首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Notch regulator Numb links the Notch and TCR signaling pathways   总被引:5,自引:0,他引:5  
Both the Notch and TCR signaling pathways play an important role in T cell development, but the links between these signaling pathways are largely unexplored. The adapter protein Numb is a well-characterized inhibitor of Notch and also contains a phosphotyrosine binding domain, suggesting that Numb could provide a link between these pathways. We explored this possibility by investigating the physical interactions among Notch, Numb, and the TCR signaling apparatus and by examining the consequences of a Numb mutation on T cell development. We found that Notch and Numb cocluster with the TCR at the APC contact during Ag-driven T cell-APC interactions in both immature and mature T cells. Furthermore, Numb coimmunoprecipitates with components of the TCR signaling apparatus. Despite this association, T cell development and T cell activation occur normally in the absence of Numb, perhaps due to the expression of the related protein, Numblike. Together our data suggest that Notch and TCR signals may be integrated at the cell membrane, and that Numb may be an important adapter in this process.  相似文献   

3.
《Cell reports》2020,30(12):4065-4081.e4
  1. Download : Download high-res image (245KB)
  2. Download : Download full-size image
  相似文献   

4.
Inhibition of Notch signaling by Numb is critical for many cell fate decisions. In this study, we demonstrate a more complex relationship between Notch and the two vertebrate Numb homologues Numb and Numblike. Although Numb and Numblike at low levels of Notch signaling negatively regulated Notch, high levels of Notch signaling conversely led to a reduction of Numb and Numblike protein levels in cultured cells and in the developing chick central nervous system. The Notch intracellular domain but not the canonical Notch downstream proteins Hes 1 and Hey 1 caused a reduction of Numb and Numblike. The Notch-mediated reduction of Numblike required the PEST domain in the Numblike protein and was blocked by the proteasome inhibitor MG132. Collectively, these observations reveal a reciprocal negative regulation between Notch and Numb/Numblike, which may be of relevance for stabilizing asymmetric cell fate switches and for tumor development.  相似文献   

5.
The envelope glycoprotein (Env) of the Human Immunodeficiency Virus Type-1 (HIV-1) is a critical determinant of viral infectivity, tropism and is the main target for humoral immunity; however, little is known about the cellular machinery that directs Env trafficking and its incorporation into nascent virions. Here we identify the mammalian retromer complex as a novel and important cellular factor regulating Env trafficking. Retromer mediates endosomal sorting and is most closely associated with endosome-to-Golgi transport. Consistent with this function, inactivating retromer using RNAi targeting the cargo selective trimer complex inhibited retrograde trafficking of endocytosed Env to the Golgi. Notably, in HIV-1 infected cells, inactivating retromer modulated plasma membrane expression of Env, along with Env incorporation into virions and particle infectivity. Mutagenesis studies coupled with coimmunoprecipitations revealed that retromer-mediated trafficking requires the Env cytoplasmic tail that we show binds directly to retromer components Vps35 and Vps26. Taken together these results provide novel insight into regulation of HIV-1 Env trafficking and infectious HIV-1 morphogenesis and show for the first time a role for retromer in the late-steps of viral replication and assembly of a virus.  相似文献   

