首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The orphan G-protein-coupled receptor GPR109B is the result of a recent gene duplication of the nicotinic acid and ketone body receptor GPR109A being found in humans but not in rodents. Like GPR109A, GPR109B is predominantly expressed in adipocytes and is supposed to mediate antilipolytic effects. Here we show that GPR109B serves as a receptor for the β-oxidation intermediate 3-OH-octanoic acid, which has antilipolytic activity on human but not on murine adipocytes. GPR109B is coupled to Gi-type G-proteins and is activated by 2- and 3-OH-octanoic acid with EC50 values of about 4 and 8 μm, respectively. Interestingly, 3-OH-octanoic acid plasma concentrations reach micromolar concentrations under conditions of increased β-oxidation rates, like in diabetic ketoacidosis or under a ketogenic diet. These data suggest that the ligand receptor pair 3-OH-octanoic acid/GPR109B mediates in humans a negative feedback regulation of adipocyte lipolysis to counteract prolipolytic influences under conditions of physiological or pathological increases in β-oxidation rates.Triacylglycerols stored in the white adipose tissue serve as the major energy reserve in higher eukaryotes (1). Although they are constantly turned over by lipolysis and re-esterification, their mobilization and storage are precisely balanced by various hormones and other factors depending on the nutritional state (2). The net rate of lipolysis is increased during fasting or periods of increased energy demand. Fatty acids generated via lipolysis undergo β-oxidation in the muscle and liver to serve directly as a source of energy or as a precursor for ketone bodies (3). The major intracellular regulator of lipolysis is cyclic AMP, which stimulates cAMP-dependent kinase to activate lipolytic enzymes (2, 46). This lipolytic pathway is induced, for example, via β-adrenergic receptors that couple to the G-protein Gs and thereby stimulate adenylyl cyclase (7, 8). To adjust lipolysis at the appropriate rate, the effects of prolipolytic stimuli are balanced by various antilipolytic influences. Besides insulin, which promotes the degradation of cAMP via activation of phosphodiesterase 3B (2, 5, 7), several antilipolytic stimuli decrease cAMP levels by activation of Gi-coupled receptors, which mediate an inhibition of adenylyl cyclase (5, 8). One of these receptors, GPR109A, has recently been shown to mediate the anti-lipolytic effects of high concentrations of the ketone body 3-OH-butyrate thereby providing a negative feedback mechanism during fasting (9, 10). GPR109A also binds nicotinic acid (1113) and mediates the anti-lipolytic effects of this anti-dyslipidemic drug (12).GPR109B, a close relative of GPR109A, is the result of a recent gene duplication being present in humans but not in rodents and most other mammals (14). GPR109B differs from GPR109A in an extended C-terminal tail as well as in 16 amino acids (11, 13). Despite its high homology to GPR109A, GPR109B does not bind nicotinic acid or 3-OH-butyrate with reasonable affinity (10, 11, 13). Because GPR109A and GPR109B have very similar expression patterns (11, 13, 15) and are likely to have the same basic signaling properties, agonists of GPR109B are expected to have physiological and pharmacological effects comparable with those of the GPR109A agonist 3-OH-butyrate and nicotinic acid, respectively. Recently, several synthetic compounds as well as various aromatic d-amino acids have been shown to be selective agonists at GPR109B (1618). However, endogenous physiological anti-lipolytic ligands of GPR109B are unknown.In this study we tested endogenous carboxylic acids for their ability to activate GPR109B. We found that the fatty acid β-oxidation intermediate 3-OH-octanoic acid is a highly specific agonist of GPR109B. 3-OH-octanoic acid has anti-lipolytic activity, and its plasma concentration in humans reflects the β-oxidation flux. Our data suggest that 3-OH-octanoic acid and GPR109B mediate a negative feedback regulation of adipocyte lipolysis.  相似文献   

2.
