首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Since interleukin (IL)-18 is a proinflammatory cytokine, mice lacking IL-18 or its ligand-binding receptor (IL-18R) should exhibit decreased cytokine and chemokine production. Indeed, production of IL-1α, IL-6, and MIP-1α was reduced in IL-18 knock-out (ko) mouse embryonic fibroblast (MEF)-like cells. Unexpectedly, we observed a paradoxical 10-fold increase in IL-1β-induced IL-6 production in MEF cells from mice deficient in the IL-18R α-chain (IL-18Rα) compared with wild type MEF. Similar increases were observed for IL-1α, MIP-1α, and prostaglandin E2. Likewise, coincubation with a specific IL-18Rα-blocking antibody augmented IL-1β-induced cytokines in wild type and IL-18 ko MEF. Stable lines of IL-18Rα-depleted human A549 cells were generated using shRNA, resulting in an increase of IL-1β-induced IL-1α, IL-6, and IL-8 compared to scrambled small hairpin RNA. In addition, we silenced IL-18Rα with small interfering RNA in primary human blood cells and observed up to 4-fold increases in the secretion of lipopolysaccharide- and IL-12/IL-18-induced IL-1β, IL-6, interferon-γ, and CD40L. Mechanistically, despite increases in Stat1 and IL-6, induction of SOCS1 and -3 (suppressor of cytokine signaling 1 and 3) was markedly reduced in the absence of IL-18Rα. Consistent with these observations, activation of the p38α/β and ERK1/2 MAPKs and of protein kinase B/Akt increased in IL-18Rα ko MEF, whereas the negative feedback kinase MSK2 was more active in IL-18 ko cells. These data reveal a role for SOCS1 and -3 in the seemingly paradoxical hyperresponsive state in cells deficient in IL-18Rα, supporting the concept that IL-18Rα participates in both pro- and anti-inflammatory responses and that an endogenous ligand engages IL-18Rα to deliver an inhibitory signal.Often shown to function as a proinflammatory cytokine, structurally related to IL-1β,3 and requiring caspase-1 for processing of its inactive precursor into an active cytokine (13), IL-18 is a unique member of the IL-1 family. For example, IL-18 and IL-18 receptor α-chain (IL-18Rα) knock-out (ko) mice unexpectedly overeat and spontaneously become obese, developing insulin resistance and atherosclerosis (4, 5). This phenotype does not occur in mice deficient in other members of the IL-1 family. In the absence of IL-12 and similar co-stimulatory cytokines, IL-18 can act as a typical Th2 cytokine in murine models (6, 7). The affinity of the naturally occurring IL-18-binding protein (IL-18BP) for IL-18 is higher than that of IL-18 for its cognate receptor; thus, low levels of this naturally occurring antagonist effectively neutralize the activity of IL-18 (811). In some studies, IL-18 opposes the proinflammatory properties of IL-1β (12). In dextran sodium sulfate-induced colitis, neutralizing antibodies to IL-18 or IL-18BP ameliorate the disease (13, 14), whereas in other studies, mice deficient in IL-18Rα exhibit worsening of the disease (15).IL-18 Induces Several Proinflammatory Cytokines, Such as IL-1β and TNFα, as well as chemokines, nitric oxide, and vascular adhesion molecules (reviewed in Ref. 16). Using mice deficient in IL-18 or neutralization of IL-18, the cytokine appears to play an important role in models of rheumatoid arthritis (17), lupus-like autoimmune disease (18), metastatic melanoma (19), graft versus host disease (20), and myocardial suppression (21, 22). Unlike IL-1, IL-18 also induces Fas ligand and has been proposed as a key mediator of macrophage activation syndrome (23).We have previously reported that whereas deficiency in IL-18 attenuated inflammatory responses to various exogenous stimuli, these responses paradoxically were exaggerated in IL-18Rα ko mice (24). In addition to rejecting insulin-producing islet allografts, splenocytes and peritoneal macrophages from IL-18Rα ko mice produced significantly greater amounts of several proinflammatory cytokines upon stimulation with concanavalin A, TLR2 agonist heat-killed Staphylococcus epidermidis, or anti-CD3 antibodies (24).In the present study, we set out to investigate the fundamental differences in cytokine production between IL-18 ko and IL-18Rα ko mice using mouse embryonic fibroblasts (MEF), which are highly responsive to IL-1 and TNFα stimulation. We also studied the role of IL-18Rα in human cells. IL-18Rα was silenced in human A549 epithelial cells using small hairpin RNA (shRNA) to the IL-18R (shIL-18R) as well as in freshly obtained human peripheral blood mononuclear cells (PBMC). Furthermore, using inhibitors as well as kinase activation studies, real time PCR, and Western blotting, we shed light on the IL-18Rα ko-mediated differences in expression and activation of signaling mediators, such as the suppressors of cytokine signaling (SOCS), MAPKs, protein kinase B/Akt, NF-κB, MSK2/RSKβ, and p70 S6 kinase. The mechanisms underlying the disinhibition of inflammatory responses in IL-18Rα-deficient cells appear to be due to a yet unidentified anti-inflammatory ligand of the IL-18 receptor.  相似文献   

2.