6.
HIV-1 Gag can assemble and generate virions at the plasma membrane, but it is also present in endosomes where its role remains incompletely characterized. Here, we show that HIV-1 RNAs and Gag are transported on endosomal vesicles positive for TiVamp, a v-SNARE involved in fusion events with the plasma membrane. Inhibition of endosomal traffic did not prevent viral release. However, inhibiting lysosomal degradation induced an accumulation of Gag in endosomes and increased viral production 7-fold, indicating that transport of Gag to lysosomes negatively regulates budding. This also suggested that endosomal Gag-RNA complexes could access retrograde pathways to the cell surface and indeed, depleting cells of TiVamp-reduced viral production. Moreover, inhibition of endosomal transport prevented the accumulation of Gag at sites of cellular contact. HIV-1 Gag could thus generate virions using two pathways, either directly from the plasma membrane or through an endosome-dependent route. Endosomal Gag-RNA complexes may be delivered at specific sites to facilitate cell-to-cell viral transmission.The production of infectious retroviral particles is an ordered process that includes many steps (for review see Refs. 13). In particular, three major viral components, Gag, the envelope, and genomic RNAs have to traffic inside the cell to reach their assembly site. Viral biogenesis is driven by the polyprotein Gag, which is able to make viral-like particles when expressed alone (4). Upon release, HIV-14 Gag is processed by the viral protease into matrix (MA(p17)), capsid (CA(p24)), nucleocapsid (NC(p7)), p6, and smaller peptides SP1 and SP2. Gag contains several domains that are essential for viral assembly: a membrane binding domain (M) in MA; a Gag-Gag interaction domain in CA; an assembly domain (I) in NC; and a late domain (L) in p6, which recruits the cellular budding machinery. Genomic RNAs are specifically recognized by NC, and they play fundamental roles in viral biogenesis by acting as a scaffold for Gag multimerization (5).It has been demonstrated that retroviruses bud by hijacking the endosomal machinery that sorts proteins into internal vesicles of multivesicular bodies (for review, see Refs. 6, 7). Indeed, these vesicles bud with the same topology as viral particles. Proteins sorted into this pathway are usually destined for degradation in lysosomes, but some can also recycle to the plasma membrane (for review see Refs. 8, 9). They are also frequently ubiquitinated on their cytoplasmic domain (10, 11), allowing their recognition by ESCRT complexes. ESCRT-0 and ESCRT-I recognize ubiquitinated cargo present at the surface of endosomes and recruit other ESCRT complexes (1214). ESCRT-III is believed to function directly in the formation of multivesicular body intralumenal vesicles (12), even though its mechanism of action is currently not understood. Remarkably, Gag L domains interact directly with components of the multivesicular body-sorting machinery (for review see Ref. 15). HIV-1 Gag uses a PTAP motif to bind Tsg101, a component of ESCRT-I (1619), and a YPLTSL motif to interact with Alix, a protein linked to ESCRT-I and -III (2022). Finally, various ubiquitin ligases are also required directly or indirectly during HIV-1 biogenesis (23, 24; for review see Ref. 25).In many cell lines, Gag is found both at the plasma membrane and in endosomes. This has led to the hypothesis that there are several assembly sites for HIV-1 (1, 3). First, Gag can initiate and complete assembly at the plasma membrane. This is thought to occur predominantly in T lymphocytes, and this process is supported by several lines of evidences: (i) disruption of endosomal trafficking with drugs does not prevent viral production (26, 27); (ii) ESCRT complexes can be recruited at the plasma membrane, at sites where Gag accumulates (2830); (iii) Gag can be seen multimerizing and budding from the plasma membrane in live cells (31). Second, Gag could initiate assembly in endosomes, and then traffic to the cell surface to be released. This is mainly supported by the presence of Gag in endosomes in several cell lines (3234), including T cells and more strikingly macrophages (32, 35, 3639). However, we are currently lacking functional experiments addressing the role of this endosomal pool of Gag, and it is still not clear to what extent it contributes to the production of viral particles. Nevertheless, the presence of Gag in endosomes might facilitate recruitment of ESCRT complexes (34, 40), packaging of viral genomic RNAs (32, 41), and incorporation of the envelope (42). It may also be important for polarized budding (43, 44) and to create a viral reservoir in infected cells (45, 46).Despite great progress, the traffic of HIV-1 components is still not fully elucidated. In particular, the transport of the genomic RNAs is poorly understood. In this study, we have used single molecule techniques to investigate the trafficking of HIV-1 RNAs in fixed and live cells, and we show that they are transported on endosomal vesicles. We also obtained functional evidence that Gag and viral RNAs can use at least two trafficking pathways to produce virions, one going directly from the plasma membrane and another one passing through endosomes.  相似文献   

