首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hinnerwisch J  Fenton WA  Furtak KJ  Farr GW  Horwich AL 《Cell》2005,121(7):1029-1041
The cylindrical Hsp100 chaperone ClpA mediates ATP-dependent unfolding of substrate proteins bearing "tag" sequences, such as the 11-residue ssrA sequence appended to proteins translationally stalled at ribosomes. Unfolding is coupled to translocation through a central channel into the associating protease, ClpP. To explore the topology and mechanism of ClpA action, we carried out chemical crosslinking and functional studies. Whereas a tag from RepA protein crosslinked proximally to the flexible N domains, the ssrA sequence in GFP-ssrA crosslinked distally in the channel to a segment of the distal ATPase domain (D2). Single substitutions placed in this D2 loop, and also in two apparently cooperating proximal (D1) loops, abolished binding of ssrA substrates and unfolded proteins lacking tags and blocked unfolding of GFP-RepA. Additionally, a substitution adjoining the D2 loop allowed binding of ssrA proteins but impaired their translocation. This loop, as in homologous nucleic-acid translocases, may bind substrates proximally and, coupled with ATP hydrolysis, translocate them distally, exerting mechanical force that mediates unfolding.  相似文献   

2.
Escherichia coli ClpA and ClpX are ATP-dependent protein unfoldases that each interact with the protease, ClpP, to promote specific protein degradation. We have used limited proteolysis and deletion analysis to probe the conformations of ClpA and ClpX and their interactions with ClpP and substrates. ATP gamma S binding stabilized ClpA and ClpX such that that cleavage by lysylendopeptidase C occurred at only two sites. Both proteins were cleaved within in a loop preceding an alpha-helix-rich C-terminal domain. Although the loop varies in size and composition in Clp ATPases, cleavage occurred within and around a conserved triad, IG(F/L). Binding of ClpP blocked this cleavage, and prior cleavage at this site rendered both ClpA and ClpX defective in binding and activating ClpP, suggesting that this site is involved in interactions with ClpP. ClpA was also cut at a site near the junction of the two ATPase domains, whereas the second cleavage site in ClpX lay between its N-terminal and ATPase domains. ClpP did not block cleavage at these other sites. The N-terminal domain of ClpX dissociated upon cleavage, and the remaining ClpXDeltaN remained as a hexamer, associated with ClpP, and expressed ATPase, chaperone, and proteolytic activity. A truncated mutant of ClpA lacking its N-terminal 153 amino acids also formed a hexamer, associated with ClpP, and expressed these activities. We propose that the N-terminal domains of ClpX and ClpA lie on the outside ring surface of the holoenzyme complexes where they contribute to substrate binding or perform a gating function affecting substrate access to other binding sites and that a loop on the opposite face of the ATPase rings stabilizes interactions with ClpP and is involved in promoting ClpP proteolytic activity.  相似文献   

3.
The hexameric cylindrical Hsp100 chaperone ClpA mediates ATP-dependent unfolding and translocation of recognized substrate proteins into the coaxially associated serine protease ClpP. Each subunit of ClpA is composed of an N-terminal domain of approximately 150 amino acids at the top of the cylinder followed by two AAA+ domains. In earlier studies, deletion of the N-domain was shown to have no effect on the rate of unfolding of substrate proteins bearing a C-terminal ssrA tag, but it did reduce the rate of degradation of these proteins (Lo, J. H., Baker, T. A., and Sauer, R. T. (2001) Protein Sci. 10, 551-559; Singh, S. K., Rozycki, J., Ortega, J., Ishikawa, T., Lo, J., Steven, A. C., and Maurizi, M. R. (2001) J. Biol. Chem. 276, 29420-29429). Here we demonstrate, using both fluorescence resonance energy transfer to measure the arrival of substrate at ClpP and competition between wild-type and an inactive mutant form of ClpP, that this effect on degradation is caused by diminished stability of the ClpA-ClpP complex during translocation and proteolysis, effectively disrupting the targeting of unfolded substrates to the protease. We have also examined two larger ssrA-tagged substrates, CFP-GFP-ssrA and luciferase-ssrA, and observed different behaviors. CFP-GFP-ssrA is not efficiently unfolded by the truncated chaperone whereas luciferase-ssrA is, suggesting that the former requires interaction with the N-domains, likely via the body of the protein, to stabilize its binding. Thus, the N-domains play a key allosteric role in complex formation with ClpP and may also have a critical role in recognizing certain tag elements and binding some substrate proteins.  相似文献   

