首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hua Li  Gerwald Jogl 《Proteins》2013,81(3):538-543
Decaprenylphosphoryl‐β‐D ‐ribose 2'‐epimerase (DprE1) is an essential enzyme in the biosynthesis of cell wall components and a target for development of anti‐tuberculosis drugs. We determined the crystal structure of a truncated form of DprE1 from Mycobacterium smegmatis in two crystal forms to up to 2.35 Å resolution. The structure extends from residue 75 to the C‐terminus and shares homology with FAD‐dependent oxidoreductases of the vanillyl‐alcohol oxidase family including the DprE1 homologue from M. tuberculosis. The M. smegmatis DprE1 structure reported here provides further insights into the active site geometry of this tuberculosis drug target. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Nucleoid‐associated proteins (NAPs) play important roles in the global organization of bacterial chromosomes. However, potential NAPs and their functions are barely characterized in mycobacteria. In this study, NapM, an alkaline protein, functions as a new NAP. NapM is conserved in all of the sequenced mycobacterial genomes, and can recognize DNA in a length‐dependent but sequence‐independent manner. It prefers AT‐rich DNA and binds to the major groove. NapM possesses a clear DNA‐bridging function, and can protect DNA from DNase I digestion. NapM globally regulates the expression of more than 150 genes and the resistance of Mycobacterium smegmatis to two anti‐tuberculosis drugs, namely, rifampicin and ethambutol. An ABC transporter operon was found to be specifically responsible for the napM‐dependent ethambutol resistance of M. smegmatis. NapM also presents a similar regulation of anti‐tuberculosis drug resistance in M. tuberculosis. These results suggest that NapM is a new member of the mycobacterial NAP family. Our findings expand the range of identified NAPs and improve the understanding on the relationship between NAPs with antibiotic resistance in mycobacteria.  相似文献   

3.
Protein production using recombinant DNA technology has a fundamental impact on our understanding of biology through providing proteins for structural and functional studies. Escherichia coli (E. coli) has been traditionally used as the default expression host to over‐express and purify proteins from many different organisms. E. coli does, however, have known shortcomings for obtaining soluble, properly folded proteins suitable for downstream studies. These shortcomings are even more pronounced for the mycobacterial pathogen Mycobacterium tuberculosis, the bacterium that causes tuberculosis, with typically only one third of proteins expressed in E. coli produced as soluble proteins. Mycobacterium smegmatis (M. smegmatis) is a closely related and non‐pathogenic species that has been successfully used as an expression host for production of proteins from various mycobacterial species. In this review, we describe the early attempts to produce mycobacterial proteins in alternative expression hosts and then focus on available expression systems in M. smegmatis. The advantages of using M. smegmatis as an expression host, its application in structural biology and some practical aspects of protein production are also discussed. M. smegmatis provides an effective expression platform for enhanced understanding of mycobacterial biology and pathogenesis and for developing novel and better therapeutics and diagnostics.  相似文献   

4.
The increasing clinical importance of drug-resistant mycobacterial pathogens has lent additional urgency to microbiological research and new antimycobacterial compound development. For this purpose, new triazoles were synthesized and evaluated for antituberculosis activity. A series of 4-arylidenamino-4H-1,2,4-triazole-3-thiol derivatives (2a–n) were synthesized from the treatment of 4-amino-4H-1,2,4-triazoles-3-thiol (1) with the respective aldehydes and were evaluated for antituberculosis activity against Mycobacterium tuberculosis H37Rv (ATCC 27294), using the BACTEC 460 radiometric system and BACTEC 12B medium. Compound 2k showed an intereting activity at 6.25 μg/mL with a 87 percentage inhibition.  相似文献   

5.
Antibiotic resistance is a major public health problem globally. Particularly concerning amongst drug‐resistant human pathogens is Mycobacterium tuberculosis that causes the deadly infectious tuberculosis (TB) disease. Significant issues associated with current treatment options for drug‐resistant TB and the high rate of mortality from the disease makes the development of novel treatment options against this pathogen an urgent need. Antimicrobial peptides are part of innate immunity in all forms of life and could provide a potential solution against drug‐resistant TB. This review is a critical analysis of antimicrobial peptides that are reported to be active against the M tuberculosis complex exclusively. However, activity on non‐TB strains such as Mycobacterium avium and Mycobacterium intracellulare, whenever available, have been included at appropriate sections for these anti‐TB peptides. Natural and synthetic antimicrobial peptides of diverse sequences, along with their chemical structures, are presented, discussed, and correlated to their observed antimycobacterial activities. Critical analyses of the structure allied to the anti‐mycobacterial activity have allowed us to draw important conclusions and ideas for research and development on these promising molecules to realise their full potential. Even though the review is focussed on peptides, we have briefly summarised the structures and potency of the various small molecule drugs that are available and under development, for TB treatment.  相似文献   

6.

