首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Arun A  Eyini M 《Bioresource technology》2011,102(17):8063-8070
A total of 130 wild basidiomycetes fungi were collected and identified. The polycyclic aromatic hydrocarbons (PAHs) degradation by the potential Phellinus sp., Polyporus sulphureus (in liquid state fermentation (LSF), solid state fermentation (SSF), in soil) and lignin biodegradation were compared with those of a bacterial isolate and their corresponding cocultures. The PAHs degradation was higher in LSF and the efficiency of the organisms declined in SSF and in soil treatment. Phellinus sp. showed better degradation in SSF and in soil. Bacillus pumilus showed higher degradation in LSF. B. pumilus was seen to have lower lignin degradation than the fungal cultures and the cocultures could not enhance the degradation. Phellinus sp. which had higher PAHs and lignin degradation showed higher biosurfactant production than other organism. Manganese peroxidase (MnP) was the predominant enzyme in Phellinus sp. while lignin peroxidase (Lip) was predominant in P. sulphureus.  相似文献   

2.
Decay resistance of Rubber wood (Hevea brasiliensis) esterified with three fatty acid chlorides (hexanoyl chloride (C6), decanoyl chloride (C10) and tetra-decanoyl chloride (C14)) was evaluated. Unmodified and modified wood samples were exposed to a brown rot (Polyporus meliae) and a white rot (Coriolus versicolor) fungus for 12 weeks. Unmodified rubber wood was severely decayed by P. meliae and C. versicolor, which was indicated by significant weight loss. The rate of decay by brown rot was higher than white rot. Modified wood samples exhibited very good resistant to brown and white-rot fungi. The degree of protection increased with increase in degree of modification. P. meliae, a brown rot fungus, removed structural carbohydrate component in unmodified wood selectively whereas, C. vesicolor showed preference to lignin. The FTIR spectra of modified wood exposed to fungi show no significant changes in relative peak intensities of lignin/carbohydrates indicating effectiveness of chemically modified wood in restricting chemical degradation. Chemical modification occurred more efficiently at carbohydrate portion of the wood. Therefore, it is more effective in retarding decay due to P. meliae.  相似文献   

3.
Ganoderma australe is a white-rot fungus that causes a selective wood biodelignification in some hardwoods found in the Chilean rainforest. Ceriporiopsis subvermispora is also a lignin-degrading fungus used in several biopulping studies. The enzymatic system responsible for lignin degradation in wood can also be used to degrade recalcitrant organic pollutants in liquid effluents. In this work, two strains of G. australe and one strain of C. subvermipora were comparatively evaluated in the biodegradation of ABTS and the dye Poly R-478 in liquid medium, and in the pretreatment of Eucalyptus globulus wood chips for further kraft biopulping. Laccase was detected in liquid and wood cultures with G. australe. Ceriporiopsis subvermispora produce laccase and manganese peroxidase when grown in liquid medium and only manganese peroxidase was detected during wood decay. ABTS was totally depleted by all strains after 8 days of incubation while Poly R-478 was degraded up to 40% with G. australe strains and up to 62% by C. subvermispora after 22 days of incubation. Eucalyptus globulus wood chips decayed for 15 days presented 1–6% of lignin loss and less than 2% of glucan loss. Kraft pulps with kappa number 15 were produced from biotreated wood chips with 2% less active alkali, with up to 3% increase in pulp yield and up to 20% less hexenuronic acids than pulps from undecayed control. Results showed that G. australe strains evaluated were not as efficient as C. subvermispora for dye and wood biodegradation, but could be used as a feasible alternative in biotechnological processes such as bioremediation and biopulping.  相似文献   

4.
《Fungal biology》2014,118(11):935-942
Trametes versicolor is a promising white-rot fungus for the biological pretreatment of lignocellulosic biomass. In the present work, T. versicolor ATCC 20869 was grown on Pinus taeda wood chips under solid-state fermentation conditions to examine the wood-degrading mechanisms employed by this fungus. Samples that were subjected to fungal pretreatment for one-, two- and four-week periods were investigated. The average mass loss ranged from 5 % to 8 % (m m1). The polysaccharides were preferentially degraded: hemicellulose and glucan losses reached 13.4 % and 6.9 % (m m1) after four weeks of cultivation, respectively. Crude enzyme extracts were obtained and assayed using specific substrates and their enzymatic activities were measured. Xylanases were the predominant enzymes, while cellobiohydrolase activities were marginally detected. Endoglucanase activity, β-glucosidase activity, and wood glucan losses increased up to the second week of biodegradation and remained constant after that time. Although no lignin-degrading enzyme activity was detected, the lignin loss reached 7.5 % (m m1). Soluble oxalic acid was detected in trace quantities. After the first week of biodegradation, the Fe3+-reducing activity steadily increased with time, but the activity levels were always lower than those observed in the undecayed wood. The progressive wood polymer degradation appeared related to the secretion of hydrolytic enzymes, as well as to Fe3+-reducing activity, which was restored in the cultures after the first week of biodegradation.  相似文献   