The unique cytokine interleukin-18 (IL-18) acts synergistically with IL-12 to regulate T-helper 1 and 2 lymphocytes and, as such, seems to underlie the pathogenesis of various autoimmune and allergic diseases. Several anti-IL-18 agents are in clinical development, including the recombinant human antibody ABT-325, which is entering trials for autoimmune diseases. Given competing cytokine/receptor and cytokine/receptor decoy interactions, understanding the structural basis for recognition is critical for effective development of anti-cytokine therapies. Here we report three crystal structures: the murine antibody 125-2H Fab fragment bound to human IL-18, at 1.5 Å resolution; the 125-2H Fab (2.3 Å); and the ABT-325 Fab (1.5 Å). These structures, along with human/mouse IL-18 chimera binding data, allow us to make three key observations relevant to the biology and antigenic recognition of IL-18 and related cytokines. First, several IL-18 residues shift dramatically (>10 Å) upon binding 125-2H, compared with unbound IL-18 (Kato, Z., Jee, J., Shikano, H., Mishima, M., Ohki, I., Ohnishi, H., Li, A., Hashimoto, K., Matsukuma, E., Omoya, K., Yamamoto, Y., Yoneda, T., Hara, T., Kondo, N., and Shirakawa, M. (2003) Nat. Struct. Biol. 10, 966–971). IL-18 thus exhibits plasticity that may be common to its interactions with other receptors. Related cytokines may exhibit similar plasticity. Second, ABT-325 and 125-2H differ significantly in combining site character and architecture, thus explaining their ability to bind IL-18 simultaneously at distinct epitopes. These data allow us to define the likely ABT-325 epitope and thereby explain the distinct neutralizing mechanisms of both antibodies. Third, given the high 125-2H potency, 10 well ordered water molecules are trapped upon complex formation in a cavity between two IL-18 loops and all six 125-2H complementarity-determining regions. Thus, counterintuitively, tight and specific antibody binding may in some cases be water-mediated.Interleukin (IL)3 -18 is a proinflammatory cytokine that participates in the regulation of innate and acquired immunity (2, 3). IL-18 acts alone or in concert with IL-12 to amplify the induction of proinflammatory and cytotoxic mediators, such as interferon-γ. For example, in IL-18 knock-out mice, levels of interferon-γ and cytotoxic T cells decrease despite the presence of IL-12. Inhibition of IL-18 activity has been found to be beneficial in several autoimmune disease animal models (e.g. collagen-induced arthritis (4) and colitis (5)). Furthermore, IL-18 expression is dramatically increased by the chronic inflammatory state extant in human autoimmune diseases, such as rheumatoid arthritis (6), multiple sclerosis (7, 8), and Crohn''s disease (9). These observations suggest that blockade of IL-18 may be a useful human therapeutic modality (10).Despite functional divergence from the IL-1 cytokine family, IL-18 shares many similarities with IL-1. First, human IL-18 is synthesized as a biologically inactive 24-kDa precursor. Like IL-1β, IL-18 is activated and secreted following cleavage by caspase-1 (and possibly other proteases) that generates the mature 18-kDa polypeptide. Despite low sequence homology to IL-1β (17%), the three-dimensional structure of IL-18 closely resembles the IL-1β β-trefoil fold, as shown by a recent IL-18 NMR structure determination (1). The IL-1 and IL-18 receptors are also homologous; IL-18 binds either to the IL-18Rα chain alone or to the heterodimeric IL-18Rα/IL-18Rβ receptor complex. IL-18 binds to IL-18Rα with ∼20 nm affinity, but signaling occurs only upon formation of the high affinity (0.2 nm) IL-18Rα·IL-18·IL-18Rβ ternary complex (11, 12). Surface mutational analysis has identified two sites for IL-18 binding to IL-18Rα that are similar to those observed in the IL-1β·IL-1Rα binary complex (13) as well as one site important for binding to IL-18Rβ (1).In a recent study, a potent (0.2 nm) IL-18-neutralizing murine monoclonal antibody (mAb), 125-2H, inhibited binding of IL-18 to IL-18Rα alone but not the heterodimeric IL-18Rα/IL-18Rβ receptor complex, despite rendering the ternary complex with IL-18 non-functional (14). The structural basis for the unusual properties of 125-2H are unclear; the authors suggested that conformational changes in IL-18Rα occur upon formation of the IL-18Rα/IL-18Rβ receptor, thereby altering the interactions with 125-2H (14).To understand the intricate interactions between IL-18 and this antibody, we have determined the co-crystal structure of human IL-18 and the 125-2H antigen-binding fragment (Fab) at 1.5 Å resolution. This structure rationalizes epitope mapping data, based on human/murine IL-18 chimeras (14), in which the primary antigenic recognition loop is located near the COOH terminus. A secondary loop bolsters the interactions between IL-18 and several 125-2H complementarity-determining regions (CDRs). Comparison of this complex structure with that of the unbound 125-2H Fab (2.3 Å resolution) shows that 125-2H is preorganized for antigen binding. Last, we also have determined the 1.5 Å resolution crystal structure of the Fab fragment of a fully human mAb, ABT-325, that binds a distinct IL-18 epitope, as confirmed by biochemical studies. ABT-325 is entering clinical trials for a variety of autoimmune disease indications.  相似文献   

3.