7.
Cell-fate diversity can be generated by the unequal segregation of the Notch regulator Numb at mitosis in both vertebrates and invertebrates. Whereas the mechanisms underlying unequal inheritance of Numb are understood, how Numb antagonizes Notch has remained unsolved. Live imaging of Notch in sensory organ precursor cells revealed that nuclear Notch is detected at cytokinesis in the daughter cell that does not inherit Numb. Numb and Sanpodo act together to regulate Notch trafficking and establish directional Notch signalling at cytokinesis. We propose that unequal segregation of Numb results in increased endocytosis in one daughter cell, hence asymmetry of Notch at the cytokinetic furrow, directional signalling and binary fate choice.  相似文献   

8.
9.
10.
糖基化对Notch信号传递系统的影响   总被引:2,自引:0,他引:2  
Notch信号分子是多细胞生物发育过程中高度保守的一类十分重要的跨膜信 号受体糖蛋白家族.这一信号途径通过局部细胞间的相互作用而产生对多种不成熟细胞分化 的抑制信号, 精确调控细胞的分化潜能,在细胞发育、增殖、分化中起关键作用,参与造血 、T细胞发育、血管生成等重要生理过程.Notch受体分子上具有多种寡糖链,包括N-聚糖、O-岩藻糖聚糖、O-葡萄糖聚糖等,这些寡糖以及相关糖基转移酶对Notch受体-配体结合以及Notch信号传递功能有重要影响.本文就近年来有关Notch受体糖基化及其对Notch信号传递过程的研究进行综述.  相似文献   

11.
We present for the first time that histone deacetylase 6 (HDAC6) regulates EGFR degradation and trafficking along microtubules in Pkd1 mutant renal epithelial cells. HDAC6, the microtubule-associated α-tubulin deacetylase, demonstrates increased expression and activity in Pkd1 mutant mouse embryonic kidney cells. Targeting HDAC6 with a general HDAC inhibitor, trichostatin (TSA), or a specific HDAC6 inhibitor, tubacin, increased the acetylation of α-tubulin and downregulated the expression of EGFR in Pkd1 mutant renal epithelial cells. HDAC6 was co-localized with EGF induced endocytic EGFR and endosomes, respectively. Inhibition of the activity of HDAC6 accelerated the trafficking of EGFR from early endosomes to late endosomes along the microtubules. Without EGF stimulation EGFR was randomly distributed while after stimulation with EGF for 30 min, EGFR was accumulated around α-tubulin labeled microtubule bundles. These data suggested that the Pkd1 mutation induced upregulation of HDAC6 might act to slow the trafficking of EGFR from early endosomes to late endosomes along the microtubules for degradation through deacetylating α-tubulin. In addition, inhibition of HDAC activity decreased the phosphorylation of ERK1/2, the downstream target of EGFR axis, and normalized EGFR localization from apical to basolateral in Pkd1 knockout mouse kidneys. Thus, targeting HDAC6 to downregulate EGFR activity may provide a potential therapeutic approach to treat polycystic kidney disease.  相似文献   

12.
BACE1 (β-site amyloid precursor protein-cleaving enzyme 1) is a membrane-tethered member of the aspartyl proteases, essential for the production of β-amyloid, a toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. The BACE1 C-terminal fragment contains a DXXLL motif that has been shown to bind the VHS (VPS27, Hrs, and STAM) domain of GGA1–3 (Golgi-localized γ-ear-containing ARF-binding proteins). GGAs are trafficking molecules involved in the transport of proteins containing the DXXLL signal from the Golgi complex to endosomes. Moreover, GGAs bind ubiquitin and traffic synthetic and endosomal ubiquitinated cargoes to lysosomes. We have previously shown that depletion of GGA3 results in increased BACE1 levels and activity because of impaired lysosomal degradation. Here, we report that the accumulation of BACE1 is rescued by the ectopic expression of GGA3 in H4 neuroglioma cells depleted of GGA3. Accordingly, the overexpression of GGA3 reduces the levels of BACE1 and β-amyloid. We then established that mutations in the GGA3 VPS27, Hrs, and STAM domain (N91A) or in BACE1 di-leucine motif (L499A/L500A), able to abrogate their binding, did not affect the ability of ectopically expressed GGA3 to rescue BACE1 accumulation in cells depleted of GGA3. Instead, we found that BACE1 is ubiquitinated at lysine 501 and is mainly monoubiquitinated and Lys-63-linked polyubiquitinated. Finally, a GGA3 mutant with reduced ability to bind ubiquitin (GGA3L276A) was unable to regulate BACE1 levels both in rescue and overexpression experiments. These findings indicate that levels of GGA3 tightly and inversely regulate BACE1 levels via interaction with ubiquitin sorting machinery.  相似文献   