Background  

Susceptibility testing of pyrazinamide (PZA) against Mycobacterium tuberculosis is difficult to perform because the acidity of culture medium that is required for drug activity also inhibits the growth of bacteria. In Thailand, very limited information has been generated on PZA resistance, particularly among multidrug-resistant tuberculosis (MDR-TB) isolated from Thailand. Only two studies on PZA susceptibility among Thai M. tuberculosis strains have been reported; one used a pyrazinamidase assay, and the other used the BACTEC 460 TB for PZA susceptibility testing. In this study, we determined the percentage of strains possessing pyrazinamide resistance among pan-susceptible M. tuberculosis and MDR-TB isolates by using the pyrazinamidase assay, BACTEC MGIT 960 PZA method and pncA sequencing, and assessed the correlation in the data generated using these methods. The type and frequency of mutations in pncA were also determined.  相似文献   

7.
Aims: Polymerase chain reaction (PCR) is the most rapid and sensitive method for diagnosing mycobacterial infections and identifying the aetiological Mycobacterial species in order to administer the appropriate therapy and for better patient management. Methods and Results: Two hundred and thirty‐five samples from 145 clinically suspected cases of tuberculosis were processed for the detection of Mycobacterial infections by ZN (Ziehl Neelsen) smear examination, L‐J & BACTECTM MGIT‐960 culture and multiplex PCR tests. The multiplex PCR comprised of genus‐specific primers targeting hsp65 gene, Mycobacterium tuberculosis complex‐specific primer targeting cfp10 (Rv3875, esxB) region and Mycobacterium avium complex‐specific primer pairs targeting 16S–23S Internal Transcribed Spacer sequences. The multiplex PCR developed had an analytical sensitivity of 10 fg (3–4 cells) of mycobacterial DNA. The multiplex PCR test showed the highest (77·24%) detection rate, while ZN smear examination had the lowest (20%) detection rate, which was bettered by L‐J culture (34·4%) and BACTECTM MGIT‐960 culture (50·34%) methods. The mean isolation time for M. tuberculosis was 19·03 days in L‐J culture and 8·7 days in BACTECTM MGIT‐960 culture. Using the multiplex PCR, we could establish M. tuberculosis + M. avium co‐infection in 1·3% HIV‐negative and 2·9% HIV‐positive patients. The multiplex PCR was also highly useful in diagnosing mycobacteraemia in 38·09% HIV‐positive and 15·38% HIV‐negative cases. Conclusions: The developed in‐house multiplex PCR could identify and differentiate the M. tuberculosis and M. avium complexes from other Mycobacterial species directly from clinical specimens. Significance and Impact of the Study: The triplex PCR developed by us could be used to detect and differentiate M. tuberculosis, M. avium and other mycobacteria in a single reaction tube.  相似文献   

8.
Aims: To investigate the in vitro antiviral activity of Distictella elongata (Vahl) Urb. ethanol extracts from leaves (LEE), fruits (FEE), stems and their main components. Methods and Results: The antiviral activity was evaluated against human herpesvirus type 1 (HSV‐1), murine encephalomyocarditis virus (EMCV), vaccinia virus Western Reserve (VACV‐WR) and dengue virus 2 (DENV‐2) by the 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) colorimetric assay. LEE presented anti‐HSV‐1 [EC50 142·8 ± 5·3 μg ml?1; selectivity index (SI) 2·0] and anti‐DENV‐2 activity (EC50 9·8 ± 1·3 μg ml?1; SI 1·5). The pectolinarin ( 1 ) isolated from LEE was less active against HSV‐1 and DENV‐2. A mixture of the triterpenoids ursolic, pomolic and oleanolic acids was also obtained. Ursolic and oleanolic acids have shown antiviral activity against HSV‐1. A mixture of pectolinarin ( 1 ) and acacetin‐7‐O‐rutinoside ( 2 ) was isolated from FEE and has presented anti‐DENV‐2 activity (EC50 11·1 ± 1·6 μg ml?1; SI > 45). Besides the antiviral activity, D. elongata has disclosed antioxidant effect. Conclusions: These data shows that D. elongata has antiviral activity mainly against HSV‐1 and DENV‐2, besides antioxidant activity. These effects might be principally attributed to flavonoids isolated. Significance and Impact of the Study: Distictella elongata might be considered a promising source of anti‐dengue fever phytochemicals.  相似文献   