4.
5.
6.
7.
Understanding the activation mechanism of Cys loop ion channel receptors is key to understanding their physiological and pharmacological properties under normal and pathological conditions. The ligand-binding domains of these receptors comprise inner and outer β-sheets and structural studies indicate that channel opening is accompanied by conformational rearrangements in both β-sheets. In an attempt to resolve ligand-dependent movements in the ligand-binding domain, we employed voltage-clamp fluorometry on α1 glycine receptors to compare changes mediated by the agonist, glycine, and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner β-sheet, we labeled residues in loop 2 and in binding domain loops D and E. At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes in the inner β-sheet and pre-M1 domain that may be important for activation, desensitization, or both. In contrast, most labeled residues in loops C and F yielded fluorescence changes identical in magnitude for glycine and strychnine. A notable exception was H201C in loop C. This labeled residue responded differently to glycine and strychnine, thus underlining the importance of loop C in ligand discrimination. These results provide an important step toward mapping the domains crucial for ligand discrimination in the ligand-binding domain of glycine receptors and possibly other Cys loop receptors.Glycine receptor (GlyR)3 chloride channels are pentameric Cys loop receptors that mediate fast synaptic transmission in the nervous system (1, 2). This family also includes nicotinic acetylcholine receptors (nAChRs), γ-aminobutyric acid type A and type C receptors, and serotonin type 3 receptors. Individual subunits comprise a large ligand-binding domain (LBD) and a transmembrane domain consisting of four α-helices (M1–M4). The LBD consists of a 10-strand β-sandwich made of an inner β-sheet with six strands and an outer β-sheet with four strands (3). The ligand-binding site is situated at the interface of adjacent subunits and is formed by loops A–C from one subunit and loops D–F from the neighboring subunit (3).The activation mechanism of Cys loop receptors is currently the subject of intense investigation because it is key to understanding receptor function under normal and pathological conditions (4, 5). Based on structural analysis of Torpedo nAChRs, Unwin and colleagues (6, 7) originally proposed that agonist binding induced the inner β-sheet to rotate, whereas the outer β-sheet tilted slightly upwards with loop C clasping around the agonist. These movements were thought to be transmitted to the transmembrane domain via a differential movement of loop 2 (β1-β2) and loop 7 (β6-β7) (both part of the inner β-sheet) and the pre-M1 domain (which is linked via a β-strand to the loop C in the outer sheet). The idea of large loop C movements accompanying agonist binding is supported by structural and functional data (3, 813). However, a direct link between loop C movements and channel gating has proved more difficult to establish. Although computational modeling studies have suggested that this loop may be a major component of the channel opening mechanism (1418), experimental support for this model is not definitive. Similarly, loop F is also thought to move upon ligand binding, although there is as yet no consensus as to whether these changes represent local or global conformational changes (11, 1921). Recently, a comparison of crystal structures of bacterial Cys loop receptors in the closed and open states revealed that although both the inner and outer β-sheets exhibit different conformations in closed and open states, the pre-M1 domain remains virtually stationary (22, 23). It is therefore relevant to question whether loop C, loop F, and pre-M1 movements are essential for Cys loop receptor activation.Strychnine is a classical competitive antagonist of GlyRs (24, 25), and to date there is no evidence that it can produce LBD structural changes. In this study we use voltage-clamp fluorometry (VCF) to compare glycine- and strychnine-induced conformational changes in the GlyR loops 2, C, D, E, and F and the pre-M1 domain in an attempt to determine whether they signal ligand-binding events, local conformational changes, or conformational changes associated with receptor activation.In a typical VCF experiment, a domain of interest is labeled with an environmentally sensitive fluorophore, and current and fluorescence are monitored simultaneously during ligand application. VCF is ideally suited for identifying ligand-specific conformational changes because it can report on electrophysiologically silent conformational changes (26), such as those induced by antagonists. Indeed, VCF has recently provided valuable insights into the conformational rearrangements of various Cys loop receptors (19, 21, 2733).  相似文献   

8.
