首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nature of the energy source for phosphate transport was studied in strains of Escherichia coli in which either one of the two major systems (PIT, PST) for phosphate transport was present. In the PIT system, phosphate transport is coupled to the proton-motive force. The energy source for the PST system appears to be phosphate-bond energy, as has been found in other systems involving binding proteins. High concentration gradients of phosphate (between 100 and 500) are established by both systems.  相似文献   

2.
Silver ions inhibited phosphate uptake and exchange in Escherichia coli and caused efflux of accumulated phosphate as well as of mannitol, succinate, glutamine, and proline. The effects of Ag+ were reversed by thiols and, to a lesser extent, by bromide. In the presence of N-ethylmaleimide and several uncouplers, Ag+ failed to cause phosphate efflux, but still inhibited exchange of intracellular and extracellular phosphate, indicating an interaction at more than one site. It is unlikely that Ag+ caused metabolite efflux by acting solely as an uncoupler, as an inhibitor of the respiratory chain, or as a thiol reagent.  相似文献   

3.
Purified Escherichia coli K-12 ribose binding protein was used to reconstitute the high affinity ribose transport system in spheroplasts derived from ribose-induced cells. It was not possible to reconstitute ribose transport in spheroplasts derived from uninduced cells or from transport-negative mutant strains, suggesting that one or more additional inducible components are required for binding protein-dependent ribose transport. It was possible to reconstitute transport in a ribokinase-deficient mutant which constitutively transports but does not utilize ribose.  相似文献   

4.
Cells of Proteus sp. strains NTHC153 grown anaerobically with glucose and trimethylamine oxide (TMAO) were converted to spheroplasts by the penicillin method. The spheroplasts were lysed by osmotic shock, and the membrane vesicles were purified by sucrose gradient centrifugation. Vesicles energized electron transfer from formate to TMAO displayed active anaerobic transport of serine. An anaerobic cell-free extract of Proteus sp. disrupted in a French pressure cell reduced TMAO with formate and NADH with the concomitant formation of organic phosphate. The net P/2e- ratios determined were 0.1 and 0.3, respectively. The NADH- and TMAO-dependent phosphorylation was sensitive to uncouplers of oxidative phosphorylation (protonophores), and the formate- and TMAO-dependent serine transport was sensitive to ionophores and protonophores. We conclude that TMAO reduction in Proteus sp. fulfills the essential features of anaerobic respiration.  相似文献   

5.
Kre1p, the plasma membrane receptor for the yeast K1 viral toxin   总被引:6,自引:0,他引:6  
Breinig F  Tipper DJ  Schmitt MJ 《Cell》2002,108(3):395-405
Saccharomyces cerevisiae K1 killer strains are infected by the M1 double-stranded RNA virus encoding a secreted protein toxin that kills sensitive cells by disrupting cytoplasmic membrane function. Toxin binding to spheroplasts is mediated by Kre1p, a cell wall protein initially attached to the plasma membrane by its C-terminal GPI anchor. Kre1p binds toxin directly. Both cells and spheroplasts of Deltakre1 mutants are completely toxin resistant; binding to cell walls and spheroplasts is reduced to 10% and < 0.5%, respectively. Expression of K28-Kre1p, an inactive C-terminal fragment of Kre1p retaining its toxin affinity and membrane anchor, fully restored toxin binding and sensitivity to spheroplasts, while intact cells remained resistant. Kre1p is apparently the toxin membrane receptor required for subsequent lethal ion channel formation.  相似文献   