9.
Mycobacterium tuberculosis, the leading causative agent of tuberculosis, remains one of the most deadly infectious pathogens. PE_PGRS proteins become a new focus as their species specificity in mycobacteria, especially in pathogenic mycobacteria. Despite intensive research, PE_PGRS proteins are still a mysterious aspect of mycobacterial pathogenesis with unknown mechanism. Herein, we focused on a PE_PGRS member from M. tuberculosis, PE_PGRS62, characterized by a surface-exposed protein function in disrupting phagolysosome maturation. Expression of PE_PGRS62 in Mycobacterium smegmatis, a nonpathogenic species naturally deficient in PE_PGRS genes, resulted in enhanced resistance to various in vitro stresses and cellular survival in macrophage. As a consequence, the cytokine profiles of macrophage were disturbed and cell apoptosis were inhibited via decreasing endoplasmic reticulum stress response.  相似文献   

10.
The emergence of multidrug- or extremely drug-resistant M. tuberculosis strains has made very few drugs available for current tuberculosis treatment. Antimicrobial peptides can be employed as a promising alternative strategy for TB treatment. Here, we designed and synthesized a series of peptide sequences based on the structure-activity relationships of natural sequences of antimicrobial peptides. The peptide W3R6 and its analogs were screened and found to have potent antimycobacterial activity against M. smegmatis, and no hemolytic activity against human erythrocytes. The evidence from the mechanism of action study indicated that W3R6 and its analogs can interact with the mycobacterial membrane in a lytic manner and form pores on the outer membrane of M. smegmatis. Significant colocalization of D-W3R6 with mycobacterial DNA was observed by confocal laser scanning microscopy and DNA retardation assays, which suggested that the antimycobacterial mechanism of action of the peptide was associated with the unprotected genomic DNA of M. smegmatis. In general, W3R6 and its analogs act on not only the mycobacterial membrane but also the genomic DNA in the cytoplasm, which makes it difficult for mycobacteria to generate resistance due to the peptides having two targets. In addition, the peptides can effectively eliminate M. smegmatis cells from infected macrophages. Our findings indicated that the antimicrobial peptide W3R6 could be a novel lead compound to overcome the threat from drug-resistant M. tuberculosis strains in the development of potent AMPs for TB therapeutic applications.  相似文献   

11.
Development of accurate methods for predicting progression of tuberculosis (TB) from the latent state is recognized as vitally important in controlling TB, because a majority of cases develop from latent infections. Past TB that has never been treated has a higher risk of progressing than does latent Mycobacterium tuberculosis infection in patients who have previously received treatment. Antibody responses against 23 kinds of M. tuberculosis proteins in individuals with past TB who had not been medicated were evaluated. These individuals had significantly higher concentrations of antibodies against Antigen 85A and mycobacterial DNA‐binding protein 1 (MDP1) than did those with active TB and uninfected controls. In addition, immunohistochemistry revealed colocalization of tubercle bacilli, antigen 85 and MDP1 inside tuberculous granuloma lesions in an asymptomatic subject, showing that M. tuberculosis in lesions expresses both antigen 85 and MDP1. Our study suggests the potential usefulness of measuring antibody responses to antigen 85A and MDP1 for assessing the risk of TB progression.  相似文献   

12.
The appearance multi-drug resistant Mycobacterium tuberculosis (MTB) throughout the world has prompted a search for new, safer and more active agents against tuberculosis. Based on studies of the biosynthesis of mycobacterial cell wall polysaccharides, octyl 5-O-(α- -arabinofuranosyl)-α- -arabinofuranoside analogues were synthesized and evaluated as inhibitors for M. tuberculosis and Mycobacterium avium. A cell free assay system has been used for the evaluation of these disaccharides as substrates for mycobacterial arabinosyltransferase activity.  相似文献   

