion neuropathology in prion-infected mice (46).Although the global properties of several PrP intermediate states have been determined (3032, 35), no information on their conformational properties on a sequence-specific basis has been obtained. Their conformational properties are considered important, as the elucidation of the chain conformation may provide information on the way in which these chains pack in the assembly process, and also potentially provide clues on the mechanism of amyloid assembly and the phenomenon of prion strains. As the conformational fluctuations and heterogeneity of molten globule states give rise to broad NMR spectra that preclude direct observation of their conformational properties by NMR (4750), here we use denaturant titration experiments to determine the conformational properties of β-PrP, through the population of the unfolded state that is visible by NMR. In addition, we use circular dichroism and analytical ultracentrifugation to examine the global structural properties, and the distribution of multimeric species that are formed from β-PrP.  相似文献   

17.
18.
The ubiquitous Ca2+-sensing protein calmodulin (CaM) fulfills its numerous signaling functions through a wide range of modular binding and activation mechanisms. By activating adenylyl cyclases (ACs) 1 and 8, Ca2+ acting via calmodulin impacts on the signaling of the other major cellular second messenger cAMP. In possessing two CaM-binding domains, a 1-5-8-14 motif at the N terminus and an IQ-like motif (IQlm) at the C terminus, AC8 offers particularly sophisticated regulatory possibilities. The IQlm has remained unexplored beyond the suggestion that it bound CaM, and the larger C2b region of which it is part was involved in the relief of autoinhibition of AC8. Here we attempt to distinguish the function of individual residues of the IQlm. From a complementary approach of in vitro and cell population AC activity assays, as well as CaM binding, we propose that the IQlm alone, and not the majority of the C2b, imparts CaM binding and autoinhibitory functions. Moreover, this duality of function is spatially separated and depends on amino acid side-chain character. Accordingly, residues critical for CaM binding are positively charged and clustered toward the C terminus, and those essential for the maintenance of autoinhibition are hydrophobic and more N-terminal. Secondary structure prediction of the IQlm supports this separation, with an ideally placed break in the α-helical nature of the sequence. We additionally find that the N and C termini of AC8 interact, which is an association specifically abrogated by fully Ca2+-bound, but not Ca2+-free, CaM. These data support a sophisticated activation mechanism of AC8 by CaM, in which the duality of the IQlm function is critical.The divalent calcium ion, Ca2+, plays a key role in modulating cellular processes as diverse as fertilization and apoptosis (1, 2). Ca2+ concentrations inside the cell are held ∼100 nm, despite a perpetually higher level of 1–2 mm in the extracellular medium. This steep gradient across the plasma membrane allows for a large influx when Ca2+ channels open, with subsequent signaling events that often rely on transduction via Ca2+-binding proteins (3). The archetypal Ca2+ sensor is calmodulin (CaM),2 a small, acidic protein so strictly conserved that all vertebrate CaM genes encode an identical 148-residue sequence (4). Multifunctional in its downstream effects, CaM can bind to at least 300 target proteins with novel partners continuing to be discovered (5). The list of effectors includes two isoforms of the adenylyl cyclase (AC) superfamily, AC1 and AC8, which comprise the Ca2+-stimulable subset of the nine particulate ACs (6). In intact cells, AC8 exhibits a predilection for store-operated, or capacitative, Ca2+ entry (CCE) (7, 8). This mode of Ca2+ entry is triggered by the emptying of endo/sarcoplasmic reticular stores by physiological or pharmacological stimuli (9, 10). Although the mechanism of the regulation of AC8 in nonexcitable cells by CCE (or voltage-gated Ca2+ entry in neurons) can be viewed to rely on facets of cellular compartmentalization (1113), the detailed molecular mechanism whereby Ca2+ stimulates the enzyme is unclear. Consequently, the present investigation addresses the molecular mechanism whereby Ca2+, acting via calmodulin, stimulates AC8.The broad features of CaM that hold the key to its multiple regulatory strategies are understood. CaM is organized into two homologous globular domains (or lobes) united by a short linker segment (14). Both the N-terminal (N-lobe) and the C-terminal lobe (C-lobe) include two EF-hands (specialized Ca2+-coordinating helix-loop-helix