共查询到8条相似文献,搜索用时 0 毫秒
1.
Tandy Aye Elena Toschi Arun Sharma Dennis Sgroi Susan Bonner-Weir 《The journal of histochemistry and cytochemistry》2010,58(4):369-376
Markers of β-cell maturity would be useful in staging the differentiation of stem/progenitor cells to β-cells whether in vivo or in vitro. We previously identified markers for newly formed β-cells in regenerating rat pancreases after 90% partial pancreatectomy. To test the generality of these markers of newly formed β-cells, we examined their expression during the perinatal period, a time of recognized β-cell immaturity. We show by semiquantitative RT-PCR and immunostaining over the time course from embryonic day 18/20 to birth, 1 day, 2 days, 3 days, 7 days, and adult that MMP-2, CK-19, and SPD are truly markers of new and immature β-cells and that their expression transiently peaks in the perinatal period and is not entirely synchronous. The shared expression of these markers among fetal, newborn, and newly regenerated β-cells, but not adult, strongly supports their use as potential markers for new β-cells in the assessment of both the maturity of stem cell–derived insulin-producing cells and the presence of newly formed islets (neogenesis) in the adult pancreas. (J Histochem Cytochem 58:369–376, 2010) 相似文献
2.
Upon exposure to adipogenesis-inducing hormones, confluent 3T3-L1 preadipocytes express C/EBPβ (CCAAT/enhancer binding protein β). Early induced C/EBPβ is inactive but, after a lag period, acquires its DNA-binding capability by sequential phosphorylation. During this period, preadipocytes pass the G1/S checkpoint synchronously. Thr188 of C/EBPβ is phosphorylated initially to prime the factor for subsequent phosphorylation at Ser184 or Thr179 by GSK3β, which translocates into the nuclei during the G1/S transition. Many events take place during the G1/S transition, including reduction in p27Kip1 protein levels, retinoblastoma (Rb) phosphorylation, GSK3β nuclear translocation, and C/EBPβ binding to target promoters. During hypoxia, hypoxia-inducible factor-1α (HIF-1α) is stabilized, thus maintaining expression of p27Kip1, which inhibits Rb phosphorylation. Even under normoxic conditions, constitutive expression of p27Kip1 blocks the nuclear translocation of GSK3β and DNA binding capability of C/EBPβ. Hypoxia also blocks nuclear translocation of GSK3β and DNA binding capability of C/EBPβ in HIF-1α knockdown 3T3-L1 cells that fail to induce p27Kip1. Nonetheless, under hypoxia, these cells can block Rb phosphorylation and the G1/S transition. Altogether, these findings suggest that hypoxia prevents the nuclear translocation of GSK3β and the DNA binding capability of C/EBPβ by blocking the G1/S transition through HIF-1α-dependent induction of p27Kip1 and an HIF-1α/p27-independent mechanism. 相似文献
3.
Background
Streptococcal toxic shock syndrome (STSS) is an uncommon but life-threatening disease caused by Streptococcus pyogenes.Methods
To understand the clinical and molecular characteristics of STSS, we analyzed clinical data and explored the emm types, superantigen genes, and pulsed-field gel electrophoresis of causative S. pyogenes isolates obtained between 2005 and 2012.Results
In total, 53 patients with STSS were included in this study. The median age of the patients was 57 years (range: 9–83 years), and 81.1% were male. The most prevalent underlying disease was diabetes mellitus (45.3%). Skin and soft-tissue infection accounted for 86.8% of STSS. The overall mortality rate was 32.1%. Underlying diseases had no statistical impact on mortality. A total of 19 different emm types were identified. The most prevalent emm type was emm102 (18.9%), followed by emm11 (17%), emm1 (11.3%), emm87 (9.4%), and emm89 (7.5%). There was no statistically significant association between emm type and a fatal outcome. Among the superantigen genes, speB was the most frequently detected one (92.5%), followed by smeZ (90.6%), speG (81.1%), speC (39.6%), and speF (39.6%). The majority of emm102 strains were found to have speB, speC, speG, and smeZ. The presence of speG was negatively associated with a fatal outcome (P = 0.045).Conclusions
Our surveillance revealed the emergence of uncommon emm types, particularly emm102, causing STSS in southern Taiwan. Characterization of clinical, epidemiological, and molecular characteristics of STSS will improve our understanding of this life-threatening disease. 相似文献4.