13.
14.
Protein export from the endoplasmic reticulum (ER) is an initial and rate-limiting step of molecular trafficking and secretion. This is mediated by coat protein II (COPII)-coated vesicles, whose formation requires small GTPase Sar1 and 6 Sec proteins including Sec23 and Sec31. Sec31 is a component of the outer layer of COPII coat and has been identified as a phosphoprotein. The initiation and promotion of COPII vesicle formation is regulated by Sar1; however, the mechanism regulating the completion of COPII vesicle formation followed by vesicle release is largely unknown. Hypothesizing that the Sec31 phosphorylation may be such a mechanism, we identified phosphorylation sites in the middle linker region of Sec31. Sec31 phosphorylation appeared to decrease its association with ER membranes and Sec23. Non-phosphorylatable mutant of Sec31 stayed longer at ER exit sites and bound more strongly to Sec23. We also found that CK2 is one of the kinases responsible for Sec31 phosphorylation because CK2 knockdown decreased Sec31 phosphorylation, whereas CK2 overexpression increased Sec31 phosphorylation. Furthermore, CK2 knockdown increased affinity of Sec31 for Sec23 and inhibited ER-to-Golgi trafficking. These results suggest that Sec31 phosphorylation by CK2 controls the duration of COPII vesicle formation, which regulates ER-to-Golgi trafficking.  相似文献   

15.
In plants, the mechanisms that regulate the transit of vacuolar soluble proteins containing C-terminal and N-terminal vacuolar sorting determinants (VSDs) to the vacuole are largely unknown. In a screen for Arabidopsis thaliana mutants affected in the trafficking of C-terminal VSD containing proteins, we isolated the ribosomal biogenesis mutant rpl4a characterized by its partial secretion of vacuolar targeted proteins and a plethora of developmental phenotypes derived from its aberrant auxin responses. In this study, we show that ribosomal biogenesis can be directly regulated by auxins and that the exogenous application of auxins to wild-type plants results in vacuolar trafficking defects similar to those observed in rpl4a mutants. We propose that the influence of auxin on ribosomal biogenesis acts as a regulatory mechanism for auxin-mediated developmental processes, and we demonstrate the involvement of this regulatory mechanism in the sorting of vacuolar targeted proteins in Arabidopsis.  相似文献   