Intracellular signaling systems of G protein-coupled receptors are well established, but their role in paracrine regulation of adjacent cells is generally considered as a tissue-specific mechanism. We have shown previously that AT1 receptor (AT1R) stimulation leads to diacylglycerol lipase-mediated transactivation of co-expressed CB1Rs in Chinese hamster ovary cells. In the present study we detected a paracrine effect of the endocannabinoid release from Chinese hamster ovary, COS7, and HEK293 cells during the stimulation of AT1 angiotensin receptors by determining CB1 cannabinoid receptor activity with bioluminescence resonance energy transfer-based sensors of G protein activation expressed in separate cells. The angiotensin II-induced, paracrine activation of CB1 receptors was visualized by detecting translocation of green fluorescent protein-tagged β-arrestin2. Mass spectrometry analyses have demonstrated angiotensin II-induced stimulation of 2-arachidonoylglycerol production, whereas no increase of anandamide levels was observed. Stimulation of Gq/11-coupled M1, M3, M5 muscarinic, V1 vasopressin, α1a adrenergic, B2 bradykinin receptors, but not Gi/o-coupled M2 and M4 muscarinic receptors, also led to paracrine transactivation of CB1 receptors. These data suggest that, in addition to their retrograde neurotransmitter role, endocannabinoids have much broader paracrine mediator functions during activation of Gq/11-coupled receptors.Hormones, neurotransmitters, and other chemical mediators acting on G protein-coupled receptors (GPCRs)2 exert their effects on the target cells by stimulating G protein-dependent and independent intracellular signaling pathways (14). Activation of Gq/11 protein-coupled receptors causes phospholipase C activation, which produces inositol-trisphosphate and diacylglycerol from phosphatidylinositol (4,5)-bisphosphate, leading to Ca2+-signal generation and protein kinase C activation. However, the concerted response of tissues to chemical mediators frequently also involves the activation of cells adjacent to the target cells, due to the release of paracrine mediators. A well known example is NO, which can be released from activated endothelial cells to cause relaxation of adjacent vascular smooth muscle cells. Lipid mediators can also act as intercellular messengers. For example, endocannabinoids released from postsynaptic neurons after depolarization act as retrograde transmitters by binding to and stimulating presynaptic cannabinoid receptors, which leads to inhibition of γ-aminobutyric acid release (an event termed depolarization-induced suppression of inhibition, DSI) (57).Cannabinoid receptors were first identified based on their ability to selectively recognize marijuana analogs. To date, two cannabinoid receptors have been identified by molecular cloning, CB1 and CB2 receptors (CB1R and CB2R, respectively) (5, 8, 9), although additional GPCRs have also been proposed to function as cannabinoid receptors (10, 11). Cannabinoid receptors also recognize certain lipids present in animal tissues termed endocannabinoids, such as arachidonylethanolamide (anandamide), 2-arachidonoylglycerol (2-AG), and 2-arachidonoylglyceryl ether (noladin ether) (7, 1216). In adult and fetal neural tissues, the two major endocannabinoids, anandamide and 2-AG, are produced on demand, usually after depolarization of postsynaptic cells or following stimulation of Gq-coupled metabotropic glutamate or muscarinic acetylcholine receptors (7, 12, 1720). Enzymes responsible for 2-AG production and metabolism in tissues are localized to well defined structures at synapses, near the axon terminals of CB1R-expressing cells (5, 7). In contrast, in peripheral tissues baseline levels of endocannabinoid production usually manifest as “endocannabinoid tone,” with poorly understood localization of the various components of the endocannabinoid system. 2-AG levels in brain homogenates and in many peripheral tissues are near its Kd for the CB1R (19), suggesting that function of endocannabinoids may not be limited to localized synaptic signaling.There is mounting evidence that endocannabinoids play important roles in peripheral cardiovascular, inflammatory, intestinal, and metabolic regulation (2124). 2-AG is produced by diacylglycerol-lipase (DAGL) after cleavage of the fatty-acid in the sn-1 position of diacylglycerol (DAG) (19, 25). Phospholipase C activation by Gq/11 protein-coupled receptors produces DAG, which can serve as a substrate for DAGL. Plasma membrane phosphoinositides are enriched in arachidonic acid in the sn-2 position (26), and DAGL is expressed ubiquitously (27), which suggests that phospholipase C-mediated cleavage of polyphosphoinositides may routinely lead to the formation of 2-AG. In accordance with this hypothesis, we have recently shown that angiotensin II- (Ang II)-mediated activation of the Gq/11-coupled AT1 angiotensin receptor (AT1R) leads to DAGL-dependent activation of CB1Rs expressed in Chinese hamster ovary (CHO) cells (28).Here our aim has been to examine the possibility that 2-AG serves as a common paracrine signal generated via activation of Gq/11 protein-coupled, Ca2+-mobilizing receptors. Accordingly, we co-expressed CB1Rs and BRET-based sensors of G protein activation in CHO cells, and used these cells to detect endocannabinoid release from adjacent cells that express AT1R or other Ca2+-mobilizing GPCRs. We have further shown that activation of AT1R by Ang II increases 2-AG levels in CHO cells. These findings suggest that 2-AG is commonly released following activation of Ca2+-mobilizing GPCRs and serves as a paracrine signal to activate CB1R in neighboring cells.  相似文献   

3.