The present study tests the hypothesis that the structure of extracellular domain Loop 2 can markedly affect ethanol sensitivity in glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs). To test this, we mutated Loop 2 in the α1 subunit of GlyRs and in the γ subunit of α1β2γ2GABAARs and measured the sensitivity of wild type and mutant receptors expressed in Xenopus oocytes to agonist, ethanol, and other agents using two-electrode voltage clamp. Replacing Loop 2 of α1GlyR subunits with Loop 2 from the δGABAAR (δL2), but not the γGABAAR subunit, reduced ethanol threshold and increased the degree of ethanol potentiation without altering general receptor function. Similarly, replacing Loop 2 of the γ subunit of GABAARs with δL2 shifted the ethanol threshold from 50 mm in WT to 1 mm in the GABAA γ-δL2 mutant. These findings indicate that the structure of Loop 2 can profoundly affect ethanol sensitivity in GlyRs and GABAARs. The δL2 mutations did not affect GlyR or GABAAR sensitivity, respectively, to Zn2+ or diazepam, which suggests that these δL2-induced changes in ethanol sensitivity do not extend to all allosteric modulators and may be specific for ethanol or ethanol-like agents. To explore molecular mechanisms underlying these results, we threaded the WT and δL2 GlyR sequences onto the x-ray structure of the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel homologue (GLIC). In addition to being the first GlyR model threaded on GLIC, the juxtaposition of the two structures led to a possible mechanistic explanation for the effects of ethanol on GlyR-based on changes in Loop 2 structure.Alcohol abuse and dependence are significant problems in our society, with ∼14 million people in the United States being affected (1, 2). Alcohol causes over 100,000 deaths in the United States, and alcohol-related issues are estimated to cost nearly 200 billion dollars annually (2). To address this, considerable attention has focused on the development of medications to prevent and treat alcohol-related problems (35). The development of such medications would be aided by a clear understanding of the molecular structures on which ethanol acts and how these structures influence receptor sensitivity to ethanol.Ligand-gated ion channels (LGICs)2 have received substantial attention as putative sites of ethanol action that cause its behavioral effects (612). Research in this area has focused on investigating the effects of ethanol on two large superfamilies of LGICs: 1) the Cys-loop superfamily of LGICs (13, 14), whose members include nicotinic acetylcholine, 5-hydroxytryptamine3, γ-aminobutyric acid type A (GABAA), γ-aminobutyric acid type C, and glycine receptors (GlyRs) (10, 11, 1520) and 2) the glutamate superfamily, including N-methyl d-aspartate, α-amino-3-hydroxyisoxazolepropionic acid, and kainate receptors (21, 22). Recent studies have also begun investigating ethanol action in the ATP-gated P2X superfamily of LGICs (2325).A series of studies that employed chimeric and mutagenic strategies combined with sulfhydryl-specific labeling identified key regions within Cys-loop receptors that appear to be initial targets for ethanol action that also can determine the sensitivity of the receptors to ethanol (712, 18, 19, 2630). This work provides several lines of evidence that position 267 and possibly other sites in the transmembrane (TM) domain of GlyRs and homologous sites in GABAARs are targets for ethanol action and that mutations at these sites can influence ethanol sensitivity (8, 9, 26, 31).Growing evidence from GlyRs indicates that ethanol also acts on the extracellular domain. The initial findings came from studies demonstrating that α1GlyRs are more sensitive to ethanol than are α2GlyRs despite the high (∼78%) sequence homology between α1GlyRs and α2GlyRs (32). Further work found that an alanine to serine exchange at position 52 (A52S) in Loop 2 can eliminate the difference in ethanol sensitivity between α1GlyRs and α2GlyRs (18, 20, 33). These studies also demonstrated that mutations at position 52 in α1GlyRS and the homologous position 59 in α2GlyRs controlled the sensitivity of these receptors to a novel mechanistic ethanol antagonist (20). Collectively, these studies suggest that there are multiple sites of ethanol action in α1GlyRs, with one site located in the TM domain (e.g. position 267) and another in the extracellular domain (e.g. position 52).Subsequent studies revealed that the polarity of the residue at position 52 plays a key role in determining the sensitivity of GlyRs to ethanol (20). The findings with polarity in the extracellular domain contrast with the findings at position 267 in the TM domain, where molecular volume, but not polarity, significantly affected ethanol sensitivity (9). Taken together, these findings indicate that the physical-chemical parameters of residues at positions in the extracellular and TM domains that modulate ethanol effects and/or initiate ethanol action in GlyRs are not uniform. Thus, knowledge regarding the physical-chemical properties that control agonist and ethanol sensitivity