13.
d-ribose is an essential component of multiple important biological molecules and must first be phosphorylated by ribokinase before entering metabolic pathways. However, the function and regulation of ribokinases in Mycobacterium tuberculosis, the causative agent of tuberculosis, and its related species are largely unknown. In this study, we have characterized the activities of two putative ribokinases, Rv2436 and Ms4585, from M. tuberculosis and Mycobacterium smegmatis, respectively. The mycobacterial topoisomerase I (TopA) was found to physically interact with its ribokinase both in vitro and in vivo. By creating two ribokinase mutants that showed defective interactions with TopA, we further showed that the interaction between ribokinase and TopA had opposite effects on their respective function. While the interaction between the two proteins inhibited the ability of TopA to relax supercoiled DNA, it stimulated ribokinase activity. A cross-regulation assay revealed that the interaction between the two proteins was conserved in the two mycobacterial species. Thus, we uncovered an interplay between ribokinase and topoisomerase I in mycobacteria, which implies the existence of a novel regulatory strategy for efficient utilization of d-ribose in M. tuberculosis that may be useful in stressful environments with restricted access to nutrients.  相似文献   

14.
Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, has an extraordinary ability to survive against environmental stresses including antibiotics. Although stress tolerance of M. tuberculosis is one of the likely contributors to the 6-month long chemotherapy of tuberculosis 1, the molecular mechanisms underlying this characteristic phenotype of the pathogen remain unclear. Many microbial species have evolved to survive in stressful environments by self-assembling in highly organized, surface attached, and matrix encapsulated structures called biofilms 2-4. Growth in communities appears to be a preferred survival strategy of microbes, and is achieved through genetic components that regulate surface attachment, intercellular communications, and synthesis of extracellular polymeric substances (EPS) 5,6. The tolerance to environmental stress is likely facilitated by EPS, and perhaps by the physiological adaptation of individual bacilli to heterogeneous microenvironments within the complex architecture of biofilms 7.In a series of recent papers we established that M. tuberculosis and Mycobacterium smegmatis have a strong propensity to grow in organized multicellular structures, called biofilms, which can tolerate more than 50 times the minimal inhibitory concentrations of the anti-tuberculosis drugs isoniazid and rifampicin 8-10. M. tuberculosis, however, intriguingly requires specific conditions to form mature biofilms, in particular 9:1 ratio of headspace: media as well as limited exchange of air with the atmosphere 9. Requirements of specialized environmental conditions could possibly be linked to the fact that M. tuberculosis is an obligate human pathogen and thus has adapted to tissue environments. In this publication we demonstrate methods for culturing M. tuberculosis biofilms in a bottle and a 12-well plate format, which is convenient for bacteriological as well as genetic studies. We have described the protocol for an attenuated strain of M. tuberculosis, mc27000, with deletion in the two loci, panCD and RD1, that are critical for in vivo growth of the pathogen 9. This strain can be safely used in a BSL-2 containment for understanding the basic biology of the tuberculosis pathogen thus avoiding the requirement of an expensive BSL-3 facility. The method can be extended, with appropriate modification in media, to grow biofilm of other culturable mycobacterial species.Overall, a uniform protocol of culturing mycobacterial biofilms will help the investigators interested in studying the basic resilient characteristics of mycobacteria. In addition, a clear and concise method of growing mycobacterial biofilms will also help the clinical and pharmaceutical investigators to test the efficacy of a potential drug.  相似文献   

15.
Abstract

Cytochrome bcc complex is important for ATP synthesis and cellular activity, as a crucial step in the terminal reduction of oxygen in aerobic electron transport chains. The b subunit of cytochrome bcc complex (QcrB) has been reported as a promising anti-tuberculosis target, with many novel anti-tuberculosis scaffolds reported. However, the 3D structure of mycobacterium tuberculosis (M. tuberculosis) QcrB has not been released, making it hard to understand the interactions between QcrB and its inhibitors as well as to develop novel anti-tuberculosis scaffolds. Herein we built the optimal homology model of M. tuberculosis QcrB using the M. smegmatis QcrB structure as template, which was refined through all-atom molecular dynamics simulation. Then, the binding modes of known inhibitors were predicted through molecular docking method, along with molecular dynamics simulation and binding free energy calculation to verify the accuracy of docking results and stability of the protein-inhibitor complexes. The informative key residues within QcrB site enabled us to perform structure-based virtual library screening to obtain potential M. tuberculosis QcrB inhibitors, which were validated through molecular dynamics simulation and MM-GBSA calculation and analyzed through pharmacokinetic properties prediction. Our research would provide a deeper insight into the interactions between M. tuberculosis QcrB and its inhibitors, which boosts to develop novel therapy against tuberculosis.