5.
DNA polymerase η (pol η) synthesizes across from damaged DNA templates in order to prevent deleterious consequences like replication fork collapse and double-strand breaks. This process, termed translesion synthesis (TLS), is an overall positive for the cell, as cells deficient in pol η display higher mutation rates. This outcome occurs despite the fact that the in vitro fidelity of bypass by pol η alone is moderate to low, depending on the lesion being copied. One possible means of increasing the fidelity of pol η is interaction with replication accessory proteins present at the replication fork. We have previously utilized a bacteriophage based screening system to measure the fidelity of bypass using purified proteins. Here we report on the fidelity effects of a single stranded binding protein, replication protein A (RPA), when copying the oxidative lesion 7,8-dihydro-8-oxo-guanine(8-oxoG) and the UV-induced cis-syn thymine-thymine cyclobutane pyrimidine dimer (T-T CPD). We observed no change in fidelity dependent on RPA when copying these damaged templates. This result is consistent in multiple position contexts. We previously identified single amino acid substitution mutants of pol η that have specific effects on fidelity when copying both damaged and undamaged templates. In order to confirm our results, we examined the Q38A and Y52E mutants in the same full-length construct. We again observed no difference when RPA was added to the bypass reaction, with the mutant forms of pol η displaying similar fidelity regardless of RPA status. We do, however, observe some slight effects when copying undamaged DNA, similar to those we have described previously. Our results indicate that RPA by itself does not affect pol η dependent lesion bypass fidelity when copying either 8-oxoG or T-T CPD lesions. 相似文献
6.
Joseph M. Dahl Hongyun Wang José M. Lázaro Margarita Salas Kate R. Lieberman 《The Journal of biological chemistry》2014,289(10):6350-6361
The Φ29 DNA polymerase (DNAP) is a processive B-family replicative DNAP. Fluctuations between the pre-translocation and post-translocation states can be quantified from ionic current traces, when individual Φ29 DNAP-DNA complexes are held atop a nanopore in an electric field. Based upon crystal structures of the Φ29 DNAP-DNA binary complex and the Φ29 DNAP-DNA-dNTP ternary complex, residues Tyr-226 and Tyr-390 in the polymerase active site were implicated in the structural basis of translocation. Here, we have examined the dynamics of translocation and substrate binding in complexes formed with the Y226F and Y390F mutants. The Y226F mutation diminished the forward and reverse rates of translocation, increased the affinity for dNTP in the post-translocation state by decreasing the dNTP dissociation rate, and increased the affinity for pyrophosphate in the pre-translocation state. The Y390F mutation significantly decreased the affinity for dNTP in the post-translocation state by decreasing the association rate ∼2-fold and increasing the dissociation rate ∼10-fold, implicating this as a mechanism by which this mutation impedes DNA synthesis. The Y390F dissociation rate increase is suppressed when complexes are examined in the presence of Mn2+ rather than Mg2+. The same effects of the Y226F or Y390F mutations were observed in the background of the D12A/D66A mutations, located in the exonuclease active site, ∼30 Å from the polymerase active site. Although translocation rates were unaffected in the D12A/D66A mutant, these exonuclease site mutations caused a decrease in the dNTP dissociation rate, suggesting that they perturb Φ29 DNAP interdomain architecture. 相似文献
7.
8.
Vorob'eva O. V. Vasil'ev S. A. Karyagina A. S. Oretskaya T. S. Kubareva E. A. 《Molecular Biology》2000,34(6):921-926
Heterocyclic bases and phosphate groups involved in the DNA–methyltransferase SsoII (M·SsoII) interaction were identified in the regulatory DNA region localized within the promoter region of the SsoII restriction–modification genes by footprinting with the use of formic acid, hydrazine, dimethyl sulfate, and N-ethyl-N-nitrosourea as modifying agents. It has been established that the enzyme interacts with three guanines, one adenine, two thymines, and three phosphate groups of each strand of the DNA duplex. These heterocyclic bases and phosphate groups are disposed symmetrically within the 15-mer inverted repeat of the regulatory DNA region. It has been demonstrated by footprinting with dimethyl sulfate that the C7 atoms of guanines interacting with the enzyme are exposed to the DNA major groove. Two theoretical models were built describing the contacts in a complex between M·SsoII and the regulatory DNA region. 相似文献