is key for understanding the relationship between the structure and the actions of ethanol in LGICs (19, 31, 3440).GlyRs and GABAARs, which differ significantly in their sensitivities to ethanol, offer a potential method for identifying the structures that control ethanol sensitivity. For example, α1GlyRs do not reliably respond to ethanol concentrations less than 10 mm (32, 33, 41). Similarly, γ subunit-containing GABAARs (e.g. α1β2γ2), the most predominantly expressed GABAARs in the central nervous system, are insensitive to ethanol concentrations less than 50 mm (42, 43). In contrast, δ subunit-containing GABAARs (e.g. α4β3δ) have been shown to be sensitive to ethanol concentrations as low as 1–3 mm (4451). Sequence alignment of α1GlyR, γGABAAR, and δGABAAR revealed differences between the Loop 2 regions of these receptor subunits. Since prior studies found that mutations of Loop 2 residues can affect ethanol sensitivity (19, 20, 39), the non-conserved residues in Loop 2 of GlyR and GABAAR subunits could provide the physical-chemical and structural bases underlying the differences in ethanol sensitivity between these receptors.The present study tested the hypothesis that the structure of Loop 2 can markedly affect the ethanol sensitivity of GlyRs and GABAARs. To accomplish this, we performed multiple mutations that replaced the Loop 2 region of the α1 subunit in α1GlyRs and the Loop 2 region of the γ subunit of α1β2γ2 GABAARs with corresponding non-conserved residues from the δ subunit of GABAAR and tested the sensitivity of these receptors to ethanol. As predicted, replacing Loop 2 of WT α1GlyRs with the homologous residues from the δGABAAR subunit (δL2), but not the γGABAAR subunit (γL2), markedly increased the sensitivity of the receptor to ethanol. Similarly, replacing the non-conserved residues of the γ subunit of α1β2γ2 GABAARs with δL2 also markedly increased ethanol sensitivity of GABAARs. These findings support the hypothesis and suggest that Loop 2 may play a role in controlling ethanol sensitivity across the Cys-loop superfamily of receptors. The findings also provide the basis for suggesting structure-function relationships in a new molecular model of the GlyR based on the bacterial Gloeobacter violaceus pentameric LGIC homologue (GLIC).  相似文献   

9.
A central question in Wnt signaling is the regulation of β-catenin phosphorylation and degradation. Multiple kinases, including CKIα and GSK3, are involved in β-catenin phosphorylation. Protein phosphatases such as PP2A and PP1 have been implicated in the regulation of β-catenin. However, which phosphatase dephosphorylates β-catenin in vivo and how the specificity of β-catenin dephosphorylation is regulated are not clear. In this study, we show that PP2A regulates β-catenin phosphorylation and degradation in vivo. We demonstrate that PP2A is required for Wnt/β-catenin signaling in Drosophila. Moreover, we have identified PR55α as the regulatory subunit of PP2A that controls β-catenin phosphorylation and degradation. PR55α, but not the catalytic subunit, PP2Ac, directly interacts with β-catenin. RNA interference knockdown of PR55α elevates β-catenin phosphorylation and decreases Wnt signaling, whereas overexpressing PR55α enhances Wnt signaling. Taken together, our results suggest that PR55α specifically regulates PP2A-mediated β-catenin dephosphorylation and plays an essential role in Wnt signaling.Wnt/β-catenin signaling plays essential roles in development and tumorigenesis (13). Our previous work found that β-catenin is sequentially phosphorylated by CKIα4 and GSK3 (4), which creates a binding site for β-Trcp (5), leading to degradation via the ubiquitination/proteasome machinery (3). Mutations in β-catenin or APC genes that prevent β-catenin phosphorylation or ubiquitination/degradation lead ultimately to cancer (1, 2).In addition to the involvement of kinases, protein phosphatases, such as PP1, PP2A, and PP2C, are also implicated in Wnt/β-catenin regulation. PP2C and PP1 may regulate dephosphorylation of Axin and play positive roles in Wnt signaling (6, 7). PP2A is a multisubunit enzyme (810); it has been reported to play either positive or negative roles in Wnt signaling likely by targeting different components (1121). Toward the goal of understanding the mechanism of β-catenin phosphorylation, we carried out siRNA screening targeting several major phosphatases, in which we found that PP2A dephosphorylates β-catenin. This is consistent with a recent study where PP2A is shown to dephosphorylate β-catenin in a cell-free system (18).PP2A consists of a catalytic subunit (PP2Ac), a structure subunit (PR65/A), and variable regulatory B subunits (PR/B, PR/B′, PR/B″, or PR/B‴). The substrate specificity of PP2A is thought to be determined by its B subunit (9). By siRNA screening, we further identified that PR55α, a regulatory subunit of PP2A, specifically regulates β-catenin phosphorylation and degradation. Mechanistically, we found that PR55α directly interacts with β-catenin and regulates PP2A-mediated β-catenin dephosphorylation in Wnt signaling.  相似文献   

10.