4.
Escherichia coli ClpA, an Hsp100/Clp chaperone and an integral component of the ATP-dependent ClpAP protease, participates in the dissolution and degradation of regulatory proteins and protein aggregates. ClpA consists of three functional domains: an N-terminal domain and two ATPase domains, D1 and D2. The N-domain is attached to D1 by a mobile linker and is made up of two tightly bound, identically folded alpha-helical bundles related by a pseudo 2-fold symmetry. Between the halves of the pseudo-dimer is a large flexible acidic loop that becomes better ordered upon binding of the small adaptor protein, ClpS. We have identified a number of structural features in the N-domain, including a Zn(++) binding motif, several interfaces for binding to ClpS, and a prominent hydrophobic surface area that binds peptides in different configurations. These structural motifs may contribute to binding of protein or peptide substrates with weak affinity and broad specificity. Kinetic studies comparing wild-type ClpA to a mutant ClpA with its N-domain deleted show that the N-domains contribute to the binding of a non-specific protein substrate but not of a folded substrate with the specific SsrA recognition tag. A functional model is proposed in which the N-domains in ClpA function as tentacles to weakly hold on to proteins thereby enhancing local substrate concentration.  相似文献   

5.
Escherichia coli ClpA, an Hsp100/Clp chaperone and an integral component of the ATP-dependent ClpAP protease, participates in regulatory protein degradation and the dissolution and degradation of protein aggregates. The crystal structure of the ClpA subunit reveals an N-terminal domain with pseudo-twofold symmetry and two AAA(+) modules (D1 and D2) each consisting of a large and a small sub-domain with ADP bound in the sub-domain junction. The N-terminal domain interacts with the D1 domain in a manner similar to adaptor-binding domains of other AAA(+) proteins. D1 and D2 are connected head-to-tail consistent with a cooperative and vectorial translocation of protein substrates. In a planar hexamer model of ClpA, built by assembling ClpA D1 and D2 into homohexameric rings of known structures of AAA(+) modules, the differences in D1-D1 and D2-D2 interfaces correlate with their respective contributions to hexamer stability and ATPase activity.  相似文献   

6.
ClpA, a member of the Clp/Hsp100 family of ATPases, is both an ATP-dependent molecular chaperone and the regulatory component of ClpAP protease. We demonstrate that chaperone and protease activities occur concurrently in ClpAP complexes during a single round of RepA binding to ClpAP and ATP-dependent release. This result was substantiated with a ClpA mutant, ClpA(K220V), carrying an amino acid substitution in the N-terminal ATP binding site. ClpA(K220V) is unable to activate RepA, but the presence of ClpP or chemically inactivated ClpP restores its ability to activate RepA. The presence of ClpP simultaneously facilitates degradation of RepA. ClpP must remain bound to ClpA(K220V) for these effects, indicating that both chaperone and proteolytic activities of the mutant complex occur concurrently. ClpA(K220V) itself is able to form stable complexes with RepA in the presence of a poorly hydrolyzed ATP analog, adenosine 5'-O-(thiotriphosphate), and to release RepA upon exchange of adenosine 5'-O-(thiotriphosphate) with ATP. However, the released RepA is inactive in DNA binding, indicating that the N-terminal ATP binding site is essential for the chaperone activity of ClpA. Taken together, these results suggest that substrates bound to the complex of the proteolytic and ATPase components can be partitioned between release/reactivation and translocation/degradation.  相似文献   

