首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron trafficking inside the brain   总被引:3,自引:0,他引:3  
Iron, an essential element for all cells of the body, including those of the brain, is transported bound to transferrin in the blood and the general extracellular fluid of the body. The demonstration of transferrin receptors on brain capillary endothelial cells (BCECs) more than 20 years ago provided the evidence for the now accepted view that the first step in blood to brain transport of iron is receptor-mediated endocytosis of transferrin. Subsequent steps are less clear. However, recent investigations which form the basis of this review have shed some light on them and also indicate possible fruitful avenues for future research. They provide new evidence on how iron is released from transferrin on the abluminal surface of BCECs, including the role of astrocytes in this process, how iron is transported in brain extracellular fluid, and how iron is taken up by neurons and glial cells. We propose that the divalent metal transporter 1 is not involved in iron transport through the BCECs. Instead, iron is probably released from transferrin on the abluminal surface of these cells by the action of citrate and ATP that are released by astrocytes, which form a very close relationship with BCECs. Complexes of iron with citrate and ATP can then circulate in brain extracellular fluid and may be taken up in these low-molecular weight forms by all types of brain cells or be bound by transferrin and taken up by cells which express transferrin receptors. Some iron most likely also circulates bound to transferrin, as neurons contain both transferrin receptors and divalent metal transporter 1 and can take up transferrin-bound iron. The most likely source for transferrin in the brain interstitium derives from diffusion from the ventricles. Neurons express the iron exporting carrier, ferroportin, which probably allows them to excrete unneeded iron. Astrocytes lack transferrin receptors. Their source of iron is probably that released from transferrin on the abluminal surface of BCECs. They probably to export iron by a mechanism involving a membrane-bound form of the ferroxidase, ceruloplasmin. Oligodendrocytes also lack transferrin receptors. They probably take up non-transferrin bound iron that gets incorporated in newly synthesized transferrin, which may play an important role for intracellular iron transport.  相似文献   

2.
Based on the well-confirmed roles of angiotensin II (ANGII) in iron transport of peripheral organs and cells, the causative link of excess brain iron with and the involvement of ANGII in neurodegenerative disorders, we speculated that ANGII might also have an effect on expression of iron transport proteins in the brain. In the present study, we investigated effects of ANGII on iron uptake and release using the radio-isotope methods as well as expression of cell iron transport proteins by Western blot analysis in cultured neurons. Our findings demonstrated for the first time that ANGII significantly reduced transferrin-bound iron and non-transferrin bound iron uptake and iron release as well as expression of two major iron uptake proteins transferrin receptor 1 and divalent metal transporter 1 and the key iron exporter ferroportin 1 in cultured neurons. The findings suggested that endogenous ANGII might have a physiological significance in brain iron metabolism.  相似文献   

3.
Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-encoding CAG expansion in the huntingtin gene. Iron accumulates in the brains of HD patients and mouse disease models. However, the cellular and subcellular sites of iron accumulation, as well as significance to disease progression are not well understood. We used independent approaches to investigate the location of brain iron accumulation. In R6/2 HD mouse brain, synchotron x-ray fluorescence analysis revealed iron accumulation as discrete puncta in the perinuclear cytoplasm of striatal neurons. Further, perfusion Turnbull’s staining for ferrous iron (II) combined with transmission electron microscope ultra-structural analysis revealed increased staining in membrane bound peri-nuclear vesicles in R6/2 HD striatal neurons. Analysis of iron homeostatic proteins in R6/2 HD mice revealed decreased levels of the iron response proteins (IRPs 1 and 2) and accordingly decreased expression of iron uptake transferrin receptor (TfR) and increased levels of neuronal iron export protein ferroportin (FPN). Finally, we show that intra-ventricular delivery of the iron chelator deferoxamine results in an improvement of the motor phenotype in R6/2 HD mice. Our data supports accumulation of redox-active ferrous iron in the endocytic / lysosomal compartment in mouse HD neurons. Expression changes of IRPs, TfR and FPN are consistent with a compensatory response to an increased intra-neuronal labile iron pool leading to increased susceptibility to iron-associated oxidative stress. These findings, together with protection by deferoxamine, support a potentiating role of neuronal iron accumulation in HD.  相似文献   