4.
5.
A central question in Wnt signaling is the regulation of β-catenin phosphorylation and degradation. Multiple kinases, including CKIα and GSK3, are involved in β-catenin phosphorylation. Protein phosphatases such as PP2A and PP1 have been implicated in the regulation of β-catenin. However, which phosphatase dephosphorylates β-catenin in vivo and how the specificity of β-catenin dephosphorylation is regulated are not clear. In this study, we show that PP2A regulates β-catenin phosphorylation and degradation in vivo. We demonstrate that PP2A is required for Wnt/β-catenin signaling in Drosophila. Moreover, we have identified PR55α as the regulatory subunit of PP2A that controls β-catenin phosphorylation and degradation. PR55α, but not the catalytic subunit, PP2Ac, directly interacts with β-catenin. RNA interference knockdown of PR55α elevates β-catenin phosphorylation and decreases Wnt signaling, whereas overexpressing PR55α enhances Wnt signaling. Taken together, our results suggest that PR55α specifically regulates PP2A-mediated β-catenin dephosphorylation and plays an essential role in Wnt signaling.Wnt/β-catenin signaling plays essential roles in development and tumorigenesis (13). Our previous work found that β-catenin is sequentially phosphorylated by CKIα4 and GSK3 (4), which creates a binding site for β-Trcp (5), leading to degradation via the ubiquitination/proteasome machinery (3). Mutations in β-catenin or APC genes that prevent β-catenin phosphorylation or ubiquitination/degradation lead ultimately to cancer (1, 2).In addition to the involvement of kinases, protein phosphatases, such as PP1, PP2A, and PP2C, are also implicated in Wnt/β-catenin regulation. PP2C and PP1 may regulate dephosphorylation of Axin and play positive roles in Wnt signaling (6, 7). PP2A is a multisubunit enzyme (810); it has been reported to play either positive or negative roles in Wnt signaling likely by targeting different components (1121). Toward the goal of understanding the mechanism of β-catenin phosphorylation, we carried out siRNA screening targeting several major phosphatases, in which we found that PP2A dephosphorylates β-catenin. This is consistent with a recent study where PP2A is shown to dephosphorylate β-catenin in a cell-free system (18).PP2A consists of a catalytic subunit (PP2Ac), a structure subunit (PR65/A), and variable regulatory B subunits (PR/B, PR/B′, PR/B″, or PR/B‴). The substrate specificity of PP2A is thought to be determined by its B subunit (9). By siRNA screening, we further identified that PR55α, a regulatory subunit of PP2A, specifically regulates β-catenin phosphorylation and degradation. Mechanistically, we found that PR55α directly interacts with β-catenin and regulates PP2A-mediated β-catenin dephosphorylation in Wnt signaling.  相似文献   

6.
7.
8.
9.
10.
11.