Communicated by Ramaswamy H. Sarma  相似文献   

16.
Plants defend their leaves using multiple defense traits that change functions with leaf age. We examined the effects of leaf age on the development of multiple defense traits in two related Mallotus (Euphorbiaceae) species: young plants of the fast‐growing Mallotus japonicus (Spreng.) Müll. Arg. and the slow‐growing Mallotus philippensis (Lam.) Müll. Arg. Sequential leaves of the two species were measured for their leaf area, leaf mass/area, densities of trichomes and pellucid dots, extrafloral nectar volume, and the numbers of extrafloral nectaries and pearl bodies. Mallotus japonicus shifted its defense tactics from direct defense using trichomes and pellucid dots in young leaves to biotic defense using extrafloral nectar and pearl bodies in middle‐aged leaves. In contrast, M. philippensis used direct, chemical defense throughout all leaf ages, together with the shift from indirect, biotic defense using extrafloral nectar in young leaves to direct, physical defense using leaf toughness in middle‐aged leaves. These results strongly suggest that, in relation to life history, plants can alter optimal combinations of multiple defense traits with leaf age.  相似文献   

17.
In contrast to the great majority of mycobacterial species that are harmless saprophytes, Mycobacterium tuberculosis and other closely related tubercle bacilli have evolved to be among the most important human and animal pathogens. The need to develop new strategies in the fight against tuberculosis (TB) and related diseases has fuelled research into the evolutionary success of the M. tuberculosis complex members. Amongst the various disciplines, genomics and functional genomics have been instrumental in improving our understanding of these organisms. In this review we will present some of the recent key findings on molecular determinants of mycobacterial pathogenicity and attenuation, the evolution of M. tuberculosis, genome dynamics, antigen mining for improved diagnostic and subunit antigens, and finally the identification of novel drug targets. The genomics revolution has changed the landscape of TB research, and now underpins our renewed efforts to defeat this deadly pathogen.  相似文献   

18.
Arylamine N-acetyltransferases (NATs) are found in many eukaryotic organisms, including humans, and have previously been identified in the prokaryote Salmonella typhimurium. NATs from many sources acetylate the antitubercular drug isoniazid and so inactivate it. nat genes were cloned from Mycobacterium smegmatis and Mycobacterium tuberculosis, and expressed in Escherichia coli and M. smegmatis. The induced M. smegmatis NAT catalyzes the acetylation of isoniazid. A monospecific antiserum raised against pure NAT from S. typhimurium recognizes NAT from M. smegmatis and cross-reacts with recombinant NAT from M. tuberculosis. Overexpression of mycobacterial nat genes in E. coli results in predominantly insoluble recombinant protein; however, with M. smegmatis as the host using the vector pACE-1, NAT proteins from M. tuberculosis and M. smegmatis are soluble. M. smegmatis transformants induced to express the M. tuberculosis nat gene in culture demonstrated a threefold higher resistance to isoniazid. We propose that NAT in mycobacteria could have a role in acetylating, and hence inactivating, isoniazid.  相似文献   

19.
20.
Screening live mycobacterial vaccine candidates is the important strategy to develop new vaccines against adult tuberculosis (TB). In this study, the immunogenicity and protective efficacy of several avirulent mycobacterial strains including Mycobacterium smegmatis, M. vaccae, M. terrae, M. phlei, M. trivial, and M. tuberculosis H37Ra were compared with M. bovis BCG in BALB/c mice. Our results demonstrated that differential immune responses were induced in different mycobacterial species vaccinated mice. As BCG-vaccinated mice did, M. terrae immunization resulted in Th1-type responses in the lung, as well as splenocytes secreting IFN-γ against a highly conserved mycobacterial antigen Ag85A. M. smegmatis also induced the same splenocytes secreting IFN-γ as BCG and M. terrae did. In addition, M. terrae and M. smegmatis-immunized mice predominantly increased expression of IL-10 and TGF-β in the lung. Most importantly, mice vaccinated with H37Ra and M. vaccae could provide the same protection in the lung against virulent M. tuberculosis challenge as BCG. The result may have important implications in developing adult TB vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号