4.
Transferrin and transferrin receptors play an important role in the transport of iron into the brain. To determine whether gallium enters the brain by the same mechanism, uptakes of Ga and 59Fe have been compared under controlled conditions. Rates of gallium penetration into brain (K) were four times slower than those for 59Fe. Kin for Ga when infused with citrate were 0.88 ± 0.24 and 0.94 ± 0.39 x 10 ml gh for cerebral hemisphere and cerebellum, respectively. When infused as the transferrin complex, Ga uptake into the brain was not different from that when infused with citrate. The presence of the anti-transferrin receptor antibody OX-26 significantly reduced uptake of Fe by 60% and 64% into cerebral hemisphere and cerebellum, respectively. By contrast, pretreatment of rats with OX-26 enhanced the uptake of Ga into brain, particularly when infused with citrate; mean increases in uptake of Ga were 120% and 144% for cerebral hemisphere and cerebellum, respectively. Purified Ga-transferrin was also taken up into both brain regions examined in the presence of OX-26. These results indicate that the transport of non-transferrin bound gallium is an important mechanism for gallium uptake into brain.  相似文献   

5.
Brain iron transport and distributional pattern of divalent metal transporter I (DMT1) were studied in homozygous Belgrade rats (b/b) which suffer from a mutation in the DMT1 gene. In adult rats, brain uptake of transferrin-bound iron injected intravenously (i.v.) was significantly lower compared with that in heterozygous Belgrade (+/b) and Wistar rats, whereas transferrin uptake was identical. The difference in iron uptake was not apparent until 30 min after injection. The brain iron concentration was lower, and neuronal transferrin receptor-immunoreactivity higher, in adult b/b rats, thus confirming their iron-deficient stage. Antibodies targeting different sites on the DMT1 molecule consistently detected DMT1 in neurones and choroid plexus at the same level irrespective of strain, but failed to detect DMT1 in brain capillary endothelial cells (BCECs), or macro- or microglial cells. The absence of DMT1 in BCECs was confirmed in immunoblots of purified BCECs. DMT1 was virtually undetectable in neurones of rats aged 18 post-natal days irrespective of strain. Neuronal expression of transferrin receptors and DMT1 in adult rats implies that neurones at this age acquire iron by receptor-mediated endocytosis of transferrin followed by iron transport out of endosomes mediated by DMT1. The existence of the mutated DMT1 molecule in neurones suggests that the low cerebral iron uptake in b/b rats derives from a reduced neuronal uptake rather than an impaired iron transport through the blood-brain barrier.  相似文献   

6.
The anatomical and cellular distribution of non-haem iron, ferritin, transferrin, and the transferrin receptor have been studied in postmortem human brain and these studies, together with data on the uptake and transport of labeled iron, by the rat brain, have been used to elucidate the role of iron and other metal ions in certain neurological disorders. High levels of non-haem iron, mainly in the form of ferritin, are found in the extrapyramidal system, associated predominantly with glial cells. In contrast to non-haem iron, the density of transferrin receptors is highest in cortical and brainstem structures and appears to relate to the iron requirement of neurones for mitochondrial respiratory activity. Transferrin is synthesized within the brain by oligodendrocytes and the choroid plexus, and is present in neurones, consistent with receptor mediated uptake. The uptake of iron into the brain appears to be by a two-stage process involving initial deposition of iron in the brain capillary endothelium by serum transferrin, and subsequent transfer of iron to brain-derived transferrin and transport within the brain to sites with a high transferrin receptor density. A second, as yet unidentified mechanism, may be involved in the transfer of iron from neurones possessing transferrin receptors to sites of storage in glial cells in the extrapyramidal system. The distribution of iron and the transferrin receptor may be of relevance to iron-induced free radical formation and selective neuronal vulnerability in neurodegenerative disorders.  相似文献   

7.
Abstract: Uptake of 59Fe from blood into brains of anaesthetized rats and mice has been studied by intravenous infusion of [59Fe]ferrous ascorbate or of 59Fe-transferrin, the results not being significantly different. Uptakes in the rat were linear with time, but increased at longer times in the mouse. Transfer constants, K in (in ml/g/h × 103), for cerebral hemispheres were 5.2 in the adult rat and 5.6 in the mouse. These K in values corresponded to 59Fe influxes of 145 and 322 pmol/g/h, respectively. 59Fe uptake into the mouse brain occurred in the following order: cerebellum > brainstem > frontal cerebral cortex > parietal cortex > occipital cortex > hippocampus > caudate nucleus. In genetically hypotransferrinaemic mice, 59Fe uptake into brain was 80–95 times greater than in To strain mice. Pretreatment of young rats and mice with monoclonal antibodies to transferrin receptors, i.e., the anti-rat immunoglobulin G OX 26 and the anti-mouse immunoglobulin M RI7 208, inhibited 59Fe uptake into spleen by 94% and 98%, respectively, indicating saturation of receptors. The antibodies reduced 59Fe uptake into rat brain by 35–60% and that into mouse brain by 65–85%. Although a major portion of iron transport across the blood-brain barrier is normally transferrin-mediated, non-transferrin-bound iron readily crosses it at low serum transferrin levels.  相似文献   