Redox-active copper is implicated in the pathogenesis of Alzheimer disease (AD), β-amyloid peptide (Aβ) aggregation, and amyloid formation. Aβ·copper complexes have been identified in AD and catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides. The site and mechanism of this abnormality is not known. Growing evidence suggests that amyloidogenic processing of the β-amyloid precursor protein (APP) occurs in lipid rafts, membrane microdomains enriched in cholesterol. β- and γ-secretases, and Aβ have been identified in lipid rafts in cultured cells, human and rodent brains, but the role of copper in lipid raft amyloidogenic processing is presently unknown. In this study, we found that copper modulates flotillin-2 association with cholesterol-rich lipid raft domains, and consequently Aβ synthesis is attenuated via copper-mediated inhibition of APP endocytosis. We also found that total cellular copper is associated inversely with lipid raft copper levels, so that under intracellular copper deficiency conditions, Aβ·copper complexes are more likely to form. This explains the paradoxical hypermetallation of Aβ with copper under tissue copper deficiency conditions in AD.Imbalance of metal ions has been recognized as one of the key factors in the pathogenesis of Alzheimer disease (AD).2 Aberrant interactions between copper or zinc with the β-amyloid peptide (Aβ) released into the glutamatergic synaptic cleft vicinity could result in the formation of toxic Aβ oligomers and aggregation into plaques characteristic of AD brains (reviewed in Ref. 1). Copper, iron, and zinc are highly concentrated in extracellular plaques (2, 3), and yet brain tissues from AD (46) and human β-amyloid precursor protein (APP) transgenic mice (710) are paradoxically copper deficient compared with age-matched controls. Elevation of intracellular copper levels by genetic, dietary, and pharmacological manipulations in both AD transgenic animal and cell culture models is able to attenuate Aβ production (7, 9, 1115). However, the underlying mechanism is at present unclear.Abnormal cholesterol metabolism is also a contributing factor in the pathogenesis of AD. Hypercholesterolemia increases the risk of developing AD-like pathology in a transgenic mouse model (16). Epidemiological and animal model studies show that a hypercholesterolemic diet is associated with Aβ accumulation and accelerated cognitive decline, both of which are further aggravated by high dietary copper (17, 18). In contrast, biochemical depletion of cholesterol using statins, inhibitors of 3-hydroxy-3-methyglutaryl coenzyme A reductase, and methyl-β-cyclodextrin, a cholesterol sequestering agent, inhibit Aβ production in animal and cell culture models (1925).Cholesterol is enriched in lipid rafts, membrane microdomains implicated in Aβ generation from APP cleavage by β- and γ-secretases. Recruitment of BACE1 (β-secretase) into lipid rafts increases the production of sAPPβ and Aβ (23, 26). The β-secretase-cleaved APP C-terminal fragment (β-CTF), and γ-secretase, a multiprotein complex composed of presenilin (PS1 or PS2), nicastrin (Nct), PEN-2 and APH-1, colocalize to lipid rafts (27). The accumulation of Aβ in lipid rafts isolated from AD and APP transgenic mice brains (28) provided further evidence that cholesterol plays a role in APP processing and Aβ generation.Currently, copper and cholesterol have been reported to modulate APP processing independently. However, evidence indicates that, despite tissue copper deficiency, Aβ·Cu2+ complexes form in AD that catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides (e.g. hydroxynonenal and malondialdehyde), which contribute to oxidative damage observed in AD (2935). The underlying mechanism leading to the formation of pathological Aβ·Cu2+ complexes is unknown. In this study, we show that copper alters the structure of lipid rafts, and attenuates Aβ synthesis in lipid rafts by inhibition of APP endocytosis. We also identify a paradoxical inverse relationship between total cellular copper levels and copper distribution to lipid rafts, which appear to possess a privileged pool of copper where Aβ is more likely to interact with Cu2+ under copper-deficiency conditions to form Aβ·Cu2+ complexes. These data provide a novel mechanism by which cellular copper deficiency in AD could foster an environment for potentially adverse interactions between Aβ, copper, and cholesterol in lipid rafts.  相似文献   

12.
