首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smad7对Smad2、Smad3、Smad4核转位的抑制作用   总被引:3,自引:0,他引:3  
研究人永生化支气管上皮BEP2D细胞中,作为Smad蛋白家族的抑制分子,Smad7对TGF-β信号通路中Smad2、Smad3、Smad4核转位的抑制作用.培养BEP2D细胞,瞬时转染Smad7真核表达载体pCISmad7.neo,TGF-β刺激,提取细胞核蛋白及总蛋白,用Western blot方法比较瞬时转染Smad7基因前后细胞核中Smad2、Smad3、Smad4蛋白表达的差异.结果,Smad3在TGF-b作用下有明显的核转位;转染Smad7后Smad3、Smad4的核转位显受到抑制.表明在BEP2D细胞中,Smad7对TGF-β/Smads信号通路的拮抗作用主要通过抑制Smad3的活化、Smad3/Smad4异源复合物的形成及核转位,从而拮抗TGF-β对细胞的生长抑制效应.  相似文献   

2.
Glucocorticoids represent the mainstay therapy for many lung diseases, providing outstanding management of asthma but performing surprisingly poorly in patients with acute respiratory distress syndrome, chronic obstructive pulmonary disease, lung fibrosis, and blunted lung development associated with bronchopulmonary dysplasia in preterm infants. TGF-β is a pathogenic mediator of all four of these diseases, prompting us to explore glucocorticoid/TGF-β signaling cross-talk. Glucocorticoids, including dexamethasone, methylprednisolone, budesonide, and fluticasone, potentiated TGF-β signaling by the Acvrl1/Smad1/5/8 signaling axis and blunted signaling by the Tgfbr1/Smad2/3 axis in NIH/3T3 cells, as well as primary lung fibroblasts, smooth muscle cells, and endothelial cells. Dexamethasone drove expression of the accessory type III TGF-β receptor Tgfbr3, also called betaglycan. Tgfbr3 was demonstrated to be a “switch” that blunted Tgfbr1/Smad2/3 and potentiated Acvrl1/Smad1 signaling in lung fibroblasts. The Acvrl1/Smad1 axis, which was stimulated by dexamethasone, was active in lung fibroblasts and antagonized Tgfbr1/Smad2/3 signaling. Dexamethasone acted synergistically with TGF-β to drive differentiation of primary lung fibroblasts to myofibroblasts, revealed by acquisition of smooth muscle actin and smooth muscle myosin, which are exclusively Smad1-dependent processes in fibroblasts. Administration of dexamethasone to live mice recapitulated these observations and revealed a lung-specific impact of dexamethasone on lung Tgfbr3 expression and phospho-Smad1 levels in vivo. These data point to an interesting and hitherto unknown impact of glucocorticoids on TGF-β signaling in lung fibroblasts and other constituent cell types of the lung that may be relevant to lung physiology, as well as lung pathophysiology, in terms of drug/disease interactions.  相似文献   

3.
Liver fibrosis is a chronic inflammatory process characterized by the accumulation of extracellular matrix (ECM), which contributes to cirrhosis and hepatocellular carcinoma. Increasing evidence suggests that the activation of hepatic stellate cells (HSCs) under an inflammatory state leads to the secretion of collagens, which can cause cirrhosis. In this study, we analysed data from the Gene Expression Omnibus (GEO) databases to identify differentially expressed genes (DEGs) between quiescent and fibrotic HSCs. We found that Microfibril Associated Protein 2 (MFAP2) was elevated in carbon tetrachloride (CCl4)-induced liver fibrosis and Transforming Growth Factor-Beta 1 (TGF-β1)-activated HSCs. Knockdown of MFAP2 inhibited HSC proliferation and partially attenuated TGF-β-stimulated fibrogenesis markers. Bioinformatics analysis revealed that Fibrillin-1 (FBN1) was correlated with MFAP2, and the expression of FBN1 was significantly upregulated after MFAP2 overexpression. Silencing MFAP2 partially attenuated the activation of HSCs by inhibiting HSC proliferation and decreasing collagen deposits. In vitro results showed that the inhibition of MFAP2 alleviated hepatic fibrosis by inhibiting the activation and inducing the apoptosis of active HSCs in a CCl4-induced mouse model. In conclusion, our results suggest that MFAP2 is a potential target for the clinical treatment of liver fibrosis.  相似文献   