6.
The effect of arsenate on strains dependent on the two major inorganic phosphate (Pi) transport systems in Escherichia coli was examined in cells grown in 1 mM phosphate medium. The development of arsenate-resistant Pi uptake in a strain dependent upon the Pst (phosphate specific transport) system was examined. The growth rate of Pst-dependent cells in arsenate-containing medium was a function of the arsenate-to-Pi ratio. Growth in arsenate-containing medium was not due to detoxification of the arsenate. Kinetic studies revealed that cells grown with a 10-fold excess of arsenate to Pi have almost a twofold increase in capacity (Vmax) for Pi, but maintained the same affinity (Km). Pi accumulation in the Pst-dependent strain was still sensitive to changes in the arsenate-to-Pi ratio, and a Ki (arsenate) for Pi transport of 39 microM arsenate was determined. The Pst-dependent strain did not accumulate radioactive arsenate, and showed only a transient decrease in intracellular adenosine triphosphate levels after arsenate was added to the medium. The Pi transport-dependent strain ceased growth in arsenate-containing media. This strain accumulated 74As-arsenate, and intracellular adenosine triphosphate pools were almost completely depleted after the addition of arsenate to the medium. Arsenate accumulation required a metabolizable energy source and was inhibited by N-ethylmaleimide. Previously accumulated arsenate could exchange with arsenate or Pi in the medium.  相似文献   

7.
Pancreastatin (PST), a chromogranin A derived peptide with an array of effects in different tissues, has a role as a counterregulatory hormone of insulin action in hepatocytes and adipocytes, regulating glucose, lipid and protein metabolism. We have previously characterized PST receptors and signaling in rat hepatocytes, in which PST functions as a calcium-mobilizing hormone. In the present work we have studied PST receptors as well as the signal transduction pathways generated upon PST binding in adipocyte membranes. First, we have characterized PST receptors using radiolabeled PST as a ligand. Analysis of binding data indicated the existence of one class of binding sites, with a B(max) of 5 fmol/mg of protein and a K(d) of 1 nM. In addition, we have studied the G protein system that couples the PST receptor by gamma-(35)S-GTP binding studies. We have found that two G protein systems are involved, pertussis toxin-sensitive and -insensitive respectively. Specific anti-G protein alpha subtype sera were used to block the effect of pancreastatin receptor activation. Galpha(q/11) and to a lesser extent Galpha(i1,2) are activated by PST in rat adipocyte membranes. On the other hand, adenylate cyclase activity was not affected by PST. Finally, we have studied the specific phospholipase C isoform that is activated in response to PST. We have found that PST receptor is coupled to PLC-beta(3) via Galpha(q/11) activation in adipocyte membranes.  相似文献   

8.
Six strains of Nocardia asteroides, two strains of N. caviae, and two strains of N. braziliensis were grown in medium supplementted with glycine, lysozyme, D-cycloserine, glycine plus lysozyme, and glycine plus D-cycloserine. It was shown that three strains of N. asteroides, and two strains of N. caviae, readily formed spheroplasts and/or protoplasts when grown in the presence of glycine plus either lysozyme or D-cycloserine. This process was studied by both phase contrast microscopy and electron microscopy. The induced cultures were then plated on hypertonic medium for the isolation of L-forms. It was shown that the organisms differed greatly in their ability to produce spheroplasts and subsequently grew as L-forms or transitional-phase variants.  相似文献   

9.
Brochocin-C is a two-peptide bacteriocin produced by Brochothrix campestris ATCC 43754 that has a broad activity spectrum comparable to that of nisin. Brochocin-C has an inhibitory effect on EDTA-treated gram-negative bacteria, Salmonella enterica serovar Typhimurium lipopolysaccharide mutants, and spheroplasts of Typhimurium strains LT2 and SL3600. Brochocin-C treatment of cells and spheroplasts of strains of LT2 and SL3600 resulted in hydrolysis of ATP. The outer membrane of gram-negative bacteria protects the cytoplasmic membrane from the action of brochocin-C. It appears that brochocin-C is similar to nisin and possibly does not require a membrane receptor for its function; however, the difference in effect of the two bacteriocins on intracellular ATP indicates that they cause different pore sizes in the cytoplasmic membrane.  相似文献   

10.
Reconstitution of phosphate transport in Escherichia coli was demonstrated. Conversion of E. coli K10 cells to spheroplasts decreased phosphate transport to about 2%. Addition of purified phosphate-binding protein at physiological levels to these spheroplasts caused a mean 14-fold increase in phosphate transport rate. Crude shock fluid fractions were also stimulatory but not if the shock fluid was obtained from mutants lacking phosphate-binding protein. The effect of the binding protein was abolished by its specific antibody. The phosphate was shown to have entered the cell, where it became esterified. Reconstitution was not possible with cold-shocked or osmotically shocked cells.  相似文献   