8.
Organic solute carrier partner 1 (OSCP1) is a mammalian, transporter-related protein that is able to facilitate the uptake of structurally diverse organic compounds into the cell when expressed in Xenopus laevis oocytes. This protein has been implicated in testicular handling of organic solutes because its mRNA expression is almost exclusive in the testis. However, in this study, we demonstrated significant expression of OSCP1 protein in mouse brain, the level of which was rather higher than that in the testis, although the corresponding mRNA expression was one-tenth of the testicular level. Immunohistochemistry revealed that OSCP1 was broadly distributed throughout the brain, and various neuronal cells were immunostained, including pyramidal cells in the cerebral cortex and hippocampus. However, there was no evidence of OSCP1 expression in glia. In primary cultures of cerebral cortical neurons, double-labeling immunofluorescence localized OSCP1 to the cytosol throughout the cell body and neurites including peri-synaptic regions. This was consistent with the subcellular fractionation of brain homogenates, in which OSCP1 was mainly recovered after centrifugation both in the cytosolic fraction and the particulate fraction containing synaptosomes. Immunoelectron microscopy of brain sections also demonstrated OSCP1 in the cytosol near synapses. In addition, it was revealed that changes in the expression level of OSCP1 correlated with neuronal maturation during postnatal development of mouse brain. These results indicate that OSCP1 may have a role in the brain indirectly mediating substrate uptake into the neurons in adult animals.  相似文献   

9.
We describe a monoclonal antibody directed against a neuron-specific mitochondrial protein from rat brain. On protein blots the antibody recognizes a single polypeptide of apparent molecular weight 23,000. By solid-phase immunoassay the antigen was detected in all brain regions tested but was not detected in nonneural tissues. Within neurons, the antibody stains cytoplasmic granules that immunoelectron microscopy shows are mitochondria, hence the designation MIT-23. Immunocytochemical staining of the cerebellar cortex showed that MIT-23 occurs in all the neuronal types but is absent from glial and other nonneuronal cells. During neonatal development of the cerebellum, MIT-23 appears in neurons after their final cell division or migration is completed, suggesting that specific proteins associated with mitochondria participate in neuronal maturation.  相似文献   

10.
Numerous studies have implicated interleukin-2 (IL-2) in various brain processes, and more recently, several studies have also attributed neurobiological actions to interleukin-15 (IL-15). On lymphocytes, receptors for IL-2 and IL-15 share a common subunit, the IL-2/15 receptor-beta (IL-2/15Rbeta) that is essential for intracellular signaling. Although a short segment of IL-2/15Rbeta has been cloned (0.35 kb) from normal brain cells, attempts to isolate the full-length cDNA have been unsuccessful, suggesting the possibility that the genes expressed by brain cells and lymphocytes may differ. Using conventional and anchored PCR cloning strategies, we isolated the full-length cDNA of IL-2/15Rbeta (2038 bp) from well-perfused, normal mouse forebrain. The coding sequence and the adjacent 5' and 3' UTR sequences from brain and lymphocyte were found to be fully homologous. Although evidence of expression of IL-2/15Rbeta can be found in many brain regions using PCR, clear evidence of gene expression by in situ hybridization was detectable only in the hippocampal formation, habenula and piriform cortex. This same pattern of mRNA expression in situ was also observed for the common gamma subunit shared by IL-2 and IL-15. In the hippocampus, IL-2/15Rbeta expression was localized to neurons by high resolution in situ hybridization and evidence of IL-2 receptor protein expression was also detected by radioligand receptor binding using hippocampal homogenates. Comparison of undifferentiated and differentiated, immortalized H19-7 hippocampal neurons showed that IL-2/15Rbeta was constitutively expressed across disparate stages of hippocampal neuronal differentiation. These data indicate that IL-2/15Rbeta may serve to modulate neuronal processes in the hippocampus and associated limbic brain regions.  相似文献   