4.
用酵母双杂交系统研究Smad3和Smad4的相互作用   总被引:3,自引:0,他引:3  
Sm ad3 和 Sm ad4 是将 T G F β的信号从细胞外传递到细胞核内的重要的信号传导蛋白. T G F β与其受体结合后,激活受体的磷酸激酶,使 Sm ad3 发生磷酸化,活化的 Sm ad3 与 Sm ad4 结合,形成异源复合物,进入到核中.然后 Sm ad4 以 D N A 结合蛋白的形式与特定的 D N A 结合,将 T G F β的信号传到核内.激活转录,诱导背中胚层的形成,抑制细胞的分化等.经研究利用酵母双杂交试验,鉴定了 Sm ad3 和 Sm ad4 相互作用的功能区域.构建 Sm ad3 和 Sm ad4 的 C 端、 N 端和中间连接区的突变体,将这些突变体克隆到 p G A D424 和 p G B T9 载体中,并转化到 H F7 C 酵母中.通过 Leu- / Trp- / His- S D 平板上菌落的形成,和 X- gal显色反应鉴定转化到酵母中的两个克隆质粒的相互作用.结果显示 Sm ad4 与 Sm ad3 异源相五作用时,主要是通过 Sm ad4 的中间连接区.在同源作用时, Sm ad3 是通过 C 端,而 Sm ad4 是通过中间连接区进行的.  相似文献   

5.
Smad2/3上调促进大鼠梗阻性肾病的纤维化和凋亡   总被引:1,自引:1,他引:0  
目的观察TGF-β1/Smads信号传导途径对大鼠肾间质纤维化表达的影响.方法 40只Wistar大鼠分为假手术组及模型组.单侧输尿管结扎术式(UUO)建立肾梗阻模型.分别于术后3、6、14和28d处死动物.应用免疫组织化学和流式细胞学技术来检测TGF-β1、Smad2/3、p-Smad2/3和观察细胞外基质以及细胞凋亡的改变.MASSON染色观察肾间质病变程度.结果与假手术组相比,模型组于术后3d梗阻肾TGF-β1、Smad2/3、p-Smad2/3开始升高,细胞凋亡百分率同时升高,I型胶原及α-平滑肌肌动蛋白(α-SMA)水平亦升高.第6d各项指标水平显著升高.第14、28d升高更加明显(P<0.01).B3、B6、B14和B28组之间也随天数增加而显著升高(P<0.01).肾间质病变面积增加显著(P<0.01).结论在肾间质纤维化中TGF-β1、Smad2/3、p-Smad2/3及细胞凋亡明显上升,同时I型胶原及α-SMA表达升高及肾间质纤维化程度增加.TGF-β1/Smads信号传导途径在肾间质纤维化形成中可能起着重要促细胞外基质沉积和细胞凋亡的作用.  相似文献   

6.
修复相关基因Smad3及其产物对创面愈合非常重要。Smad3基因的失控可能是创面愈合延迟,不愈合或过度愈合(增生瘢痕形成)的真正原因, Smad3蛋白通过介导β转化生长因子(TGF-β)的细胞内信号传递和调节角化细胞及单核细胞的功能,发挥其生物学活性。  相似文献   

7.
临床实践表明,富含血小板的血浆(PRP)注射是延缓椎间盘退变的有效方法,但其作用机制尚不清楚。已有研究表明,活化的血小板可释放转化生长因子-β1 (TGF-β1),它可以正向调节髓核细胞的细胞外基质。本研究旨在揭示TGF-β1/Smad 2/3信号通路在PRP缓解椎间盘退变过程中的作用机制。本研究通过制备新西兰白兔PRP,并使用PRP和TGF-β1抑制剂(SB431542)处理白兔髓核细胞,检测PRP对髓核细胞增殖、软骨形成标志物(CollagenⅡ和Aggrecan) m RNA的表达、Smad 2/3及相关髓核细胞功能蛋白表达的影响。结果显示,用2%PRP处理的髓核细胞的增殖显著增强。PRP处理显著增加髓核细胞中的CollagenⅡ和Aggrecan的mRNA水平。Western blotting结果显示,TGF-β1信号通路的特异性抑制剂可显著抑制Smad 2/3和基质蛋白的表达。在兔椎间盘退变模型中,PRP+抑制剂注射组的Smad 2/3和CollagenⅡ的表达水平显著低于PRP处理组。这些结果表明,PRP中由于TGF-β1含量高,可激活TGF-β1/Smad 2/3途径,并促进CollagenⅡ和其他基质成分的合成和分泌,从而延缓了椎间盘退变。  相似文献   