Laminins are large heterotrimeric glycoproteins with many essential functions in basement membrane assembly and function. Cell adhesion to laminins is mediated by a tandem of five laminin G-like (LG) domains at the C terminus of the α chain. Integrin binding requires an intact LG1-3 region, as well as contributions from the coiled coil formed by the α, β, and γ chains. We have determined the crystal structure at 2.8-Å resolution of the LG1-3 region of the laminin α2 chain (α2LG1-3). The three LG domains adopt typical β-sandwich folds, with canonical calcium binding sites in LG1 and LG2. LG2 and LG3 interact through a substantial interface, but LG1 is completely dissociated from the LG2-3 pair. We suggest that the missing γ chain tail may be required to stabilize the interaction between LG1 and LG2-3 in the biologically active conformation. A global analysis of N-linked glycosylation sites shows that the β-sandwich faces of LG1 are free of carbohydrate modifications in all five laminin α chains, suggesting that these surfaces may harbor the integrin binding site. The α2LG1-3 structure provides the first atomic view of the integrin binding region of laminins.The laminins constitute a major class of cell-adhesive glycoproteins that are intimately involved in basement membrane assembly and function. Their essential roles in embryo development and tissue function have been demonstrated by numerous genetic studies and the analysis of severe human diseases resulting from mutations in laminin genes (14). All laminins are heterotrimers composed of three different gene products, termed α, β, and γ chains. At present, 16 mouse and human laminins are known, assembled from five α, three β, and three γ chains. The different laminins have characteristic expression patterns and functions in the embryo and adult animal (1). Laminins are cross-shaped molecules: the three short arms are composed of one chain each, while the long arm is a coiled coil of all three chains, terminating in a tandem of five laminin G-like (LG)2 domains, LG1-5, contributed by the α chain (2). Basement membrane assembly requires polymerization via the short arms and cell attachment via the LG1-5 region (5, 6).Cell adhesion to laminins is mediated by multiple receptors: integrins bind to the LG1-3 region, whereas α-dystroglycan, heparan sulfate proteoglycans, and sulfated glycolipids bind predominantly to sites in the LG4-5 pair (7). Integrins are heterodimers with a large extracellular domain consisting of one α and one β chain, which both span the cell membrane and engage in transmembrane signaling (8). Of the 24 mouse and human integrins, the major laminin binding integrins are α3β1, α6β1, α7β1, and α6β4, which have distinct affinities for the different laminin isoforms (9). Although some studies have reported integrin binding or integrin-mediated cell adhesion to isolated LG domains or tandems (1012), there is strong evidence to suggest that the coiled coil region and an intact γ chain tail are required for full integrin binding to the laminin LG1-3 region (1318). Compared with integrin binding to collagen and fibronectin, which is understood in atomic detail (19, 20), the laminin-integrin interaction remains poorly characterized in structural terms. We previously determined crystal structures of the LG4-5 region of the laminin α1 and α2 chains and defined their receptor binding sites (2123). Here, we report the crystal structure of the remainder of the laminin α2 receptor binding region, LG1-3.  相似文献   

11.
Lysophosphatidic acid (LPA), a bioactive phospholipid, induces a wide range of cellular effects, including gene expression, cytoskeletal rearrangement, and cell survival. We have previously shown that LPA stimulates secretion of pro- and anti-inflammatory cytokines in bronchial epithelial cells. This study provides evidence that LPA enhances pulmonary epithelial barrier integrity through protein kinase C (PKC) δ- and ζ-mediated E-cadherin accumulation at cell-cell junctions. Treatment of human bronchial epithelial cells (HBEpCs) with LPA increased transepithelial electrical resistance (TER) by ∼2.0-fold and enhanced accumulation of E-cadherin to the cell-cell junctions through Gαi-coupled LPA receptors. Knockdown of E-cadherin with E-cadherin small interfering RNA or pretreatment with EGTA (0.1 mm) prior to LPA (1 μm) treatment attenuated LPA-induced increases in TER in HBEpCs. Furthermore, LPA induced tyrosine phosphorylation of focal adhesion kinase (FAK) and overexpression of the FAK inhibitor, and FAK-related non-kinase-attenuated LPA induced increases in TER and E-cadherin accumulation at cell-cell junctions. Overexpression of dominant negative protein kinase δ and ζ attenuated LPA-induced phosphorylation of FAK, accumulation of E-cadherin at cell-cell junctions, and an increase in TER. Additionally, lipopolysaccharide decreased TER and induced E-cadherin relocalization from cell-cell junctions to cytoplasm in a dose-dependent