首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
4.
Previous studies have shown that protein-protein interactions among splicing factors may play an important role in pre-mRNA splicing. We report here identification and functional characterization of a new splicing factor, Sip1 (SC35-interacting protein 1). Sip1 was initially identified by virtue of its interaction with SC35, a splicing factor of the SR family. Sip1 interacts with not only several SR proteins but also with U1-70K and U2AF65, proteins associated with 5′ and 3′ splice sites, respectively. The predicted Sip1 sequence contains an arginine-serine-rich (RS) domain but does not have any known RNA-binding motifs, indicating that it is not a member of the SR family. Sip1 also contains a region with weak sequence similarity to the Drosophila splicing regulator suppressor of white apricot (SWAP). An essential role for Sip1 in pre-mRNA splicing was suggested by the observation that anti-Sip1 antibodies depleted splicing activity from HeLa nuclear extract. Purified recombinant Sip1 protein, but not other RS domain-containing proteins such as SC35, ASF/SF2, and U2AF65, restored the splicing activity of the Sip1-immunodepleted extract. Addition of U2AF65 protein further enhanced the splicing reconstitution by the Sip1 protein. Deficiency in the formation of both A and B splicing complexes in the Sip1-depleted nuclear extract indicates an important role of Sip1 in spliceosome assembly. Together, these results demonstrate that Sip1 is a novel RS domain-containing protein required for pre-mRNA splicing and that the functional role of Sip1 in splicing is distinct from those of known RS domain-containing splicing factors.Pre-mRNA splicing takes place in spliceosomes, the large RNA-protein complexes containing pre-mRNA, U1, U2, U4/6, and U5 small nuclear ribonucleoprotein particles (snRNPs), and a large number of accessory protein factors (for reviews, see references 21, 22, 37, 44, and 48). It is increasingly clear that the protein factors are important for pre-mRNA splicing and that studies of these factors are essential for further understanding of molecular mechanisms of pre-mRNA splicing.Most mammalian splicing factors have been identified by biochemical fractionation and purification (3, 15, 19, 3136, 45, 6971, 73), by using antibodies recognizing splicing factors (8, 9, 16, 17, 61, 66, 67, 74), and by sequence homology (25, 52, 74).Splicing factors containing arginine-serine-rich (RS) domains have emerged as important players in pre-mRNA splicing. These include members of the SR family, both subunits of U2 auxiliary factor (U2AF), and the U1 snRNP protein U1-70K (for reviews, see references 18, 41, and 59). Drosophila alternative splicing regulators transformer (Tra), transformer 2 (Tra2), and suppressor of white apricot (SWAP) also contain RS domains (20, 40, 42). RS domains in these proteins play important roles in pre-mRNA splicing (7, 71, 75), in nuclear localization of these splicing proteins (23, 40), and in protein-RNA interactions (56, 60, 64). Previous studies by us and others have demonstrated that one mechanism whereby SR proteins function in splicing is to mediate specific protein-protein interactions among spliceosomal components and between general splicing factors and alternative splicing regulators (1, 1a, 6, 10, 27, 63, 74, 77). Such protein-protein interactions may play critical roles in splice site recognition and association (for reviews, see references 4, 18, 37, 41, 47 and 59). Specific interactions among the splicing factors also suggest that it is possible to identify new splicing factors by their interactions with known splicing factors.Here we report identification of a new splicing factor, Sip1, by its interaction with the essential splicing factor SC35. The predicted Sip1 protein sequence contains an RS domain and a region with sequence similarity to the Drosophila splicing regulator, SWAP. We have expressed and purified recombinant Sip1 protein and raised polyclonal antibodies against the recombinant Sip1 protein. The anti-Sip1 antibodies specifically recognize a protein migrating at a molecular mass of approximately 210 kDa in HeLa nuclear extract. The anti-Sip1 antibodies sufficiently deplete Sip1 protein from the nuclear extract, and the Sip1-depleted extract is inactive in pre-mRNA splicing. Addition of recombinant Sip1 protein can partially restore splicing activity to the Sip1-depleted nuclear extract, indicating an essential role of Sip1 in pre-mRNA splicing. Other RS domain-containing proteins, including SC35, ASF/SF2, and U2AF65, cannot substitute for Sip1 in reconstituting splicing activity of the Sip1-depleted nuclear extract. However, addition of U2AF65 further increases splicing activity of Sip1-reconstituted nuclear extract, suggesting that there may be a functional interaction between Sip1 and U2AF65 in nuclear extract.  相似文献   

5.