5.
The European standard test EN 113 for fungal degradation of solid wood has been adapted for degradation of paper by white rot fungus (Trametes versicolor). Fungal degradation of paper sheets may potentially be used for screening different wood preservatives on paper instead of solid wood. The paper samples showed higher relative mass losses compared to wood, and samples pretreated with boric acid, copper sulfate and polymerized linseed oil were successfully tested for biodegradation using the paper sheet method. The results on paper degradation were compared with wood, both as wood blocks (according to standard test) and wood cut in sections forming layered structures mimicking paper layers.  相似文献   

6.
In our study, early period degradation (10 days) of Scots pine (Pinus sylvestris L.) sapwood by the brown-rot fungus Coniophora puteana (Schum.: Fr.) Karst. (BAM Ebw.15) was followed at the wood chemical composition and ultrastructurelevel, and highlighted the generation of reactive oxygen species (ROS). An advanced decay period of 50 days was chosen for comparison of the degradation dynamics. Scanning UV microspectrophotometry (UMSP) analyses of lignin distribution in wood cells revealed that the linkages of lignin and polysaccharides were already disrupted in the early period of fungal attack. An increase in the lignin absorption A280 value from 0.24 (control) to 0.44 in decayed wood was attributed to its oxidative modification which has been proposed to be generated by Fenton reaction derived ROS. The wood weight loss in the initial degradation period was 2%, whilst cellulose and lignin content decreased by 6.7% and 1%, respectively. Lignin methoxyl (–OCH3) content decreased from 15.1% (control) to 14.2% in decayed wood. Diffuse reflectance Fourier-transform infrared (DRIFT) spectroscopy corroborated the moderate loss in the hemicellulose and lignin degradation accompanying degradation. Electron paramagnetic resonance spectra and spin trapping confirmed the generation of ROS, such as hydroxyl radicals (HO), in the early wood degradation period. Our results showed that irreversible changes in wood structure started immediately after wood colonisation by fungal hyphae and the results generated here will assist in the understanding of the biochemical mechanisms of wood biodegradation by brown-rot fungi with the ultimate aim of developing novel wood protection methods.  相似文献   

7.
To reduce the levels of chlorine-based chemicals in Acacia kraft pulp, we sought to isolate white rot fungus strains that could be used for biobleaching. For this purpose, we collected 600 fungal sources from Indonesia and subjected them to a three-step screening method. The first step involved culturing the strains on Acacia mangium wood powder, guaiacol and agar (WGA) medium. Of the 600 sources, 258 strains grew on WGA medium and generated a red color. The second step revealed that 31 of the 258 strains could degrade extractive-free A. mangium wood powder. The third step examined the ability of the strains to bleach A. mangium oxygen-delignified kraft pulp (A-OKP) under various pH conditions and showed that five strains could biobleach A-OKP at pH 5, 6, and 8. In contrast, the biobleaching abilities of Trametes versicolor and Phanerochaete chrysosporium, which served as standards, were much lower than those of the five new strains, particularly at pH 8. These five strains may be useful for biobleaching of A-OKP.  相似文献   

8.
The mushroom Flammulina velutipes and the white-rot fungus Trametes versicolor were cultivated separately on sugarcane bagasse for 40 days. Trametes versicolor produced laccase and manganese-peroxidase activities, showing a simultaneous degradation of lignin and holocellulose. However, only phenoloxidase activity was found with Flammulina velutipes. A preferential degradation of lignin was detected in F. velutipes, which exhibited a greater reduction in the ratio of weight loss to lignin loss than T. versicolor. A decrease in the syringyl/guaiacyl ratio observed with both fungi indicated the preferential degradation of non-condensed (syringyl-type) lignin units. An increase in the relative abundance of aromatic carboxylic acids suggested that the oxidative transformation of lignin unit side-chains was occurring. This was more noticeable with Flammulina velutipes than with T. versicolor.  相似文献   

9.
A role of acetyl esterase in wood biodegradation byCoriolus versicolor was examined by the assay of enzyme production and the chemical analysis of decayed wood meal of Japanese beech (Fagus crenata). Enzyme assay demonstrated that the degradation proceeded in two stages and acetyl esterase production was correlated with the cellulolytic and xylanolytic enzyme production in the second stage, not with the production of phenol-oxidizing enzymes. From the results of chemical analysis, acetyl and xylose contents in wood meal were observed to decrease simultaneously in the second stage. In contrast, rapid decrease of lignin was recognized during the initial three wk of incubation, and it was closely related with the production of phenol-oxidizing enzymes in the first stage. These results show that acetyl esterase ofC. versicolor participates in the degradation of acetylxylan and acts with the cellulolytic and xylanolytic systems, not with the ligninolytic system.  相似文献   