fashion, which was restored by LPA post-treatment in HBEpCs. Intratracheal post-treatment with LPA (5 μm) reduced LPS-induced neutrophil influx, protein leak, and E-cadherin shedding in bronchoalveolar lavage fluids in a murine model of acute lung injury. These data suggest a protective role of LPA in airway inflammation and remodeling.The airway epithelium is the site of first contact for inhaled environmental stimuli, functions as a physical barrier to environmental insult, and is an essential part of innate immunity. Epithelial barrier disruption is caused by inhaled allergens, dust, and irritants, resulting in inflammation, bronchoconstriction, and edema as seen in asthma and other respiratory diseases (14). Furthermore, increased epithelial permeability also results in para-cellular leakage of large proteins, such as albumin, immunoglobulin G, and polymeric immunoglobulin A, into the airway lumen (5, 6). The epithelial cell-cell junctional complex is composed of tight junctions, adherens junctions, and desmosomes. These adherens junctions play a pivotal role in regulating the activity of the entire junctional complex because the formation of adherens junctions subsequently leads to the formation of other cell-cell junctions (79). The major adhesion molecules in the adherens junctions are the cadherins. E-cadherin is a member of the cadherin family that mediates calcium-dependent cell-cell adhesion. The N-terminal ectodomain of E-cadherin contains homophilic interaction specificity, and the cytoplasmic domain binds to catenins, which interact with actin (1013). Plasma membrane localization of E-cadherin is critical for the maintenance of epithelial cell-cell junctions and airway epithelium integrity (7, 10, 14). A decrease of adhesive properties of E-cadherin is related to the loss of differentiation and the subsequent acquisition of a higher motility and invasiveness of epithelial cells (10, 14, 15). Dislocation or shedding of E-cadherin in the airway epithelium induces epithelial shedding and increases airway permeability in lung airway diseases (10, 14, 16). In an ovalbumin-challenged guinea pig model of asthma, it has been demonstrated that E-cadherin is dislocated from the lateral margins of epithelial cells (10). Histamine increases airway para-cellular permeability and results in an increased susceptibility of airway epithelial cells to adenovirus infection by interrupting E-cadherin adhesion (14). Serine phosphorylation of E-cadherin by casein kinase II, GSK-3β, and PKD1/PKC2 μ enhanced E-cadherin-mediated cell-cell adhesion in NIH3T3 fibroblasts and LNCaP prostate cancer cells (11, 17). However, the regulation and mechanism by which E-cadherin is localized within the pulmonary epithelium is not fully known, particularly during airway remodeling.LPA, a naturally occurring bioactive lipid, is present in body fluids, such as plasma, saliva, follicular fluid, malignant effusions, and bronchoalveolar lavage (BAL) fluids (1820). Six distinct high affinity cell-surface LPA receptors, LPA-R1–6, have been cloned and described in mammals (2126). Extracellular activities of LPA include cell proliferation, motility, and cell survival (2730). LPA exhibits a wide range of effects on differing cell types, including pulmonary epithelial, smooth muscle, fibroblasts, and T cells (3135). LPA augments migration and cytokine synthesis in lymphocytes and induces chemotaxis of Jurkat T cells through Matrigel membranes (34). LPA induces airway smooth muscle cell contractility, proliferation, and airway repair and remodeling (35, 36). LPA also potently stimulates IL-8 (31, 3739), IL-13 receptor α2 (IL-13Rα2) (40), and COX-2 gene expression and prostaglandin E2 release (41) in HBEpCs. Prostaglandin E2 and IL-13Rα2 have anti-inflammatory properties in pulmonary inflammation (42, 43). These results suggest that LPA may play a protective role in lung disease by stimulating an innate immune response while simultaneously attenuating the adaptive immune response. Furthermore, intravenous injection with LPA attenuated bacterial endotoxin-induced plasma tumor necrosis factor-α production and myeloperoxidase activity in the lungs of mice (44), suggesting an anti-inflammatory role for LPA in a murine model of sepsis.We have reported that LPA induces E-cadherin/c-Met accumulation in cell-cell contacts and increases TER in HBEpCs (45). Here, for the first time, we report that LPA-induced increases in TER are dependent on PKCδ, PKCζ, and FAK-mediated E-cadherin accumulation at cell-cell junctions. Furthermore, we demonstrate that post-treatment of LPA rescues LPS-induced airway epithelial disruption in vitro and reduces E-cadherin shedding in a murine model of ALI. This study identifies the molecular mechanisms linking the LPA and LPA receptors to maintaining normal pulmonary epithelium barrier function, which is critical in developing novel therapies directed at ameliorating pulmonary diseases.  相似文献   

12.
13.
14.
15.
16.
17.
18.