6.
7.
8.
9.
10.
By using a model system for cell transformation mediated by the cooperation of the activated H-ras oncogene and the inactivated p53 tumor suppressor gene, rCop-1 was identified by mRNA differential display as a gene whose expression became lost after cell transformation. Homology analysis indicates that rCop-1 belongs to an emerging cysteine-rich growth regulator family called CCN, which includes connective-tissue growth factor, CYR61, CEF10 (v-src inducible), and the product of the nov proto-oncogene. Unlike the other members of the CCN gene family, rCop-1 is not an immediate-early gene, it lacks the conserved C-terminal domain which was shown to confer both growth-stimulating and heparin-binding activities, and its expression is lost in cells transformed by a variety of mechanisms. Ectopic expression of rCop-1 by retroviral gene transfers led to cell death in a transformation-specific manner. These results suggest that rCop-1 represents a new class of CCN family proteins that have functions opposing those of the previously identified members.Oncogenic conversion of a normal cell into a tumor cell requires multiple genetic alterations (12). Of particular interest is the fact that mutations in both ras oncogenes (3) and the p53 tumor suppressor gene cooperate in transformation of mammalian cells (11). Mutations in both ras and the p53 gene were also found at high frequencies in a variety of human cancers, including those of the colon, lung, and pancreas (2, 18). It has been proposed that both p53 and Ras function, whether directly or through other signaling molecules, to control expression of genes that are important for cell growth and differentiation (13, 17, 37). To this end, several ras target genes (10) and p53 target genes, including those encoding p21/CIP1/WAF1, an inhibitor of G1 cyclin-dependent kinase (9); Mdm-2, a negative regulator of p53 (1); GADD45, a protein involved in DNA repair (36); and Bax, which promotes apoptosis (28), have been identified. Most of these genes, except p21/CIP1/WAF1, which was cloned by subtractive hybridization, were identified by the candidate gene hypothesis. Recently, more p53 target genes have been isolated by the differential display technique, including those coding for cyclin G (31); MAP4, a microtubule-associated protein negatively regulated by p53 (29); and PAG608, a novel nuclear zinc finger protein whose overexpression promotes apoptosis (14). Functional characterizations of these genes have shed light on the role of p53 in cell cycle control and apoptosis. However, genes that mediate tumor suppression activity by p53 remain elusive.The fact that neither the inactivation of p53 nor the activation of Ras alone is able to transform primary mammalian cells (34), whereas both mutations together can do so, suggests that genes regulated by p53 and Ras cooperate in upsetting normal cell growth control cells (11). Using differential display (22), we set out to identify genes whose expression is altered by both mutant ras and p53 by comparing the mRNA expression profiles of normal rat embryo fibroblasts (REFs) and their derivatives transformed by either a constitutively inactivated or a temperature-sensitive mutant p53 in cooperation with the activated H-ras oncogene (11, 27). In this report we describe the identification and give a functional characterization of rCop-1, a gene whose expression is abolished by cell transformation. By sequence homology, rCop-1 was found to belong to an emerging cysteine-rich growth regulator family called CCN (which stands for connective-tissue growth factor [CTGF], CEF10/Cyr61, and Nov) (4). Here we show that rCop-1 may represent a novel class of CCN family proteins based on its unique cell cycle expression pattern, its lack of the C-terminal (CT) domain conserved in all CCN proteins, its loss of expression in all transformed cells analyzed, and its ability to confer cytotoxicity to the transformed cells.  相似文献   

11.
12.
13.