11.
We examined intracellular and extracellular paralytic shellfish toxins (PST) in a strain of Aphanizomenon sp. (LMECYA31) isolated from a Portuguese freshwater reservoir throughout the growth cycle and under different conditions affected by temperature and nitrate and phosphate availability. PST concentrations and compositions were greatly influenced by cell density, growth stage, and temperature and nutrients conditions. On a per‐cell basis results showed (1) the enhancement of PST cell quota after the end of exponential growth phase in nutrient replete batch cultures, (2) the absence of a PST increment at late growth stages under phosphate limitation, (3) a rise in PST maximum cell quota under nitrate depletion, and (4) the enhancement of toxin production at higher temperatures. The relative proportion of the four toxins detected, neoSTX, dcSTX, STX and GTX5, also changed within and between culture settings. While growing under phosphate rich media cells produced mainly GTX5 and neoSTX, whereas under phosphate limitation the proportion of STX and dcSTX increased substantially with culture age. Large amounts of extracellular toxins were found in the culture medium, increasing during culture time. Extracellular toxin composition in each culture was fairly constant and always similar to the intracellular composition found at late stages of growth. This further supported other research that indicates that PSTs are released to the water through cell lysis, and a significant concentration of PST may be expected to remain in the water upon the collapse of a toxic bloom or after cells removal by water treatment.  相似文献   

12.
Rickettsial permeability. An ADP-ATP transport system.   总被引:51,自引:0,他引:51  
The obligate intracellular parasitic bacterium, Rickettsia prowazeki, has a carrier-mediated transport system for ADP and ATP. The transport of nucleotides was measured by membrane filtration assays; the assay was shown not to harm the relatively labile rickettsiae. The nucleotide transport system was shown to reside in the rickettsiae, not in the contaminating yolk sac mitochondria of the preparation. The influx of nucleotide had an activation energy of 12 to 13 kcal above 22 deg-rees (an apparent transition temperature), and 30 kcal below this value. The uptake of nucleotide was independent of the Mg2+ concentration, but was markedly stimulated by the phosphate concentration. The pH optimum of the influx of nucleotide was pH 7. The specificity of the transport system was remarkable in that it required a specific moiety in each portion of the nucleotide, i.e. an adenine base, a ribose sugar, and two or three, but not one, phosphates. Of the wide variety of compounds tested, the system could transport only ADP, ATP, and (beta, gamma-methylene) adenosine 5'-triphosphate. The influx of nucleotide was a saturable process; half-maximum velocity was achieved at a nucleotide concentration of about 75 muM. ADP and ATP were competitive inhibitors of each other's transport. Although at least 95% of the labeled intracellular nucleotide was exchangeable, efflux of labeled nucleotide was observed only in the presence of unlabeled nucleotide in the medium. Half-maximum efflux was achieved at a concentration of about 75 muM. A large intracellular to extracellular concentration gradient of labeled nucleotide was maintained in the presence of metabolic inhibitors and uncouplers, which completely abolished rickettsial hemolysis. While having no effect on the steady state, KCN and DNP accelerated both influx and efflux. Measurements of the endogenous pool of adenine nucleotides in isolated rickettsiae show that is was large (5 mM), and that these unlabeled nucleotides exchanged, on approximately a 1/1 basis, with exogenously added nucleotide. These studies support the proposal that rickettsiae are not "leaky" to adenine nucleotides or to small molecules in general, and that they have a carrier-mediated transport system which allows an exchange of host and parasite ADP and ATP.  相似文献   

13.
Uptake of adenine, hypoxanthine and uracil by an uncA strain of Escherichia coli is inhibited by uncouplers or when phosphate in the medium is replaced by less than 1 mM-arsenate, indicating a need for both a protonmotive force and phosphorylated metabolites. The rate of uptake of adenine or hypoxanthine was not markedly affected by a genetic deficiency of purine nucleoside phosphorylase. In two mutants with undetected adenine phosphoribosyltransferase, the rate of adenine uptake was about 30% of that in their parent strain, and evidence was obtained to confirm that adenine had then been utilized via purine nucleoside phosphorylase. In a strain deficient in both enzymes adenine uptake was about 1% of that shown by wild-type strains. Uptake of hypoxanthine was similarly limited in a strain lacking purine nucleoside phosphorylase, hypoxanthine phosphoribosyltransferase and guanine phosphoribosyltransferase. Deficiency of uracil phosphoribosyltransferase severely limits uracil uptake, but the defect can be circumvented by addition of inosine, which presumably provides ribose 1-phosphate for reversal of uridine phosphorylase. The results indicate that there are porter systems for adenine, hypoxanthine and uracil dependent on a protonmotive force and facilitated by intracellular metabolism of the free bases.  相似文献   