11.
Transferrin receptors and iron uptake during erythroid cell development   总被引:5,自引:0,他引:5  
Experiments were performed to determine the level of transferrin receptors and rate of transferrin-bound iron uptake by various immature erythroid cell populations. Developing erythroid cells from the rat and mouse foetal liver at various stages of gestation were studied. In addition Friend leukaemic cells grown in culture were examined. The transferrin receptor level of Friend cells was similar to that of erythroid cells from the mouse foetal liver. During erythroid cell development the transferrin receptor level increased from about 300,000 per cell at the early normoblast stage to reach a maximum of about 8000,000 per cell on intermediate normoblasts. Further maturation of intermediate normoblasts was accompanied by a decline in the number of transferrin receptors, reaching a level of 105,000 in the circulating reticulocyte. The rate of iron uptake from transferrin during erythroid cell development was found to correlate closely with the number of transferrin receptors. In each of the immature erythroid cell populations studied the rate of iron uptake was about 36 iron atoms per receptor per hour. These results indicate that the level of transferrin receptors may be the major factor which determines the rate of iron uptake during erythroid cell development.  相似文献   

12.
13.
Lu WG  Chen H  Wang D  Li FG  Zhang SM 《生理学报》2007,59(1):51-57
全能区域非特异性的胚胎干细胞是研究成体不同脑区控制干细胞分化能力的十分有力的工具。胚胎干细胞源性神经前体细胞移植入成体脑后可分化为功能性神经元,但是未分化的胚胎干细胞在成体脑内各个部位的存活、生长与分化的潜能差异尚不清楚。本文旨在探讨成体脑组织对胚胎干细胞的影响及胚胎干细胞在成体脑内的一系列行为。将少量转绿色荧光蛋白未分化的小鼠胚胎干细胞移植入成体大鼠脑内不同部位,分别于移植5、14和28d后处死大鼠,进行形态学观察及免疫组化定性,以了解未分化的小鼠胚胎干细胞在大鼠脑内不同区域的存活、生长与分化。结果发现未分化的小鼠胚胎干细胞可逐步整合入受体组织并向nestin阳性神经前体细胞分化。移植细胞及其后裔在海马生长最为旺盛,而在隔区最差(P〈0.01);移植细胞分化为神经干细胞的效率也是在海马最高,而在隔区最低(P〈0.01)。提示只有部分脑区适合胚胎干细胞及其后裔生存,并提供促进其分化的有益环境。因此,由于位置特异的微环境因子及环境因素的存在,宿主组织特性对决定中枢神经系统疾病的细胞替代疗法策略是相当重要的。  相似文献   

14.
Mutations in the DJ-1 gene have been identified to cause Parkinson's disease. In humans, nonmutated DJ-1 is expressed in specific brain areas but seems to be expressed by astrocytes rather than by neurons. In contrast, DJ-1 mRNA is mainly found in neurons in the mouse brain. We have investigated the distribution of DJ-1 protein in the mouse brain and found that DJ-1 protein is predominantly expressed by neurons but can also be detected in astrocytes. Consistent with a global role of DJ-1 in the brain, we found immunoreactivity, for example, in cortical areas, hippocampus, basolateral amygdala, the reticular nucleus of the thalamus, zona incerta, and locus coeruleus. Within the substantia nigra, however, DJ-1 is localized in both neuronal and nonneuronal cells, suggesting a distinct role in this area.  相似文献   

15.
The time course of regional mouse brain distribution of radioactivity after i.v. injection of a tracer dose of [11C]tetrabenazine ([11C]TBZ) has been determined. Radiotracer uptake into brain is rapid, with 3.2% injected dose in the brain at 2 min. Egress from the brain is also very rapid, with only 0.21% of the injected dose still present in brain at 60 min. Radiotracer washout is slowest from the striatum and hypothalamus, consistent with binding to the higher numbers of vesicular monamine transporters in those brain regions. The rank order of radioligand binding at 10 min after injection is striatum greater than hypothalamus greater than hippocampus greater than cortex = cerebellum, similar to that found using in vitro assays of the vesicular monoamine transporters. Maximum ratios of striatum/cerebellum and hypothalamus/cerebellum were 2.85 +/- 0.52 and 1.69 +/- 0.25, respectively, at 10 min after injection. Co-injection of unlabeled tetrabenazine (10 mg/kg) or pretreatment with reserpine (1 mg/kg i.p., 24 h prior) was used to demonstrate specific binding of radioligand in striatum, hypothalamus, cortex, hippocampus and cerebellum. Distribution of [11C]TBZ was unaffected by pretreatment with the neuronal dopamine uptake inhibitor GBR 12935 (20 mg/kg i.p., 30 min prior). [11C]Tetrabenazine is thus a promising new radioligand for the in vivo study of monoaminergic neurons using Positron Emission Tomography.  相似文献   