7.
Jennings LD  Lun DS  Médard M  Licht S 《Biochemistry》2008,47(44):11536-11546
ATP-dependent proteases are processive, meaning that they degrade full-length proteins into small peptide products without releasing large intermediates along the reaction pathway. In the case of the bacterial ATP-dependent protease ClpAP, ATP hydrolysis by the ClpA component has been proposed to be required for processive proteolysis of full-length protein substrates. We present here data showing that in the absence of the ATPase subunit ClpA, the protease subunit ClpP can degrade full-length protein substrates processively, albeit at a greatly reduced rate. Moreover, the size distribution of peptide products from a ClpP-catalyzed digest is remarkably similar to the size distribution of products from a ClpAP-catalyzed digest. The ClpAP- and ClpP-generated peptide product size distributions are fitted well by a sum of multiple underlying Gaussian peaks with means at integral multiples of approximately 900 Da (7-8 amino acids). Our results are consistent with a mechanism in which ClpP controls product sizes by alternating between translocation in steps of 7-8 (+/-2-3) amino acid residues and proteolysis. On the structural and molecular level, the step size may be controlled by the spacing between the ClpP active sites, and processivity may be achieved by coupling peptide bond hydrolysis to the binding and release of substrate and products in the protease chamber.  相似文献   

8.
9.
Escherichia coli ClpA is a AAA+ (ATPase Associated with diverse cellular Activities) chaperone that catalyzes the ATP‐dependent unfolding and translocation of substrate proteins targeted for degradation by a protease, ClpP. ClpA hexamers associate with one or both ends of ClpP tetradecamers to form ClpAP complexes. Each ClpA protomer contains two nucleotide‐binding sites, NBD1 and NBD2, and self‐assembly into hexamers is thermodynamically linked to nucleotide binding. Despite a number of studies aimed at characterizing ClpA and ClpAP‐catalyzed substrate unfolding and degradation, respectively, to date the field is unable to quantify the concentration of ClpA hexamers available to interact with ClpP for any given nucleotide and total ClpA concentration. In this work, sedimentation velocity studies are used to quantitatively examine the self‐assembly of a ClpA Walker B variant in the presence of ATP. In addition to the hexamerization, we observe the formation of a previously unreported ClpA dodecamer in the presence of ATP. Further, we report apparent equilibrium constants for the formation of each ClpA oligomer obtained from direct boundary modeling of the sedimentation velocity data. The energetics of nucleotide binding to NBD1 and NBD2 are revealed by examining the dependence of the apparent association equilibrium constants on free nucleotide concentration.  相似文献   

10.
The Escherichia coli ATP-dependent ClpAP and ClpXP proteases are composed of a single proteolytic component, ClpP, complexed with either of the two related chaperones, ClpA or ClpX. ClpXP and ClpAP complexes interact with different specific substrates and catalyze ATP-dependent protein unfolding and degradation. In vitro in the presence of ATP or ATPgammaS, ClpA and ClpX form homomeric rings of six subunits, which bind to one or both ends of the double heptameric rings of ClpP. We have observed that, when equimolar amounts of ClpA and ClpX hexamers are added to ClpP in vitro in the presence of ATP or ATPgammaS, hybrid complexes in which ClpX and ClpA are bound to opposite ends of the same ClpP are readily formed. The distribution of homomeric and heteromeric complexes was consistent with random binding of ClpA and ClpX to the ends of ClpP. Direct demonstration of the functionality of the heteromeric complexes was obtained by electron microscopy, which allowed us to visualize substrate translocation into proteolytically inactive ClpP chambers. Starting with hybrid complexes to which protein substrates specific to ClpX or ClpA were bound, translocation of both types of substrates was shown to occur without significant redistribution of ClpA or ClpX. The stoichiometric ratios of the ClpA, ClpX, and ClpP oligomeric complexes in vivo are consistent with the predominance of heteromeric complexes in growing cells. Thus, ClpXAP is a bifunctional protease whose two ends can independently target different classes of substrates.  相似文献   