The amyloid precursor protein (APP) plays a central role in Alzheimer disease (AD) pathogenesis because sequential cleavages by β- and γ-secretase lead to the generation of the amyloid-β (Aβ) peptide, a key constituent in the amyloid plaques present in brains of AD individuals. In several studies APP has recently been shown to form homodimers, and this event appears to influence Aβ generation. However, these studies have relied on APP mutations within the Aβ sequence itself that may affect APP processing by interfering with secretase cleavages independent of dimerization. Therefore, the impact of APP dimerization on Aβ production remains unclear. To address this question, we compared the approach of constitutive cysteine-induced APP dimerization with a regulatable dimerization system that does not require the introduction of mutations within the Aβ sequence. To this end we generated an APP chimeric molecule by fusing a domain of the FK506-binding protein (FKBP) to the C terminus of APP. The addition of the synthetic membrane-permeant drug AP20187 induces rapid dimerization of the APP-FKBP chimera. Using this system we were able to induce up to 70% APP dimers. Our results showed that controlled homodimerization of APP-FKBP leads to a 50% reduction in total Aβ levels in transfected N2a cells. Similar results were obtained with the direct precursor of β-secretase cleavage, C99/SPA4CT-FKBP. Furthermore, there was no modulation of different Aβ peptide species after APP dimerization in this system. Taken together, our results suggest that APP dimerization can directly affect γ-secretase processing and that dimerization is not required for Aβ production.The mechanism of β-amyloid protein (Aβ)2 generation from the amyloid precursor protein is of major interest in Alzheimer disease research because Aβ is the major constituent of senile plaques, one of the neuropathological hallmarks of Alzheimer disease (1, 2). In the amyloidogenic pathway Aβ is released from the amyloid precursor protein (APP) (3) after sequential cleavages by β-secretase BACE1 (46) and by the γ-secretase complex (7, 8). BACE1 cleavage releases the large ectodomain of APP while generating the membrane-anchored C-terminal APP fragment (CTF) of 99 amino acids (C99). Cleavage of β-CTF by γ-secretase leads to the secretion of Aβ peptides of various lengths and the release of the APP intracellular domain (AICD) into the cytosol (911). The γ-secretase complex consists of at least four proteins: presenilin, nicastrin, Aph-I, and Pen-2 (12). Presenilin is thought to be the catalytic subunit of the enzyme complex (13), but how the intramembrane scission is carried out remains to be elucidated. Alternatively, APP can first be cleaved in the non-amyloidogenic pathway by α-secretase within the Aβ domain between Lys-16 and Leu-17 (14, 15). This cleavage releases the APP ectodomain (APPsα) while generating the membrane-bound C-terminal fragment (α-CTF) of 83 amino acids (C83). The latter can be further processed by the γ-secretase complex, resulting in the secretion of the small 3-kDa fragment p3 and the release of AICD.APP, a type I transmembrane protein (16) of unclear function, may act as a cell surface receptor (3). APP and its two homologues, APLP1 and APLP2, can dimerize in a homotypic or heterotypic manner and, in so doing, promote intercellular adhesion (17). In vivo interaction of APP, APLP1, and APLP2 was demonstrated by cross-linking studies from brain homogenates (18). To date at least four domains have been reported to promote APP dimerization; that is, the E1 domain containing the N-terminal growth factor-like domain and copper binding domain (17), the E2 domain containing the carbohydrate domain in the APP ectodomain (19), the APP juxtamembrane region (20), and the transmembrane domain (21, 22). In the latter domain the dimerization appears to be mediated by the GXXXG motif near the luminal face of the transmembrane region (21, 23). In addition to promoting cell adhesion, APP dimerization has been proposed to increase susceptibility to cell death (20, 24).Interestingly, by introducing cysteine mutations into the APP juxtamembrane region, it was shown that stable dimers through formation of these disulfide linkages result in significantly enhanced Aβ production (25). This finding is consistent with the observation that stable Aβ dimers are found intracellularly in neurons and in vivo in brain (26). Taken together, these results have led to the idea that APP dimerization can positively regulate Aβ production. However, other laboratories have not been able to confirm some of these observations using slightly different approaches (23, 27).To further address the question of how dimerization of APP affects cleavage by α-, β-, and γ-secretase, we chose to test this with a controlled dimerization system. Accordingly, we engineered a chimeric APP molecule by fusing a portion of the FK506-binding protein (FKBP) to the C terminus of APP such that the addition of the synthetic membrane-permeant bifunctional compound, AP20187, will induce dimerization of the APP-FKBP chimera in a controlled manner by binding to the FKBP domains. Using this system, efficient dimerization of APP up to 70% can be achieved in a time and concentration-dependent fashion. Our studies showed that controlled homodimerization of APP-FKBP leads to decreased total Aβ levels in transfected N2a cells. Homodimerization of the β-CTF/C99 fragment, the direct precursor of γ-secretase cleavage, showed comparable results. In addition, induced dimerization of APP did not lead to a modulation of different Aβ peptides as it was reported for GXXXG mutants within the transmembrane domain of APP (21).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号