motifs (15)), endowing CaM with four Ca2+-binding sites. Ca2+ binding to either lobe of CaM induces a structural reconfiguration determined by the two helices of each EF-hand separating from near-antiparallel to perpendicular arrays (14, 16). This exposes hydrophobic trenches in the C- and N-lobes sequentially (because the former has the highest affinity for Ca2+), which are notably lined with a disproportionate number of flexible methionine side chains, ready to accommodate a remarkable array of unrelated sequences. Initially, the mode of Ca2+-loaded CaM association with targets was considered to be uniform; the N- and C-lobes collapsed around the target peptides of e.g. smooth muscle myosin light chain kinase (17), skeletal muscle myosin light chain kinase (18), and CaMKIIα (19) with the N-lobe favoring the C-terminal target sequence and vice versa. However, CaM has since proven to be more versatile and unpredictable in how it associates with and regulates effectors, with reports of N-lobe-N-terminal/C-lobe-C-terminal interaction (20), target dimerization promoted by CaM (21), CaM binding to fatty acyl modifications (22), and other deviations from the early model.Nevertheless, three main forms of CaM regulation have been proposed as follows: relief of autoinhibition; active site remodeling; and dimerization of target domains (23). Whether the precise mechanism of CaM binding and subsequent regulation of AC8 falls into these categories of CaM regulation is not resolved. A previous study (24) established that AC8 possesses two calmodulin-binding domains (CaMBDs). CaM recognition sequences generally show little homology, although classifications based on relative positions of key hydrophobic residues have been usefully applied (4). The N-terminal CaMBD of AC8 conforms to a “1-5-8-14 motif” having large hydrophobic side chains from Trp, Val, or Ile residues at these spatially conserved sites. The C-terminal CaMBD contains an IQ-like motif (IQlm), in accordance with a signature (IVL)QXXXR(K) arrangement, to which CaM binds directly (25). By truncating one terminus or both termini, Gu and Cooper (24) asserted that the N terminus contributed little to direct CaM regulation of AC8, whereas the C terminus was critical for the maintenance of an auto-inhibited state, which was relieved upon binding of CaM. Thus, functional elements of both autoinhibition and pre-association, imparted by noncontiguous CaMBDs, have been suggested, thereby excluding AC8 from a simple model of CaM binding to an autoinhibitory domain leading to activation, as is sometimes observed (23).Recently, the proposal that the two CaMBDs play separate roles in AC8 activation was reinforced (26). This study suggested that CaM tethering by the N-terminal 1-5-8-14 motif provides the catalytically relevant C-terminal CaMBD with privileged access to CaM, thereby circumventing the need for AC8 to compete for CaM, whose free concentration in the cell is far exceeded by that of its targets (27, 28). 1–14 motifs are more generally employed in relieving autoinhibitory influences (23), so the use by AC8 of a 1-5-8-14 motif as a CaM-tethering site is unusual. The proposal that CaM pre-associates here was based on limited mutagenesis of residues within the 1-5-8-14 motif of AC8 and the use of CaM mutants whose Ca2+ binding capability was abolished completely or limited to discrete lobes. In contrast to the 1-5-8-14 motif at the N terminus, very little is known of the IQlm at the C terminus, in terms of the roles of the individual residues in CaM binding or autoinhibition, or even on the interplay between CaMBDs at the N and C termini of AC8.Against this background, the present study sought to assess the contribution of IQlm residues to the function of AC8, focusing on consequences of key mutations on CaM-binding efficiency, regulation by Ca2+/CaM, and maintenance of the autoinhibited state. Through this series of experiments, the level of coordination between the IQ-like and 1-5-8-14 motifs became evident. The provision of a pre-associated CaM molecule was found to allow for potentially deleterious mutations of the IQlm to be tolerated. Within this latter motif, Leu1196, Val1197, and Leu1200 are residues essential to autoinhibition, whereas the main responsibility of binding CaM directly at the C terminus lies with Arg1202 and Arg1204. In this regard, the AC8 IQlm spatially separates the two functions of CaM binding and maintenance of autoinhibition, a separation that is supported by a predicted break in the helicity of the IQlm region. Thus, a new variation is revealed in the manner by which a target exploits the CaM device into a sophisticated activation mechanism.  相似文献   

19.