11.
S K Singh  F Guo  M R Maurizi 《Biochemistry》1999,38(45):14906-14915
The Escherichia coli ClpA and ClpP proteins form a complex, ClpAP, that catalyzes ATP-dependent degradation of proteins. Formation of stable ClpA hexamers and stable ClpAP complexes requires binding of ATP or nonhydrolyzable ATP analogues to ClpA. To understand the order of events during substrate binding, unfolding, and degradation by ClpAP, it is essential to know the oligomeric state of the enzyme during multiple catalytic cycles. Using inactive forms of ClpA or ClpP as traps for dissociated species, we measured the rates of dissociation of ClpA hexamers or ClpAP complexes. When ATP was saturating, the rate constant for dissociation of ClpA hexamers was 0.032 min(-1) (t(1/2) of 22 min) at 37 degrees C, and dissociation of ClpP from the ClpAP complexes occurred with a rate constant of 0. 092 min(-1) (t(1/2) of 7.5 min). Because the k(cat) for casein degradation is approximately 10 min(-1), these results indicate that tens of molecules of casein can be turned over by the ClpAP complex before significant dissociation occurs. Mutations in the N-terminal ATP binding site led to faster rates of ClpA and ClpAP dissociation, whereas mutations in the C-terminal ATP binding site, which cause significant decreases in ATPase activity, led to lower rates of dissociation of ClpA and ClpAP complexes. Dissociation rates for wild-type and first domain mutants of ClpA were faster at low nucleotide concentrations. The t(1/2) for dissociation of ClpAP complexes in the presence of nonhydrolyzable analogues was >/=30 min. Thus, ATP binding stabilizes the oligomeric state of ClpA, and cycles of ATP hydrolysis affect the dynamics of oligomer interaction. However, since the k(cat) for ATP hydrolysis is approximately 140 min(-1), ClpA and the ClpAP complex remain associated during hundreds of rounds of ATP hydrolysis. Our results indicate that the ClpAP complex is the functional form of the protease and as such engages in multiple rounds of interaction with substrate proteins, degradation, and release of peptide products without dissociation.  相似文献   

12.
Jennings LD  Bohon J  Chance MR  Licht S 《Biochemistry》2008,47(42):11031-11040
Energy-dependent protein degradation machines, such as the Escherichia coli protease ClpAP, require regulated interactions between the ATPase component (ClpA) and the protease component (ClpP) for function. Recent studies indicate that the ClpP N-terminus is essential in these interactions, yet the dynamics of this region remain unclear. Here, we use synchrotron hydroxyl radical footprinting and kinetic studies to characterize functionally important conformational changes of the ClpP N-terminus. Footprinting experiments show that the ClpP N-terminus becomes more solvent-exposed upon interaction with ClpA. In the absence of ClpA, deletion of the ClpP N-terminus increases the initial degradation rate of large peptide substrates 5-15-fold. Unlike ClpAP, ClpPDeltaN exhibits a distinct slow phase of product formation that is eliminated by the addition of hydroxylamine, suggesting that truncation of the N-terminus leads to stabilization of the acyl-enzyme intermediate. These results indicate that (1) the ClpP N-terminus acts as a "gate" controlling substrate access to the active sites, (2) binding of ClpA opens this "gate", allowing substrate entry and formation of the acyl-enzyme intermediate, and (3) closing of the N-terminal "gate" stimulates acyl-enzyme hydrolysis.  相似文献   

13.
Protein degradation in the cytosol of Escherichia coli is carried out by a variety of different proteolytic machines, including ClpAP. The ClpA component is a hexameric AAA+ (ATPase associated with various cellular activities) chaperone that utilizes the energy of ATP to control substrate recognition and unfolding. The precise role of the N-domains of ClpA in this process, however, remains elusive. Here, we have analysed the role of five highly conserved basic residues in the N-domain of ClpA by monitoring the binding, unfolding and degradation of several different substrates, including short unstructured peptides, tagged and untagged proteins. Interestingly, mutation of three of these basic residues within the N-domain of ClpA (H94, R86 and R100) did not alter substrate degradation. In contrast mutation of two conserved arginine residues (R90 and R131), flanking a putative peptide-binding groove within the N-domain of ClpA, specifically compromised the ability of ClpA to unfold and degrade selected substrates but did not prevent substrate recognition, ClpS-mediated substrate delivery or ClpP binding. In contrast, a highly conserved tyrosine residue lining the central pore of the ClpA hexamer was essential for the degradation of all substrate types analysed, including both folded and unstructured proteins. Taken together, these data suggest that ClpA utilizes two structural elements, one in the N-domain and the other in the pore of the hexamer, both of which are required for efficient unfolding of some protein substrates.  相似文献   