Lysophosphatidic acid (LPA), a bioactive phospholipid, induces a wide range of cellular effects, including gene expression, cytoskeletal rearrangement, and cell survival. We have previously shown that LPA stimulates secretion of pro- and anti-inflammatory cytokines in bronchial epithelial cells. This study provides evidence that LPA enhances pulmonary epithelial barrier integrity through protein kinase C (PKC) δ- and ζ-mediated E-cadherin accumulation at cell-cell junctions. Treatment of human bronchial epithelial cells (HBEpCs) with LPA increased transepithelial electrical resistance (TER) by ∼2.0-fold and enhanced accumulation of E-cadherin to the cell-cell junctions through Gαi-coupled LPA receptors. Knockdown of E-cadherin with E-cadherin small interfering RNA or pretreatment with EGTA (0.1 mm) prior to LPA (1 μm) treatment attenuated LPA-induced increases in TER in HBEpCs. Furthermore, LPA induced tyrosine phosphorylation of focal adhesion kinase (FAK) and overexpression of the FAK inhibitor, and FAK-related non-kinase-attenuated LPA induced increases in TER and E-cadherin accumulation at cell-cell junctions. Overexpression of dominant negative protein kinase δ and ζ attenuated LPA-induced phosphorylation of FAK, accumulation of E-cadherin at cell-cell junctions, and an increase in TER. Additionally, lipopolysaccharide decreased TER and induced E-cadherin relocalization from cell-cell junctions to cytoplasm in a dose-dependent fashion, which was restored by LPA post-treatment in HBEpCs. Intratracheal post-treatment with LPA (5 μm) reduced LPS-induced neutrophil influx, protein leak, and E-cadherin shedding in bronchoalveolar lavage fluids in a murine model of acute lung injury. These data suggest a protective role of LPA in airway inflammation and remodeling.The airway epithelium is the site of first contact for inhaled environmental stimuli, functions as a physical barrier to environmental insult, and is an essential part of innate immunity. Epithelial barrier disruption is caused by inhaled allergens, dust, and irritants, resulting in inflammation, bronchoconstriction, and edema as seen in asthma and other respiratory diseases (14). Furthermore, increased epithelial permeability also results in para-cellular leakage of large proteins, such as albumin, immunoglobulin G, and polymeric immunoglobulin A, into the airway lumen (5, 6). The epithelial cell-cell junctional complex is composed of tight junctions, adherens junctions, and desmosomes. These adherens junctions play a pivotal role in regulating the activity of the entire junctional complex because the formation of adherens junctions subsequently leads to the formation of other cell-cell junctions (79). The major adhesion molecules in the adherens junctions are the cadherins. E-cadherin is a member of the cadherin family that mediates calcium-dependent cell-cell adhesion. The N-terminal ectodomain of E-cadherin contains homophilic interaction specificity, and the cytoplasmic domain binds to catenins, which interact with actin (1013). Plasma membrane localization of E-cadherin is critical for the maintenance of epithelial cell-cell junctions and airway epithelium integrity (7, 10, 14). A decrease of adhesive properties of E-cadherin is related to the loss of differentiation and the subsequent acquisition of a higher motility and invasiveness of epithelial cells (10, 14, 15). Dislocation or shedding of E-cadherin in the airway epithelium induces epithelial shedding and increases airway permeability in lung airway diseases (10, 14, 16). In an ovalbumin-challenged guinea pig model of asthma, it has been demonstrated that E-cadherin is dislocated from the lateral margins of epithelial cells (10). Histamine increases airway para-cellular permeability and results in an increased susceptibility of airway epithelial cells to adenovirus infection by interrupting E-cadherin adhesion (14). Serine phosphorylation of E-cadherin by casein kinase II, GSK-3β, and PKD1/PKC2 μ enhanced E-cadherin-mediated cell-cell adhesion in NIH3T3 fibroblasts and LNCaP prostate cancer cells (11, 17). However, the regulation and mechanism by which E-cadherin is localized within the pulmonary epithelium is not fully known, particularly during airway remodeling.LPA, a naturally occurring bioactive lipid, is present in body fluids, such as plasma, saliva, follicular fluid, malignant effusions, and bronchoalveolar lavage (BAL) fluids (1820). Six distinct high affinity cell-surface LPA receptors, LPA-R1–6, have been cloned and described in mammals (2126). Extracellular activities of LPA include cell proliferation, motility, and cell survival (2730). LPA exhibits a wide range of effects on differing cell types, including pulmonary epithelial, smooth muscle, fibroblasts, and T cells (3135). LPA augments migration and cytokine synthesis in lymphocytes and induces chemotaxis of Jurkat T cells through Matrigel membranes (34). LPA induces airway smooth muscle cell contractility, proliferation, and airway repair and remodeling (35, 36). LPA also potently stimulates IL-8 (31, 3739), IL-13 receptor α2 (IL-13Rα2) (40), and COX-2 gene expression and prostaglandin E2 release (41) in HBEpCs. Prostaglandin E2 and IL-13Rα2 have anti-inflammatory properties in pulmonary inflammation (42, 43). These results suggest that LPA may play a protective role in lung disease by stimulating an innate immune response while simultaneously attenuating the adaptive immune response. Furthermore, intravenous injection with LPA attenuated bacterial endotoxin-induced plasma tumor necrosis factor-α production and myeloperoxidase activity in the lungs of mice (44), suggesting an anti-inflammatory role for LPA in a murine model of sepsis.We have reported that LPA induces E-cadherin/c-Met accumulation in cell-cell contacts and increases TER in HBEpCs (45). Here, for the first time, we report that LPA-induced increases in TER are dependent on PKCδ, PKCζ, and FAK-mediated E-cadherin accumulation at cell-cell junctions. Furthermore, we demonstrate that post-treatment of LPA rescues LPS-induced airway epithelial disruption in vitro and reduces E-cadherin shedding in a murine model of ALI. This study identifies the molecular mechanisms linking the LPA and LPA receptors to maintaining normal pulmonary epithelium barrier function, which is critical in developing novel therapies directed at ameliorating pulmonary diseases.  相似文献   

13.