Inflammasomes have been extensively characterized in monocytes and macrophages, but not in epithelial cells, which are the preferred host cells for many pathogens. Here we show that cervical epithelial cells express a functional inflammasome. Infection of the cells by Chlamydia trachomatis leads to activation of caspase-1, through a process requiring the NOD-like receptor family member NLRP3 and the inflammasome adaptor protein ASC. Secretion of newly synthesized virulence proteins from the chlamydial vacuole through a type III secretion apparatus results in efflux of K+ through glibenclamide-sensitive K+ channels, which in turn stimulates production of reactive oxygen species. Elevated levels of reactive oxygen species are responsible for NLRP3-dependent caspase-1 activation in the infected cells. In monocytes and macrophages, caspase-1 is involved in processing and secretion of pro-inflammatory cytokines such as interleukin-1β. However, in epithelial cells, which are not known to secrete large quantities of interleukin-1β, caspase-1 has been shown previously to enhance lipid metabolism. Here we show that, in cervical epithelial cells, caspase-1 activation is required for optimal growth of the intracellular chlamydiae.Chlamydia trachomatis is the most common cause of bacterial sexually transmitted disease in the United States, and it is the leading cause of preventable blindness in the world (15). Untreated, C. trachomatis infection in women can cause pelvic inflammatory disease, which can lead to infertility and ectopic pregnancy because of scarring of the ovaries and the Fallopian tubes (6). Infection by the lymphogranuloma venereum (LGV)2 strain of C. trachomatis, which has become more common in North America and Europe (7, 8), is characterized by swelling and inflammation of the lymph nodes in the groin (9).Chlamydiae are intracellular pathogens that preferentially infect epithelial mucosa and have a biphasic infection cycle (10). A metabolically inactive form, the elementary body, infects the epithelial host cells through entry vesicles that avoid fusion with host cell lysosomes and develop into a membrane-bound inclusion (1113). Despite their intravacuolar localization, chlamydiae are still able to acquire nutrients from the host cell and interact with host-cell signaling pathways (1323). Within a few hours, the elementary bodies differentiate into larger, metabolically active reticulate bodies, which proliferate but are noninfectious. Depending on the strain of C. trachomatis, the reticulate bodies transform back into elementary bodies after 1–3 days and are released into the extracellular medium to infect other cells (11, 24, 25). Chlamydial species possess a type III secretion (T3S) system that secretes bacterial virulence factors into host cell cytosol and may control interactions between the inclusion and host-cell compartments (26).Long before the adaptive immune response is activated, infected epithelial cells produce proinflammatory cytokines and chemokines, including interleukin (IL)-6, IL-8, and granulocyte-macrophage colony-stimulating factor (27), which recruit neutrophils to the site of infection and activate other immune effector cells. However, in many cases the immune system fails to clear the infection, and the chronic release of cytokines becomes a major contributor to the scarring and damage associated with the infection (2830).The innate immune response during C. trachomatis infection is initiated by chlamydial pathogen-associated molecular patterns, including lipopolysaccharides, which bind to pattern recognition receptors such as Toll-like receptors and cytosolic NOD-like receptors (NLRs), ultimately promoting pro-inflammatory cytokine gene expression and secretion of the cytokine proteins (3137). However, secretion of the key pro-inflammatory cytokine IL-1β is tightly regulated (38). First, pro-IL-1β is produced following activation of pattern recognition receptor, and the precursor is then cleaved into the mature form by the pro-inflammatory cysteine protease, caspase-1 (also known as interleukin-1 converting enzyme or ICE). The mechanism by which caspase-1 is activated in response to infection or tissue damage was found to be modulated by a macromolecular protein complex termed the “inflammasome,” which consists of an NLR family member, an adaptor protein (apoptosis-associated speck-like protein containing a caspase activation recruitment domain or ASC), and an inactive caspase-1 precursor (pro-caspase-1) (39, 40). Previous studies demonstrated that IL-1β is produced in response to chlamydial infection in dendritic cells, macrophages, and monocytes (4144). Moreover, C. trachomatis or Chlamydia caviae infection activates caspase-1 in epithelial cells or monocytes (43, 45, 46). However, whether caspase-1 activation during chlamydial infection requires the formation of an inflammasome remains unclear.Previous studies have shown that different pathogens can cause inflammasome-mediated caspase-1 activation in macrophages and monocytes (47). However, epithelial cells lining mucosal surfaces are not only the preferred target for chlamydial infection and other intracellular pathogens but also play an important role in early host immune response to infection by secreting proinflammatory cytokines and chemokines (27). Although epithelial cells are not known to secrete large amounts of IL-1β, inflammasome-dependent caspase-1 activation in epithelial cells is known to contribute to lipid metabolism and membrane regeneration in epithelial cells damaged by the membrane-disrupting toxin, aerolysin (48). As lipids are sorted from the Golgi apparatus to the chlamydial inclusion (13, 15, 49), we therefore investigated whether C. trachomatis induces caspase-1 activation in epithelial cells via the assembly of an inflammasome. We demonstrated that C. trachomatis-induced caspase-1 activation is mediated by an inflammasome containing the NLR member, NLRP3. Several studies have demonstrated the involvement of T3S apparatus in inflammasome-mediated caspase-1 activation by different pathogens in macrophages and monocytes (5056). Therefore, we further investigated the mechanism by which C. trachomatis triggers the formation of the NLRP3 inflammasome. Our results showed that metabolically active chlamydiae, relying on their T3S apparatus, cause K+ efflux, which in turn leads to formation of reactive oxygen species (ROS) and ultimately NLRP3-dependent caspase-1 activation. Epithelial cells do not typically secrete large amounts of IL-1β; instead, caspase-1 activation in cervical epithelial cells contributes to development of the chlamydial inclusion.  相似文献   

14.