14.
Brochocin-C is a two-peptide bacteriocin produced by Brochothrix campestris ATCC 43754 that has a broad activity spectrum comparable to that of nisin. Brochocin-C has an inhibitory effect on EDTA-treated gram-negative bacteria, Salmonella enterica serovar Typhimurium lipopolysaccharide mutants, and spheroplasts of Typhimurium strains LT2 and SL3600. Brochocin-C treatment of cells and spheroplasts of strains of LT2 and SL3600 resulted in hydrolysis of ATP. The outer membrane of gram-negative bacteria protects the cytoplasmic membrane from the action of brochocin-C. It appears that brochocin-C is similar to nisin and possibly does not require a membrane receptor for its function; however, the difference in effect of the two bacteriocins on intracellular ATP indicates that they cause different pore sizes in the cytoplasmic membrane.  相似文献   

15.
Phosphate exchange in the pit transport system in Escherichia coli.   总被引:4,自引:4,他引:0       下载免费PDF全文
The Pit system of phosphate transport in Escherichia coli catalyzes a rapid exchange between the external inorganic phosphate and internal phosphate pools, including some ester phosphates which are in rapid equilibrium with the internal Pi pool. Unlike net energized uptake, the Pi exchange proceeds in energy-depleted cells in the presence of uncouplers and is not accompanied by the movement of potassium ions. In the absence of externally added phosphate, the exit of Pi from the cells is insignificant. The apparent Km for external Pi in the exchange reaction is about 7 mM (2 orders of magnitude higher than that of energized uptake), but the maximal velocity is about the same. The exchange is temperature sensitive and is affected by thiol reagents. The combined observations suggest the operation of a facilitator which is part of the Pit system. The exchange is repressed in cells grown on glucose and other phosphotransferase system substrates, but not in cells grown on other carbohydrate sources. The repression can be reversed by the addition of cyclic AMP to the medium.  相似文献   

16.
Cell extracts of Desulfovibrio vulgaris were found to incorporate 14CO2 into acid-stable products when ribose-5-phosphate or ribulose-1,5-diphosphate was used as a substrate. This CO2 fixation required adenosine triphosphate and produced 3-phosphoglyceric acid as one of the products. The assimilation of CO2 by pentose phosphates was unrelated to the pyruvate-CO2 exchange reaction. The pyruvate-CO2 exchange did not require adenosine triphosphate, did not produce phosphorylated compounds, and, unlike the pentose phosphate system, required an acidic protein fraction for activity.  相似文献   

17.
Su TM  Yang YS 《Biochemistry》2003,42(22):6863-6870
Sulfotransferase catalyzes sulfuryl group transfer between a nucleotide and a variety of nucleophiles that may be sugar, protein, xenobiotics, and other small molecules. Nucleotides may serve as cosubstrate, cofactor, inhibitor, or regulator in an enzyme catalyzed sulfuryl group transfer reaction. We are trying to understand how nucleotide regulates the activity of phenol sulfotransferase (PST) through the expression of two enzyme forms. The homogeneous rat recombinant PST was obtained from Escherichia coli, and the nucleotide copurified was examined. The nucleotide was completely removed from inactive PST in high salt and oxidative condition. Total enzyme activity was recovered following incubation in reductive environment. Many nucleotides are known to tightly bind to PST but only one nucleotide, 3'-phosphoadenosine 5'-phosphate (PAP), was identified to combine with PST by ion-pair RP-HPLC, UV-visible spectra, (31)P NMR, and ESI-MS and MS-MS spectrometry. In addition to the presence or absence of PAP, oxidation following reduction of PST was required to completely interconvert the two forms of PST. According to the experimental results, a mechanism for the formation of the two enzyme forms was proposed.  相似文献   