14.
15.
16.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

17.
18.
19.
The human immunodeficiency virus type 1 (HIV-1) vpu gene encodes a type I anchored integral membrane phosphoprotein with two independent functions. First, it regulates virus release from a post-endoplasmic reticulum (ER) compartment by an ion channel activity mediated by its transmembrane anchor. Second, it induces the selective down regulation of host cell receptor proteins (CD4 and major histocompatibility complex class I molecules) in a process involving its phosphorylated cytoplasmic tail. In the present work, we show that the Vpu-induced proteolysis of nascent CD4 can be completely blocked by peptide aldehydes that act as competitive inhibitors of proteasome function and also by lactacystin, which blocks proteasome activity by covalently binding to the catalytic β subunits of proteasomes. The sensitivity of Vpu-induced CD4 degradation to proteasome inhibitors paralleled the inhibition of proteasome degradation of a model ubiquitinated substrate. Characterization of CD4-associated oligosaccharides indicated that CD4 rescued from Vpu-induced degradation by proteasome inhibitors is exported from the ER to the Golgi complex. This finding suggests that retranslocation of CD4 from the ER to the cytosol may be coupled to its proteasomal degradation. CD4 degradation mediated by Vpu does not require the ER chaperone calnexin and is dependent on an intact ubiquitin-conjugating system. This was demonstrated by inhibition of CD4 degradation (i) in cells expressing a thermally inactivated form of the ubiquitin-activating enzyme E1 or (ii) following expression of a mutant form of ubiquitin (Lys48 mutated to Arg48) known to compromise ubiquitin targeting by interfering with the formation of polyubiquitin complexes. CD4 degradation was also prevented by altering the four Lys residues in its cytosolic domain to Arg, suggesting a role for ubiquitination of one or more of these residues in the process of degradation. The results clearly demonstrate a role for the cytosolic ubiquitin-proteasome pathway in the process of Vpu-induced CD4 degradation. In contrast to other viral proteins (human cytomegalovirus US2 and US11), however, whose translocation of host ER molecules into the cytosol occurs in the presence of proteasome inhibitors, Vpu-targeted CD4 remains in the ER in a transport-competent form when proteasome activity is blocked.