Rho GTPases are critical components of cellular signal transduction pathways. Both hyperactivity and overexpression of these proteins have been observed in human cancers and have been implicated as important factors in metastasis. We previously showed that dietary n-6 fatty acids increase cancer cell adhesion to extracellular matrix proteins, such as type IV collagen. Here we report that in MDA-MB-435 human melanoma cells, arachidonic acid activates RhoA, and inhibition of RhoA signaling with either C3 exoenzyme or dominant negative Rho blocked arachidonic acid-induced cell adhesion. Inhibition of the Rho kinase (ROCK) with either small molecule inhibitors or ROCK II-specific small interfering RNA (siRNA) blocked the fatty acid-induced adhesion. However, unlike other systems, inhibition of ROCK did not block the activation of p38 mitogen-activated protein kinase (MAPK); instead, Rho activation depended on p38 MAPK activity and the presence of heat shock protein 27 (HSP27), which is phosphorylated downstream of p38 after arachidonic acid treatment. HSP27 associated with p115RhoGEF in fatty acid-treated cells, and this association was blocked when p38 was inhibited. Furthermore, siRNA knockdown of HSP27 blocked the fatty acid-stimulated Rho activity. Expression of dominant negative p115-RhoGEF or p115RhoGEF-specific siRNA inhibited both RhoA activation and adhesion on type IV collagen, whereas a constitutively active p115RhoGEF restored the arachidonic acid stimulation in cells in which the p38 MAPK had been inhibited. These data suggest that n-6 dietary fatty acids stimulate a set of interactions that regulates cell adhesion through RhoA and ROCK II via a p38 MAPK-dependent association of HSP27 and p115RhoGEF.The ability of tumor cells to metastasize to secondary sites is a hallmark of neoplastic disease. Unfortunately, this propensity to spread is the primary cause of morbidity and death in cancer patients (1). Metastasis is clearly a highly regulated, multistep process that occurs in a spatiotemporal manner (24). To escape the restrictive compartment boundaries characteristic of adult tissue, separate intravasation and extravasation steps requiring alterations in co-adhesion, adhesion, invasion, and migration must occur. Execution of these biological processes, involving multiple proteins and cellular organelles, require highly coordinated cell signaling mechanisms.The Rho family of small GTPases regulates many facets of cytoskeletal rearrangements that facilitate cell attachment and migration (57). Rho GTPases act as molecular switches by changing from an inactive GDP-bound conformation to an active GTP-bound conformation, thereby regulating a signaling pathway. These proteins are directly regulated by Rho guanine nucleotide exchange factors (GEFs),2 Rho GTPase activating proteins, and Rho GDP-dissociation inhibitors (812). RhoGEFs bind to the GTPase to catalyze the dissociation of GDP, allowing the binding of GTP and thereby promoting Rho activation (8). The RGS (regulators of G protein signaling) domain-containing RhoGEFs are a recently described family of GEFs. Currently, there are three members of this family, PDZ-RhoGEF, LARG, and p115RhoGEF (1315), in which the RGS domains function as a heterotrimeric GTPase-activating domain (13, 15, 16). The RGS family of RhoGEFs has been shown to regulate Rho during several processes including cytoskeletal rearrangements, cell adhesion, and cancer progression (1721).There is significant interplay between the activity of small GTPases and signaling derived from fatty acid metabolism (2228). Linoleic acid, which is metabolized to arachidonic acid, is an n-6 polyunsaturated fatty acid that is present at high levels in most western diets (29). In animal models, diets high in n-6 polyunsaturated fatty acids have been shown to enhance tumor progression and metastasis (30, 31). Additionally, arachidonic acid is stored in cell membranes and is made available by phospholipases under conditions of increased inflammatory response (32). Arachidonic acid is further metabolized by cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 monooxygenases to yield bioactive products that have myriad effects on cells, and altered metabolism of arachidonic acid by COX, LOX, and P450 has been implicated in cancer progression (31, 3336).We have studied mechanisms of cell adhesion using the MDA-MB-435 cells as a model of a highly metastatic human cancer cell line (37). These cells have been extensively studied for their ability to recapitulate the metastatic cascade in vivo and in vitro, although recent work indicates that the cells currently in use are most likely a human melanoma line (38). We initially observed that arachidonic acid (AA) enhanced adhesion of MDA-MB-435 cells to type IV collagen through specific integrin-mediated pathways (37). Exogenous AA led to the activation of mitogen-activated protein kinase (MAPK)-activated protein kinase 2 and the phosphorylation of heat shock protein 27 (HSP27) via a p38 MAPK-dependent process (39). Inhibition of p38 MAPK activation blocked cell adhesion as did function-blocking antibodies specific for subunits of the collagen receptor (40). More recently, we identified the key metabolite of AA (15-(S)- hydroxyeicosatetraenoic acid) and the upstream kinases (TAK1 and MKK6) that are responsible for activation of p38 MAPK in this system (41).In this study we investigated the role of Rho activation in the MDA-MB-435 cells after exposure to arachidonic acid. Several aspects of the regulation of Rho signaling in these cells provide insights into the cross-talk between important signaling pathways.  相似文献   

15.