16.
We investigated the role of G protein-coupled receptor kinase (GRK)-mediated phosphorylation in agonist-induced desensitization, arrestin association, endocytosis, and intracellular trafficking of the D2 dopamine receptor (DAR). Agonist activation of D2 DARs results in rapid and sustained receptor phosphorylation that is solely mediated by GRKs. A survey of GRKs revealed that only GRK2 or GRK3 promotes D2 DAR phosphorylation. Mutational analyses resulted in the identification of eight serine/threonine residues within the third cytoplasmic loop of the receptor that are phosphorylated by GRK2/3. Simultaneous mutation of these eight residues results in a receptor construct, GRK(-), that is completely devoid of agonist-promoted GRK-mediated receptor phosphorylation. We found that both wild-type (WT) and GRK(-) receptors underwent a similar degree of agonist-induced desensitization as assessed using [35S]GTPγS binding assays. Similarly, both receptor constructs internalized to the same extent in response to agonist treatment. Furthermore, using bioluminescence resonance energy transfer assays to directly assess receptor association with arrestin3, we found no differences between the WT and GRK(-) receptors. Thus, phosphorylation is not required for arrestin-receptor association or agonist-induced desensitization or internalization. In contrast, when we examined recycling of the D2 DARs to the cell surface, subsequent to agonist-induced endocytosis, the GRK(-) construct exhibited less recycling in comparison with the WT receptor. This impairment appears to be due to a greater propensity of the GRK(-) receptors to down-regulate once internalized. In contrast, if the receptor is highly phosphorylated, then receptor recycling is promoted. These results reveal a novel role for GRK-mediated phosphorylation in regulating the post-endocytic trafficking of a G protein-coupled receptor.Dopamine receptors (DARs)3 are members of the GPCR superfamily and consist of five structurally distinct subtypes (1, 2). These can be divided into two subfamilies on the basis of their structure and pharmacological and transductional properties (3). The “D1-like” subfamily includes the D1 and D5 receptors, which couple to the heterotrimeric G proteins GS or GOLF to stimulate adenylyl cyclase activity and raise intracellular levels of cAMP. The D2-like subfamily includes the D2, D3, and D4 receptors, which couple to inhibitory Gi/o proteins to reduce adenylyl cyclase activity as well as modulate voltage-gated K+ or Ca2+ channels. Within the central nervous system, these receptors modulate movement, learning and memory, reward and addiction, cognition, and certain neurendocrine functions. As with other GPCRs, the DARs are subject to a wide variety of regulatory mechanisms, which can either positively or negatively modulate their expression and functional activity (4).Upon agonist activation, most GPCRs undergo desensitization, a homeostatic process that results in a waning of receptor response despite continued agonist stimulation (5, 6). Desensitization is believed to involve the phosphorylation of receptors by either G protein-coupled receptor kinases (GRKs) and/or second messenger-activated kinases such as PKA or PKC. Homologous forms of desensitization involve only agonist-activated receptors and appear to be primarily mediated by GRKs. In many cases, GRK-mediated phosphorylation has been shown to decrease receptor/G protein interactions and also initiate arrestin binding, which further promotes endocytosis of the receptor through clathrin-coated pits (79). Once internalized, GPCRs can engage additional signaling pathways (10), be sorted for recycling to the plasma membrane, or targeted for degradation (79). Among the DARs, the D2 receptor is arguably one of the most validated drug targets in neurology and psychiatry. For instance, all receptor-based anti-parkinsonian drugs work via stimulating the D2 DAR (11), whereas all Food and Drug Administration-approved antipsychotic agents are antagonists of this receptor subtype (12, 13). The D2 DAR is also therapeutically targeted in other disorders such as restless legs syndrome, tardive dyskinesia, Tourette syndrome, and hyperprolactinemia. As such, more knowledge concerning the regulation of the D2 DAR could be helpful in improving current therapies or devising new treatment strategies.In comparison with other GPCRs, however, detailed mechanistic information concerning regulation of the D2 DAR is mostly lacking, although some progress has recently been made. For instance, we (14) and others (15) have found that PKC-mediated phosphorylation can regulate both D2 receptor desensitization and trafficking. In our PKC study, we mapped out all of the PKC phosphorylation sites within the third intracellular loop (IC3) of the receptor, and we determined the existence of two PKC phosphorylation domains. Both of these domains were found to regulate receptor sequestration, whereas only one domain regulated functional uncoupling in response to PKC activation (14). In response to agonist activation, the D2 DAR has also been shown to undergo functional desensitization (4), although this has not been intensively investigated. More thoroughly examined is the observation that agonist stimulation of the D2 DAR promotes its sequestration from the cell surface into vesicular compartments that appear distinct from those harboring internalized D1 DARs or β-adrenergic receptors (1621). In addition to uncertainty over the endocytic pathway involved, controversy also exists as to whether or not D2 DAR internalization is dynamin-dependent and whether the internalized receptors can partially or completely recycle to the cell surface or, alternatively, if they undergo degradation (19, 2124). The D2 DAR does appear to undergo GRK-mediated phosphorylation upon agonist activation, which has been suggested to promote arrestin association and receptor sequestration (16, 19, 25), although this process has not been studied in detail and its relationship to functional receptor desensitization is unknown.In this study, we have further characterized GRK-mediated phosphorylation of the D2 DAR and determined its role in agonist-induced receptor desensitization, internalization, and recycling. Using site-directed mutagenesis, we have mapped out all of the GRK phosphorylation sites within the D2 DAR and determined that these are distinct from the PKC phosphorylation sites. Using a GRK phosphorylation-null mutant receptor, we found, surprisingly, that GRK-mediated phosphorylation is not actually required for agonist-induced receptor desensitization, arrestin association, or internalization. In contrast, we found that the GRK phosphorylation-null receptor was impaired in its ability to recycle to the cell surface subsequent to internalization and was degraded to a greater extent in comparison with the wild-type receptor. These results suggest that GRK-mediated phosphorylation of the D2 DAR regulates its intracellular trafficking or sorting once internalized, a novel mechanism for GRK-mediated regulation of GPCR function.  相似文献   