18.
Spheroplasts ofEscherichia coli were produced by penicillin or lysozyme-ethylenediaminetetraacetic acid and examined by the direct fluorescent-antibody staining technique. Most spheroplasts stained with somatic-O fluorescent antibody exhibited brilliant peripheral fluorescence with localized areas of irregular staining. Electron micrographs showed that these spherical structures had considerable amounts of cell wall fragments associated with them. Two strains ofE. coli employed in the present study required different concentrations of penicillin for the conversion of all cells in an exponential culture to spheroplasts. Slight differences in lysozyme sensitivity were also encountered with these strains. The direct fluorescent-antibody staining technique was effective for the rapid identification ofE. coli spheroplasts in mixed cultures.  相似文献   

19.
Direction of flagellar rotation in bacterial cell envelopes   总被引:23,自引:16,他引:7       下载免费PDF全文
Cell envelopes with functional flagella, isolated from wild-type strains of Escherichia coli and Salmonella typhimurium by formation of spheroplasts with penicillin and subsequent osmotic lysis, demonstrate counterclockwise (CCW)-biased rotation when energized with an electron donor for respiration, DL-lactate. Since the direction of flagellar rotation in bacteria is central to the expression of chemotaxis, we studied the cause of this bias. Our main observations were: (i) spheroplasts acquired a clockwise (CW) bias if instead of being lysed they were further incubated with penicillin; (ii) repellents temporarily caused CW rotation of tethered bacteria and spheroplasts but not of their derived cell envelopes; (iii) deenergizing CW-rotating cheV bacteria by KCN or arsenate treatment caused CCW bias; (iv) cell envelopes isolated from CW-rotating cheC and cheV mutants retained the CW bias, unlike envelopes isolated from cheB and cheZ mutants, which upon cytoplasmic release lost this bias and acquired CCW bias; and (v) an inwardly directed, artificially induced proton current rotated tethered envelopes in CCW direction, but an outwardly directed current was unable to rotate the envelopes. It is concluded that (i) a cytoplasmic constituent is required for the expression of CW rotation (or repression of CCW rotation) in strains which are not defective in the switch; (ii) in the absence of this cytoplasmic constituent, the motor is not reversible in such strains, and it probably is mechanically constricted so as to permit CCW sense of rotation only; (iii) the requirement of CW rotation for ATP is not at the level of the motor or the switch but at one of the preceding functional steps of the chemotaxis machinery; (iv) the cheC and cheV gene products are associated with the cytoplasmic membrane; and (v) direct interaction between the switch-motor system and the repellent sensors is improbable.  相似文献   

20.
Reconstitution of sugar phosphate transport systems of Escherichia coli   总被引:19,自引:0,他引:19  
Studies with Escherichia coli cells showed that the transport systems encoded by glpT (sn-glycerol 3-phosphate transport) and uhpT (hexose phosphate transport) catalyze a reversible 32Pi:Pi exchange. This reaction could be used to monitor the glpT or uhpT activities during reconstitution. Membranes from suitably constructed strains were extracted with octylglucoside in the presence of lipid and glycerol, and proteoliposomes were formed by dilution in 0.1 M KPi (pH 7). Both reconstituted systems mediated a 32Pi:Pi exchange which was blocked by the appropriate heterologous substrate, sn-glycerol 3-phosphate (G3P) or 2-deoxyglucose 6-phosphate (2DG6P), with an apparent Ki near 50 microM. In the absence of an imposed cation-motive gradient, Pi-loaded proteoliposomes also transported the expected physiological substrate; Michaelis constants for the transport of G3P or 2DG6P were near 20 microM. The heterologous exchange showed a maximal velocity of 130 nmol/min/mg protein via the glpT system and 11 nmol/min/mg protein for the uhpT system. This difference was expected because the G3P transport activity had been reconstituted from a strain carrying multiple copies of the glpT gene. Taken together, these results suggest that anion exchange may be the molecular basis for transport by the glpT and uhpT proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号