The human immunodeficiency virus type 1 (HIV-1)-specific accessory protein Vpu performs two distinct functions in the viral life cycle (11, 12, 29, 34, 46, 47, 5052; reviewed in references 31 and 55): enhancement of virus particle release from the cell surface, and the selective induction of proteolysis of newly synthesized membrane proteins. Known targets for Vpu include the primary virus receptor CD4 (63, 64) and major histocompatibility complex (MHC) class I molecules (28). Vpu is an oligomeric class I integral membrane phosphoprotein (35, 48, 49) with a structurally and functionally defined domain architecture: an N-terminal transmembrane anchor and C-terminal cytoplasmic tail (20, 34, 45, 47, 50, 65). Vpu-induced degradation of endoplasmic reticulum (ER) membrane proteins involves the phosphorylated cytoplasmic tail of the protein (50), whereas the virion release function is mediated by a cation-selective ion channel activity associated with the membrane anchor (19, 31, 45, 47).CD4 is a 55-kDa class I integral membrane glycoprotein that serves as the primary coreceptor for HIV entry into cells. CD4 consists of a large lumenal domain, a transmembrane peptide, and a 38-residue cytoplasmic tail. It is expressed on the surface of a subset of T lymphocytes that recognize MHC class II-associated peptides, and it plays a pivotal role in the development and maintenance of the immune system (reviewed in reference 30). Down regulation of CD4 in HIV-1-infected cells is mediated through several independent mechanisms (reviewed in references 5 and 55): intracellular complex formation of CD4 with the HIV envelope protein gp160 (8, 14), endocytosis of cell surface CD4 induced by the HIV-1 nef gene product (1, 2), and ER degradation induced by the HIV-1 vpu gene product (63, 64).Vpu-induced degradation of CD4 is an example of ER-associated protein degradation (ERAD). ERAD is a common outcome when proteins in the secretory pathway are unable to acquire their native structure (4). Although it was thought that ERAD occurs exclusively inside membrane vesicles of the ER or other related secretory compartments, this has gained little direct experimental support. Indeed, there are several recent reports that ERAD may actually represent export of the target protein to the cytosol, where it is degraded by cytosolic proteases. It was found that in yeast, a secreted protein, prepro-α-factor (pαF), is exported from microsomes and degraded in the cytosol in a proteasome-dependent manner (36). This process was dependent on the presence of calnexin, an ER-resident molecular chaperone that interacts with N-linked oligosaccharides containing terminal glucose residues (3). In mammalian cells, two human cytomegalovirus (HCMV) proteins, US2 and US11, were found to cause the retranslocation of MHC class I molecules from the ER to the cytosol, where they are destroyed by proteasomes (61, 62). In the case of US2, class I molecules were found to associate with a protein (Sec61) present in the channel normally used to translocate newly synthesized proteins into the ER (termed the translocon), leading to the suggestion that the ERAD substrates are delivered to the cytosol by retrograde transport through the Sec61-containing pore (61). Fujita et al. (24) reported that, similar to these findings, the proteasome-specific inhibitor lactacystin (LC) partially blocked CD4 degradation in transfected HeLa cells coexpressing CD4, Vpu, and HIV-1 Env glycoproteins. In the present study, we show that Vpu-induced CD4 degradation can be completely blocked by proteasome inhibitors, does not require the ER chaperone calnexin, but requires the function of the cytosolic polyubiquitination machinery which apparently targets potential ubiquitination sites within the CD4 cytoplasmic tail. Our findings point to differences between the mechanism of Vpu-mediated CD4 degradation and ERAD processes induced by the HCMV proteins US2 and US11 (61, 62).  相似文献   

20.
The mechanisms of free fatty acid-induced lipoapoptosis are incompletely understood. Here we demonstrate that Mcl-1, an anti-apoptotic member of the Bcl-2 family, was rapidly degraded in hepatocytes in response to palmitate and stearate by a proteasome-dependent pathway. Overexpression of a ubiquitin-resistant Mcl-1 mutant in Huh-7 cells attenuated palmitate-mediated Mcl-1 loss and lipoapoptosis; conversely, short hairpin RNA-targeted knockdown of Mcl-1 sensitized these cells to lipoapoptosis. Palmitate-induced Mcl-1 degradation was attenuated by the novel protein kinase C (PKC) inhibitor rottlerin. Of the two human novel PKC isozymes, PKCδ and PKCθ, only activation of PKCθ was observed by phospho-immunoblot analysis. As compared with Jurkat cells, a smaller PKCθ polypeptide and mRNA were expressed in hepatocytes consistent with an alternative splice variant. Short hairpin RNA-mediated knockdown of PKCθ reduced Mcl-1 degradation and lipoapoptosis. Likewise, genetic deletion of Pkcθ also attenuated Mcl-1 degradation and cytotoxicity by palmitate in primary hepatocytes. During treatment