17.
18.
A prominent feature of glial cells is their ability to migrate along axons to finally wrap and insulate them. In the embryonic Drosophila PNS, most glial cells are born in the CNS and have to migrate to reach their final destinations. To understand how migration of the peripheral glia is regulated, we have conducted a genetic screen looking for mutants that disrupt the normal glial pattern. Here we present an analysis of two of these mutants: Notch and numb. Complete loss of Notch function leads to an increase in the number of glial cells. Embryos hemizygous for the weak Notch(B-8X) allele display an irregular migration phenotype and mutant glial cells show an increased formation of filopodia-like structures. A similar phenotype occurs in embryos carrying the Notch(ts1) allele when shifted to the restrictive temperature during the glial cell migration phase, suggesting that Notch must be activated during glial migration. This is corroborated by the fact that cell-specific reduction of Notch activity in glial cells by directed numb expression also results in similar migration phenotypes. Since the glial migration phenotypes of Notch and numb mutants resemble each other, our data support a model where the precise temporal and quantitative regulation of Numb and Notch activity is not only required during fate decisions but also later during glial differentiation and migration.  相似文献   

19.
Calcitonin receptor-like receptor (CLR) and the receptor activity-modifying protein 1 (RAMP1) comprise a receptor for calcitonin gene-related peptide (CGRP). Although CGRP induces endocytosis of CLR/RAMP1, little is known about post-endocytic sorting of these proteins. We observed that the duration of stimulation with CGRP markedly affected post-endocytic sorting of CLR/RAMP1. In HEK and SK-N-MC cells, transient stimulation (10(-7) M CGRP, 1 h), induced CLR/RAMP1 recycling with similar kinetics (2-6 h), demonstrated by labeling receptors in living cells with antibodies to extracellular epitopes. Recycling of CLR/RAMP1 correlated with resensitization of CGRP-induced increases in [Ca(2+)](i). Cycloheximide did not affect resensitization, but bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPases, abolished resensitization. Recycling CLR and RAMP1 were detected in endosomes containing Rab4a and Rab11a, and expression of GTPase-defective Rab4aS22N and Rab11aS25N inhibited resensitization. After sustained stimulation (10(-7) M CGRP, >2 h), CLR/RAMP1 trafficked to lysosomes. RAMP1 was degraded approximately 4-fold more rapidly than CLR (RAMP1, 45% degradation, 5 h; CLR, 54% degradation, 16 h), determined by Western blotting. Inhibitors of lysosomal, but not proteasomal, proteases prevented degradation. Sustained stimulation did not induce detectable mono- or polyubiquitination of CLR or RAMP1, determined by immunoprecipitation and Western blotting. Moreover, a RAMP1 mutant lacking the only intracellular lysine (RAMP1K142R) internalized and was degraded normally. Thus, after transient stimulation with CGRP, CLR and RAMP1 traffic from endosomes to the plasma membrane, which mediates resensitization. After sustained stimulation, CLR and RAMP1 traffic from endosomes to lysosomes by ubiquitin-independent mechanisms, where they are degraded at different rates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号