14.
The ClpA, ClpB, and ClpC subfamilies of the Clp/HSP100 ATPases contain a conserved N-terminal region of approximately 150 residues that consists of two approximate sequence repeats. This sequence from the Escherichia coli ClpA enzyme is shown to encode an independent structural domain (the R domain) that is monomeric and approximately 40% alpha-helical. A ClpA fragment lacking the R domain showed ATP-dependent oligomerization, protein-stimulated ATPase activity, and the ability to complex with the ClpP peptidase and mediate degradation of peptide and protein substrates, including casein and ssrA-tagged proteins. Compared with the activities of the wild-type ClpA, however, those of the ClpA fragment missing the R domain were reduced. These results indicate that the R domain is not required for the basic recognition, unfolding, and translocation functions that allow ClpA-ClpP to degrade some protein substrates, but they suggest that it may play a role in modulating these activities.  相似文献   

15.
ClpP is a highly conserved serine protease that is a critical enzyme in maintaining protein homeostasis and is an important drug target in pathogenic bacteria and various cancers. In its functional form, ClpP is a self-compartmentalizing protease composed of two stacked heptameric rings that allow protein degradation to occur within the catalytic chamber. ATPase chaperones such as ClpX and ClpA are hexameric ATPases that form larger complexes with ClpP and are responsible for the selection and unfolding of protein substrates prior to their degradation by ClpP. Although individual structures of ClpP and ATPase chaperones have offered mechanistic insights into their function and regulation, their structures together as a complex have only been recently determined to high resolution. Here, we discuss the cryoelectron microscopy structures of ClpP-ATPase complexes and describe findings previously inaccessible from individual Clp structures, including how a hexameric ATPase and a tetradecameric ClpP protease work together in a functional complex. We then discuss the consensus mechanism for substrate unfolding and translocation derived from these structures, consider alternative mechanisms, and present their strengths and limitations. Finally, new insights into the allosteric control of ClpP gained from studies using small molecules and gain or loss-of-function mutations are explored. Overall, this review aims to underscore the multilayered regulation of ClpP that may present novel ideas for structure-based drug design.  相似文献   

16.
The ClpS adaptor delivers N-end rule substrates to ClpAP, an energy-dependent AAA+ protease, for degradation. How ClpS binds specific N-end residues is known in atomic detail and clarified here, but the delivery mechanism is poorly understood. We show that substrate binding is enhanced when ClpS binds hexameric ClpA. Reciprocally, N-end rule substrates increase ClpS affinity for ClpA(6). Enhanced binding requires the N-end residue and a peptide bond of the substrate, as well as multiple aspects of ClpS, including a side chain that contacts the substrate α-amino group and the flexible N-terminal extension (NTE). Finally, enhancement also needs the N domain and AAA+ rings of ClpA, connected by a long linker. The NTE can be engaged by the ClpA translocation pore, but ClpS resists unfolding/degradation. We propose a staged-delivery model that illustrates how intimate contacts between the substrate, adaptor, and protease reprogram specificity and coordinate handoff from the adaptor to the protease.  相似文献   