16.
17.
The monoclonal antibody (mAb) neuronal nuclei (NeuN) labels the nuclei of mature neurons in vivo in vertebrates. NeuN has also been used to define post-mitotic neurons or differentiating neuronal precursors in vitro . In this study, we demonstrate that the NeuN mAb labels the nuclei of astrocytes cultured from fetal and adult human, newborn rat, and embryonic mouse brain tissue. A non-neuronal fibroblast cell line (3T3) also displayed NeuN immunoreactivity. We confirmed that NeuN labels neurons but not astrocytes in sections of P10 rat brain. Western blot analysis of NeuN immunoreactive species revealed a distribution of bands in nucleus-enriched fractions derived from the different cell lines that was similar, but not identical to adult rat brain homogenates. We then examined the hypothesis that the glial fibrillary acidic protein/NeuN-double positive population of cells might correspond to neuronal precursors. Although the NeuN-positive astrocytes were proliferating, no evidence of neurogenesis was detected. Furthermore, expression of additional neuronal precursor markers was not detected. Our results indicate that primary astrocytes derived from mouse, rat, and human brain express NeuN. Our findings are consistent with NeuN being a selective marker of neurons in vivo , but indicate that studies utilizing NeuN-immunoreactivity as a definitive marker of post-mitotic neurons in vitro should be interpreted with caution.  相似文献   

18.
Transferrin was not required for the short-term survival of cultured chick retinal neurons. Both human and chick transferrin failed to enhance the in vitro survival of 8- or 11-day embryonic chick retinal neurons when cultured in a defined medium. Furthermore, maintenance of neurons in the presence of chick transferrin antibody did not alter in vitro survival. Retinal neurons, however, could bind and internalize human or chick transferrin when assayed for by fluorescence immunohistochemical techniques. Binding and internalization of chick transferrin appeared to be greater than human transferrin. Iron uptake was measured in cultures maintained in the absence of transferrin. After incubation with 59FeCl3, iron uptake was 3.5 +/- 1.1 fmoles/cell. The presence of chick transferrin antibody did not significantly alter the amount of iron uptake occurring in this assay. In a comparison of human and chick transferrin mediated iron uptake, chick transferrin was 50% more effective than human transferrin in transporting iron. This study demonstrates that cultured embryonic retinal neurons are not dependent on transferrin for survival or iron uptake, although they actively bind and internalize transferrin. Results also demonstrate that whereas cultured chick retinal neurons can bind and utilize human transferrin, they do so with less efficiency than chick transferrin.  相似文献   

19.
The Lck Tyrosine Kinase Is Expressed in Brain Neurons   总被引:1,自引:0,他引:1  
Abstract: The lck gene product, p56lck, is a member of the src-related family of protein tyrosine kinases. It is known as lymphocyte specific and involved in thymocyte development and in the immune response mediated by the T cell receptor. We report that the lck gene is also expressed in adult mouse CNS and that brain p56lck is similar to the thymus protein. In situ hybridization and immunohistochemistry show that the lck gene is expressed in neurons throughout the brain in distinct regions, including hippocampus and cerebellum. In primary cultures from fetal mouse brain, neuronal cells are immunoreactive to Lck antiserum. This suggests that the lck gene product might be involved in a new signal transduction pathway in mouse brain.  相似文献   

20.
The mannose receptor, a glycoprotein expressed in a soluble and membrane form by macrophages, plays an important role in homeostasis and immunity. Using biochemical and immunohistochemical analyses, we demonstrate that this receptor, both in its soluble and membrane forms, is expressed in vivo in the post-natal murine brain and that its expression is developmentally regulated. Its expression is at its highest in the first week of life and dramatically decreases thereafter, being maintained at a low level throughout adulthood. The receptor is present in most brain regions at an early post-natal age, the site of the most intense expression being the meninges followed by the cerebral cortex, brain stem and the cerebellum. With age, expression of the mannose receptor is maintained in regions such as the cerebral cortex and the brain stem, whereas it disappears from others such as the hippocampus or the striatum. In healthy brain, no expression can be detected in oligodendrocytes, ependymal cells, endothelial cells or parenchymal microglia. The mannose receptor is expressed by perivascular macrophages/microglia and meningeal macrophages, where it might be important for the brain immune defence, and by two populations of endogenous brain cells, astrocytes and neurons. The developmentally dependent, regionally regulated expression of the mannose receptor in glial and neuronal cells strongly suggests that this receptor plays an important role in homeostasis during brain development and/or neuronal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号