8.
9.
Zi Z  Chapnick DA  Liu X 《FEBS letters》2012,586(14):1921-1928
The physiological responses to TGF-β stimulation are diverse and vary amongst different cell types and environmental conditions. Even though the principal molecular components of the canonical and the non-canonical TGF-β signaling pathways have been largely identified, the mechanism that underlies the well-established context dependent physiological responses remains a mystery. Understanding how the components of TGF-β signaling function as a system and how this system functions in the context of the global cellular regulatory network requires a more quantitative and systematic approach. Here, we review the recent progress in understanding TGF-β biology using integration of mathematical modeling and quantitative experimental analysis. These studies reveal many interesting dynamics of TGF-β signaling and how cells quantitatively decode variable doses of TGF-β stimulation.  相似文献   

10.
11.
Imbalances in glucose and energy homeostasis are at the core of the worldwide epidemic of obesity and diabetes. Here, we illustrate an important role of the TGF-β/Smad3 signaling pathway in regulating glucose and energy homeostasis. Smad3-deficient mice are protected from diet-induced obesity and diabetes. Interestingly, the metabolic protection is accompanied by Smad3(-)(/-) white adipose tissue acquiring the bioenergetic and gene expression profile of brown fat/skeletal muscle. Smad3(-/-) adipocytes demonstrate a marked increase in mitochondrial biogenesis, with a corresponding increase in basal respiration, and Smad3 acts as a repressor of PGC-1α expression. We observe significant correlation between TGF-β1 levels and adiposity in rodents and humans. Further, systemic blockade of TGF-β signaling protects mice from obesity, diabetes, and hepatic steatosis. Together, these results demonstrate that TGF-β signaling regulates glucose tolerance and energy homeostasis and suggest that modulation of TGF-β activity might be an effective treatment strategy for obesity and diabetes.  相似文献   

12.
13.
Transforming growth factor-β (TGF-β) is upregulated at the time of arterial injury; however, the mechanism through which TGF-β enhances the development of intimal hyperplasia is not clear. Recent studies from our laboratory suggest that in the presence of elevated levels of Smad3, TGF-β stimulates smooth muscle cell (SMC) proliferation. This is a novel phenomenon in that TGF-β has traditionally been known as a potent inhibitor of cellular proliferation. In these studies we explore the signaling pathways through which TGF-β mediates its proliferative effect in vascular SMCs. We found that TGF-β phosphorylates and activates Akt in a time-dependent manner, and this effect is significantly enhanced by overexpression of Smad3. Furthermore, both chemical and molecular inhibition of Smad3 can reverse the effect of TGF-β on Akt. Although we found numerous signaling pathways that might function as intermediates between Smad3 and Akt, p38 appeared the most promising. Overexpression of Smad3 enhanced p38 phosphorylation and inhibition of p38 with a chemical inhibitor or a small interfering RNA blocked TGF-β-induced Akt phosphorylation. Moreover, TGF-β/Smad3 enhancement of SMC proliferation was blocked by inhibition of p38. Phosphorylation of Akt by TGF-β/Smad3 was not dependent on gene expression or protein synthesis, and immunoprecipitation studies revealed a physical association among p38, Akt, and Smad3 suggesting that activation requires a direct protein-protein interaction. Our findings were confirmed in vivo where overexpression of Smad3 in a rat carotid injury model led to enhancement of p-p38, p-Akt, as well as SMC proliferation. Furthermore, inhibition of p38 in vivo led to decreased Akt phosphorylation and SMC proliferation. In summary, our studies reveal a novel pathway whereby TGF-β/Smad3 stimulates SMC proliferation through p38 and Akt. These findings provide a potential mechanism for the substantial effect of TGF-β on intimal hyperplasia and suggest new targets for chemical or molecular prevention of vascular restenosis.  相似文献   

14.
The purpose of this study was to investigate the role of Poly (C)-binding protein 2 (PCBP2) and the related signaling pathway in glioma progression. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were performed to measure PCBP2 messenger RNA and protein expression in glioma tissues or cells. Cell transfection was completed using Lipofectamine 2000. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Transwell assay and flow cytometry assay were used to explore the effects of PCBP2 expression on biological behaviors of glioma cells. Western blot assay was used for the detection of pathway related proteins. Expression of PCBP2 in glioma tissues and cells were higher than that in paracancerous tissues and normal cells (both p < .01). Moreover, the elevated expression of PCBP2 was significantly correlated with tumor size (p = .001) and WHO stage (p = .010). Knockdown of PCBP2 could suppress proliferation, migration and invasion of glioma cells and promote apoptosis. Besides, the expression of transforming growth factor-β (TGF-β) pathway related proteins TGF-β1, p-Smad2 and p-Smad7 were decreased following the downregulation of PCBP2. PCBP2 also inhibited FHL3 expression by binding to FHL3-3′UTR. The inhibition of FHL3 could reverse the antitumor action caused by PCBP2 silencing. In vivo assay, PCBP2 was also found to inhibit the tumor growth of glioma. PCBP2 activates TGF-β/Smad signaling pathway by inhibiting FHL3 expression, thus promoting the development and progression of glioma.  相似文献   