17.
《Biophysical journal》2022,121(20):3907-3916
ATPases associated with diverse cellular activities (AAA+) proteases power the maintenance of protein homeostasis by coupling ATP hydrolysis to mechanical protein unfolding, translocation, and ultimately degradation. Although ATPase activity drives a large portion of the mechanical work these molecular machines perform, how the peptidase contributes to the forceful denaturation and processive threading of substrates remains unknown. Here, using single-molecule optical trapping, we examine the mechanical activity of the caseinolytic peptidase P (ClpP) from Escherichia coli in the absence of a partner ATPase and in the presence of an activating small-molecule acyldepsipeptide. We demonstrate that ClpP grips protein substrate under mechanical loads exceeding 40 pN, which are greater than those observed for the AAA+ unfoldase ClpX and the AAA+ protease complexes ClpXP and ClpAP. We further characterize substrate-ClpP bond lifetimes and rupture forces under varying loads. We find that the resulting slip bond behavior does not depend on ClpP peptidase activity. In addition, we find that unloaded bond lifetimes between ClpP and protein substrate are on a timescale relevant to unfolding times (up to ~160 s) for difficult to unfold model substrate proteins. These direct measurements of the substrate-peptidase bond under load define key properties required by AAA+ proteases to mechanically unfold and degrade protein substrates.  相似文献   

18.
In the ClpXP compartmental protease, ring hexamers of the AAA(+) ClpX ATPase bind, denature and then translocate protein substrates into the degradation chamber of the double-ring ClpP(14) peptidase. A key question is the extent to which functional communication between ClpX and ClpP occurs and is regulated during substrate processing. Here, we show that ClpX-ClpP affinity varies with the protein-processing task of ClpX and with the catalytic engagement of the active sites of ClpP. Functional communication between symmetry-mismatched ClpXP rings depends on the ATPase activity of ClpX and seems to be transmitted through structural changes in its IGF loops, which contact ClpP. A conserved arginine in the sensor II helix of ClpX links the nucleotide state of ClpX to the binding of ClpP and protein substrates. A simple model explains the observed relationships between ATP binding, ATP hydrolysis and functional interactions between ClpX, protein substrates and ClpP.  相似文献   

19.
Clp is a barrel-shaped hetero-oligomeric ATP-dependent protease comprising a hexameric ATPase (ClpX or ClpA) that unfolds protein substrates and translocates them into the central chamber of the tetradecameric proteolytic component (ClpP) where they are degraded processively to short peptides. Chamber access is controlled by the N-terminal 20 residues (for Escherichia coli) in ClpP that prevent entry of large polypeptides in the absence of the ATPase subunits and ATP hydrolysis. Remarkably, removal of 10–17 residues from the mature N-terminus allows processive degradation of a large model unfolded substrate to short peptides without the ATPase subunit or ATP hydrolysis; removal of 14 residues is maximal for activation. Furthermore, since the product size distribution of Δ14-ClpP is identical to ClpAP and ClpXP, the ATPases do not play an essential role in determining this distribution. Comparison of the structures of Δ14-ClpP and Δ17-ClpP with other published structures shows R15 and S16 are labile and that residue 17 can adopt a range of rotomers to ensure protection of a hydrophobic pocket formed by I19, R24 and F49 and maintain a hydrophilic character of the pore.  相似文献   

20.
The Escherichia coli ClpA protein is a molecular chaperone that binds and translocates protein substrates into the proteolytic cavity of the tetradecameric serine protease ClpP. In the absence of ClpP, ClpA can remodel protein complexes. In order for ClpA to bind protein substrates targeted for removal or remodeling, ClpA requires nucleoside triphosphate binding to first assemble into a hexamer. Here we report the assembly properties of ClpA in the presence of the nucleoside diphosphates and triphosphates ADP, adenosine 5′-[γ-thio]triphosphate, adenosine 5′-(β,γ-imido)triphosphate, β,γ-methyleneadenosine 5′-triphosphate, and adenosine diphosphate beryllium fluoride. In addition to examining the assembly of ClpA in the presence of various nucleotides and nucleotide analogues, we have also correlated the assembly state of ClpA in the presence of these nucleotides with both polypeptide binding activity and enzymatic activity, specifically ClpA-catalyzed polypeptide translocation. Here we show that all of the selected nucleotides, including ADP, promote the assembly of ClpA. However, only adenosine 5′-[γ-thio]triphosphate and adenosine 5′-(β,γ-imido)triphosphate promote the formation of an oligomer of ClpA that is active in polypeptide binding and translocation. These results suggest that the presence of γ phosphate may serve to switch ClpA into a conformational state with high peptide binding activity, whereas affinity is severely attenuated when ADP is bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号