Calcium (Ca2+) signaling by the pro-inflammatory cytokine interleukin-1 (IL-1) is dependent on focal adhesions, which contain diverse structural and signaling proteins including protein phosphatases. We examined here the role of protein-tyrosine phosphatase (PTP) α in regulating IL-1-induced Ca2+ signaling in fibroblasts. IL-1 promoted recruitment of PTPα to focal adhesions and endoplasmic reticulum (ER) fractions, as well as tyrosine phosphorylation of the ER Ca2+ release channel IP3R. In response to IL-1, catalytically active PTPα was required for Ca2+ release from the ER, Src-dependent phosphorylation of IP3R1 and accumulation of IP3R1 in focal adhesions. In pulldown assays and immunoprecipitations PTPα was required for the association of PTPα with IP3R1 and c-Src, and this association was increased by IL-1. Collectively, these data indicate that PTPα acts as an adaptor to mediate functional links between focal adhesions and the ER that enable IL-1-induced Ca2+ signaling.The interleukin-1 (IL-1)3 family of pro-inflammatory cytokines mediates host responses to infection and injury. Impaired control of IL-1 signaling leads to chronic inflammation and destruction of extracellular matrices (1, 2), as seen in pathological conditions such as pulmonary fibrosis (3), rheumatoid arthritis (4, 5), and periodontitis (6). IL-1 elicits multiple signaling programs, some of which trigger Ca2+ release from the endoplasmic reticulum (ER) as well as expression of multiple cytokines and inflammatory factors including c-Fos and c-Jun (7, 8), and matrix metalloproteinases (9, 10), which mediate extracellular matrix degradation via mitogen-activated protein kinase-regulated pathways (11).In anchorage-dependent cells including fibroblasts and chondrocytes, focal adhesions (FAs) are required for IL-1-induced Ca2+ release from the ER and activation of ERK (1214). FAs are actin-enriched adhesive domains composed of numerous (>50) scaffolding and signaling proteins (1517). Many FA proteins are tyrosine-phosphorylated, including paxillin, focal adhesion kinase, and src family kinases, all of which are crucial for the assembly and disassembly of FAs (1821). Protein-tyrosine phosphorylation plays a central role in regulating many cellular processes including adhesion (22, 23), motility (24), survival (25), and signal transduction (2629). Phosphorylation of proteins by kinases is balanced by protein-tyrosine phosphatases (PTP), which can enhance or attenuate downstream signaling by dephosphorylation of tyrosine residues (3032).PTPs can be divided into two main categories: receptor-like and intracellular PTPs (33). Two receptor-like PTPs have been localized to FA (leukocyte common antigen-related molecule and PTPα). Leukocyte common antigen-related molecule can dephosphorylate and mediate degradation of p130cas, which ultimately leads to cell death (34, 35). PTPα contains a heavily glycosylated extracellular domain, a transmembrane domain, and two intracellular phosphatase domains (33, 36). The amino-terminal domain predominantly mediates catalytic activity, whereas the carboxyl-terminal domain serves a regulatory function (37, 38). PTPα is enriched in FA (23) and is instrumental in regulating FA dynamics (39) via activation of c-Src/Fyn kinases by dephosphorylating the inhibitory carboxyl tyrosine residue, namely Tyr529 (22, 4042) and facilitation of integrin-dependent assembly of Src-FAK and Fyn-FAK complexes that regulate cell motility (43). Although PTPα has been implicated in formation and remodeling of FAs (44, 45), the role of PTPα in FA-dependent signaling is not defined.Ca2+ release from the ER is a critical step in integrin-dependent IL-1 signal transduction and is required for downstream activation of ERK (13, 46). The release of Ca2+ from the ER depends on the inositol 1,4,5-triphosphate receptor (IP3R), which is an IP3-gated Ca2+ channel (47). All of the IP3R subtypes (subtypes 1–3) have been localized to the ER, as well as other the plasma membrane and other endomembranes (4850). Further, IP3R may associate with FAs, enabling the anchorage of the ER to FAs (51, 52). However, the molecule(s) that provide the structural link for this association has not been defined.FA-restricted, IL-1-triggered signal transduction in anchorage-dependent cells may rely on interacting proteins that are enriched in FAs and the ER (53). Here, we examined the possibility that PTPα associates with c-Src and IP3R to functionally link FAs to the ER, thereby enabling IL-1 signal transduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号