15.
16.
Glucose-regulated protein of 78 kD (GRP78) is a multifunctional protein belonging to the heat shock protein 70 family. Overexpression of GRP78 triggered by environmental and physiological stresses is positively correlated with the occurrence and progression of various tumors, but the molecular mechanisms have not been well established. The present study indicated that overexpression of GRP78 in colon cancer cells could promote cell-matrix adhesion through the upregulation of fibronectin, integrin-β1 and phosphorylated FAK. Meanwhile, it resulted in a visible epithelial–mesenchymal transition in DLD1 cells, and the Snail-2 played the key role during the process. More importantly, the data indicated that GRP78 overexpression facilitated the expression and secretion of TGF-β1, which further activated the downstream Smad2/3 signaling module to effectuate the cell-matrix adhesion and epithelial–mesenchymal transition. Taken together, this study provides a novel molecular mechanism involving in the effects of GRP78 on colon cancer metastasis.  相似文献   

17.
Oral squamous cell carcinoma (OSCC) is a malignant neoplasm with high mortality and morbidity. The role of circRNA and its molecular mechanism in OSCC remains largely unknown. The study aims to explore the role of a novel circular RNA (circLDLRAD3) in OSCC and its underlying mechanism. PCR and fluorescence in situ hybridization were used to explore the expression features of circLDLRAD3 in OSCC. The effects of circLDLRAD3 on the behaviour of OSCC were investigated using CCK-8, colony formation assay, transwell and animal experiments. Bioinformatics analysis along with dual luciferase reporter assay and RIP assay were used to reveal the interaction between circLDLRAD3, miR-558 and Smad4. It was revealed that circLDLRAD3 exhibited low expression status in OSCC. CircLDLRAD3 inhibits proliferation, migration, and invasion of OSCC cells both in vitro and in vivo. Mechanistically, circLDLRAD3 could bind with miR-558 to positively regulate its target gene Smad4 expression. Rescue experiments further confirmed both miR-558 overexpression and Smad4 knockdown could reverse the influence of circLDLRAD3 on OSCC phenotypes. Moreover, circLDLRAD3 regulate the TGF-β signalling pathways to influence EMT through miR-558/Smad4 axis. Our study found that circLDLRAD3 is downregulated in OSCC and verified its tumour suppressor function and mechanism in OSCC through sponging miR-558 to regulate miR-558/Smad4/TGF-β axis. The characterization of such regulating network uncovers an important mechanism underlying OSCC progression, which could provide promising targets targeted therapy strategies for OSCC in the future.  相似文献   

18.
A missense mutation of Smad2 identified in cancer cells was reconstructed on the corresponding residue of Smad3. This mutant, Smad3D407E, was not phosphorylated by the constitutively active form of type I receptor for transforming growth factor-β (TGF-β), and inhibited the phosphorylation of co-expressed wild-type Smad2 and Smad3. This mutant also had a dominant negative effect on the growth inhibition of HaCaT cells and on the expression of p3TP-lux reporter gene induced by TGF-β. However, it did not alter the phosphorylation of Smad1 induced by the constitutively active form of the bone morphogenetic protein type IA receptor. These findings showed that a single missense mutation in Smad3 could specifically block TGF-β signals by preventing activation of both Smad2 and Smad3.  相似文献   

19.
20.
Smad2/3蛋白及其活化形式在人肾脏中的表达和定位   总被引:1,自引:0,他引:1  
目的研究Smad2和Smad3蛋白及其活化形式P—Smad2、P—Smad3在人正常肾脏组织中的表达、定位及其意义。方法采用免疫组织化学技术(SP法)检测20例人肾脏中Smad2、Smad3蛋白及P—Smad2、P-Smad3的表达和定位。结果Smad2、Smad3在肾小管、肾小球和集合小管中广泛表达,主要定位于细胞质,其中远端小管曲部呈强阳性;P-Smad2、p-Smad3也在肾脏皮、髓质中广泛分布,主要定位于细胞核,远端小管更多见。结论Smad2、Smad3在正常肾脏中有着活跃的功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号