16.
17.
18.
19.
Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability.The successful mitosis requires the assembly of a strictly bipolar mitotic apparatus that will ensure that chromosomes equally distribute to the daughter cells. This process is controlled by the centrosomes that are required for spindle formation and function (1). Abnormalities of centrosome have been demonstrated to cause chromosomal missegregation and generation of aneuploidy, consequently leading to cell malignant transformation and tumorigenesis (2, 3). The machinery that controls centrosome stability involves multiple important cellular proteins, including p53 (4), BRCA1 (5), Gadd45 (6, 7), p21 (8), and Cdk2/cyclin E (9). The precise coordination among those regulators maintains centrosome duplication and stability. Prior to mitosis, centrosomes undergo maturation (10), which is characterized by centrosome enlargement, recruitment of γ-tubulin, and an increased microtubule nucleation activity (11, 12). Centrosome maturation is regulated by several mitotic kinases (13), such as Plk1 (Polo-like kinase 1) (14), Aurora-A (15), and Nek2, a member of NIMA (never in mitosis gene A)-related kinase (16). Recently, a Plk1-regulated ninein-like protein, termed Nlp, has been characterized as an important molecule involved in centrosome maturation (17). Nlp interacts with γ-tubulin ring complex and stimulates microtubule nucleation in the interphase. Upon the G2/M transition, Nlp is subjected to phosphorylation by Plk1 and Nek2 (17, 18) and departs from the centrosome. It is thus suggested that the delicate association of Nlp with the centrosome is required for proper centrosome maturation and spindle assembly (17).BRCA1, a breast cancer susceptibility gene that accounts for more than 70% of hereditary breast cancer cases, is a critical regulator in the control of cell cycle progression (19, 20). BRCA1 interacts with multiple important cellular proteins, including RAD51 (21), BRCA2 (22), p53 (23), c-Myc (24), and p300 proteins (25). It is speculated that the BRCA1 protein may exert its control over cellular functions by acting as a platform for these proteins to converge and interact and may, therefore, create interactive modes for regulating their respective functions. BRCA1 is linked to the control of centrosome stability (26). Mouse embryonic fibroblasts (MEFs)3 carrying targeted deletion of exon 11 of the Brca1 gene exhibit centrosome amplification and abnormalities of spindle formation (5). BRCA1 may regulate centrosome duplication, probably through its interacting proteins such as p53 (23), BRCA2 (27), Cdk2 (28), and γ-tubulin (2931), or its downstream genes such as p21 (32) and Gadd45a (33, 34). Most recently, BRCA1 was reported to be required for mitotic spindle assembly through its interaction with three spindle pole proteins, TPX2, NuMA, nuclear mitotic apparatus protein; and XRHAMM, Xenopus homolog to human RHAXX (35). These findings strongly suggest that BRCA1 is involved in the mitotic machinery. However, the importance of BRCA1 in the control of mitotic progression still remains to be further defined.In this report, we demonstrate that BRCA1 physically interacts and colocalizes with Nlp. Nlp centrosomal localization and its protein stability are likely dependent on normal cellular BRCA1 function. Suppression of Nlp using the siRNA approach disturbs the process of chromosomal segregation and results in aberrant spindle formation, failure of chromosomal segregation, and aneuploidy.  相似文献   

20.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号