with palmitate, rottlerin inhibited phosphorylation of Mcl-1 at Ser159, a phosphorylation site previously implicated in Mcl-1 turnover. Consistent with these results, an Mcl-1 S159A mutant was resistant to degradation and improved cell survival during palmitate treatment. Collectively, these results implicate PKCθ-dependent destabilization of Mcl-1 as a mechanism contributing to hepatocyte lipoapoptosis.Current evidence suggests that hepatic steatosis is present in up to 30% of the American population (1). A subset of these individuals develop severe hepatic lipotoxicity, a syndrome referred to as NASH2 (2), which can progress to cirrhosis and its chronic sequela (3, 4). A major risk factor for hepatic lipotoxicity is insulin resistance (57), resulting in excessive lipolysis within peripheral adipose tissue with release of high levels of free fatty acids (FFA) to the circulation. Circulating FFA are taken up by the liver via fatty acid transporter 5 and CD36 (810), and the bulk of hepatic neutral fat is derived from re-esterification of circulating FFA (8). Current concepts indicate that FFA, and not their esterified product (triglyceride), mediate hepatic lipotoxicity (11, 12). Elevated serum FFA correlate with liver disease severity (1315), and therapies that enhance insulin sensitivity ameliorate hepatic lipotoxicity, in part, by decreasing plasma FFA (16). Hepatic FFA also accumulate in experimental steatohepatitis, further supporting a role for these nutrients in hepatic lipotoxicity (17). Saturated FFA are more strongly implicated in hepatic lipotoxicity than unsaturated FFA (18, 19). Saturated FFA induce hepatocyte apoptosis (20, 21), a cardinal feature of nonalcoholic fatty liver disease (22), and serum biomarkers of apoptosis are useful for identifying hepatic lipotoxicity (23). Thus, FFA-mediated lipotoxicity occurs, in part, by apoptosis.Apoptosis is regulated by members of the Bcl-2 protein family (24). These proteins can be categorized into three subsets as follows: the guardians or anti-apoptotic members of this family, which include Bcl-2, A1, Mcl-1, Bcl-xL, and Bcl-w; the multidomain executioners or proapoptotic members of this family, which include Bax and Bak; and the messengers or biosensors of cell death, which share only the third Bcl-2 homology domain and are referred to as BH3-only proteins. This last group of proteins includes Bid, Bim, Bmf, Puma, Noxa, Hrk, Bad, and Bik. We have previously reported that cytotoxic FFA induce Bim expression by a FoxO3a-dependent mechanism that contributes, in part, to lipoapoptosis by activating Bax (20, 21). However, Bax activation can be held in check by anti-apoptotic members of the Bcl-2 family suggesting their function may also be dysregulated during FFA-mediated cytotoxicity.Bcl-2 is not expressed in hepatocytes at the protein level (25), whereas Bcl-w and Bfl-1/A1 knock-out mice have no liver phenotype (2628). However, both potent anti-apoptotic proteins Bcl-xL and Mcl-1 are expressed by hepatocytes and exhibit a liver phenotype in knock-out mice (29, 30), whereas up-regulation of Mcl-1 renders hepatocytes resistant to apoptosis (3133). It has also been posited that cellular elimination of Mcl-1 is a critical step in certain proapoptotic cascades (34, 35). Mcl-1 is unique among Bcl-2 proteins in that it has a short half-life, 30–120 min in most cell types, due to the presence of two sequences rich in proline, glutamic acid, serine, and threonine, which target the protein for rapid degradation by the proteasome (36). Proteasomal degradation of Mcl-1 is promoted by ubiquitination, which in turn is regulated by various kinase cascades (36). Despite its potential importance, a role for Mcl-1 in regulating hepatocyte FFA-mediated lipoapoptosis remains unexplored.Given that FFA induce insulin resistance (37), the kinases potentially regulating lipoapoptosis are likely those also identified in insulin resistance syndromes, especially the novel PKC isoforms PKCδ and PKCθ (38). The novel PKC isoforms are activated by diacylglycerol, which rises in the presence of FFA (3941), and diacylglycerol levels are significantly increased in NASH (42). A role for PKCδ in apoptosis has not been described. PKCθ has recently been shown to be activated by endoplasmic reticulum stress in liver cells (43) and lipids in vivo (44, 45). Furthermore, PKCθ has also been implicated in apoptosis of Jurkat cells, neuroblastoma cells, and myeloid leukemia cells (46, 47). However, neither its role in mediating lipoapoptosis nor modulating levels/activity of Bcl-2 proteins has been examined.This study addresses the role of Mcl-1 and PKCθ in FFA-induced lipoapoptosis. We identify a pathway that involves PKCθ-dependent proteasomal degradation of Mcl-1. Using inhibitors of various steps along this pathway, along with Mcl-1 mutants that are resistant to proteasomal degradation or Ser159 phosphorylation, our studies implicate Mcl-1 degradation via a PKCθ-dependent process as a critical step in lipoapoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号