10.
Biodegradation of chlorinated pesticide γ-hexachlorocyclohexane (lindane) by a nonwhite rot fungus Conidiobolus 03-1-56 is reported for the first time. Conidiobolus 03-1-56, a phycomyceteous fungus isolated from litter, completely degraded lindane on the 5th day of incubation in the culture medium, and GC-ECD studies confirmed that lindane removal did not occur via adsorption on the fungal biomass. Degradation studies using different medium compositions showed that nitrogen/carbon limiting conditions (stress conditions) and presence of veratryl alcohol, induced the secretion of extracellular oxidative enzymes, which enhanced the rate of lindance biodegradation. Under optimum nutrient-limiting conditions, GC-ECD and GC-MS analysis showed complete absence of any degradation metabolite, indicating that lindane was completely mineralized. Assays for tannic acid utilization and lignin peroxidase showed similar enzymatic profiles between Conidiobolus 03-1-56 and standard white rot fungi Pleurotus ostreatus 1200 and Trametes versicolor 1086. Although Conidiobolus 03-1-56 showed a reduced enzyme activity compared to white rot fungi, preliminary evidence indicates that enzymes responsible for lignin degradation by white rots play a key role in lindane degradation by Conidiobolus 03-1-56.  相似文献   

11.
The white rot fungi used in this study caused two different forms of degradation. Phanerochaete chrysosporium, strain BKM-F-1767, and Phellinus pini caused a preferential removal of lignin from birch wood, whereas Trametes (Coriolus) versicolor caused a nonselective attack of all cell wall components. Use of polyclonal antisera to H8 lignin peroxidase and monoclonal antisera to H2 lignin peroxidase followed by immunogold labeling with protein A-gold or protein G-gold, respectively, showed lignin peroxidase extra-and intracellularly to fungal hyphae and within the delignified cell walls after 12 weeks of laboratory decay. Lignin peroxidase was localized at sites within the cell wall where electron-dense areas of the lignified cell wall layers remained. In wood decayed by Trametes versicolor, lignin peroxidase was located primarily along the surface of eroded cell walls. No lignin peroxidase was evident in brown-rotted wood, but slight labeling occurred within hyphal cells. Use of polyclonal antisera to xylanase followed by immunogold labeling showed intense labeling on fungal hyphae and surrounding slime layers and within the woody cell wall, where evidence of degradation was apparent. Colloidal-gold-labeled xylanase was prevalent in wood decayed by all fungi used in this study. Areas of the wood with early stages of cell wall decay had the greatest concentration of gold particles, while little labeling occurred in cells in advanced stages of decay by brown or white rot fungi.  相似文献   

12.
In this study; sub-tropical white rot fungi, Trametes versicolor was investigated for its ability to degrade 4-(3′-methyl-4′-(4″-nitrophenyl)azo-1′H-pyrazol-5′-ylazo)-3-methyl-1H-pyrazol-5-on in the mediums containing glucose and different concentrations of degrade dye in batch systems. This dye was synthetized at Pamukkale Universtiy of Organic Chemistry research laboratory. Samples were collected on 10 days, and was detected by Shimadzu UV-1600A spectrophotometry. Decolorization study showed that this disazo dye was removed by more than 70% in 10 days. Laccase enzyme activity was detected in samples and then last sample was analyzed by GC-MS. Metabolites weren’t showed in GC-MS result. It was concluded that T. versicolor could achieve the biodegradation of this new disazo dye.  相似文献   

13.
Triphenylmethane dyes such as Crystal Violet (CV) and Malachite Green (MG) are common textile dyes. MG, which is toxic to humans, is widely used in aquaculture as an antifungal agent. In this study, 56 mushroom strains from 12 species of wild mushrooms were examined on dye-containing PDA plates to evaluate their potential for the bioremediation of synthetic dyes. Pycnoporus coccineus, Coriolus versicolor, and Lentinula edodes showed fair growth on CV, but only a few survived on MG. However, a decolorization experiment in an aqueous system revealed that the growth on MG-containing solid medium did not directly match the decolorization of MG in the aqueous system. C. versicolor IUM0061 grew well on both MG and CV plates, but could not decolorize MG in the reaction mixture. Conversely, HPLC analysis revealed that P. coccineus IUM0032, which could not grow on the MG plate, completely mineralized MG within 3 days. A subsequent enzyme activity assay revealed a high lignin peroxidase activity in the reaction mixture, indicating that lignin peroxidase is the key enzyme involved in degradation of MG in P. coccineus IUM0032.  相似文献   

14.
《Process Biochemistry》2007,42(6):995-1002
The ability of eight white rot fungi: Coriolopsis rigida, Coriolus versicolor var. antarcticus, Peniophora sp., Phanerochaete sordida, Pycnoporus sanguineus, Steccherinum sp., Trametes elegans and Trametes villosa to selectively delignify loblolly pine (Pinus taeda) chips was studied. They were selected among 34 basidiomycetes from Argentina because of their capacity to decolorize Poly R-478 and Azure B. Fungal pretreatment caused changes in wood chemical composition as well as in physical structure. The present study allowed the identification of a new strain, potentially a candidate for use in softwoods biopulping processes. Results showed that P. sanguineus was able to reduce lignin content in 11% in 14 days of treatment, but also that P. taeda wood suffered notable structural changes of lignin and hemicelluloses during the treatment, as revealed from 13C CP-MAS NMR spectra. An increase of 15% in porosity of decayed wood confirmed physical changes due to fungal attack.  相似文献   

15.
The exploration of seven physiologically different white rot fungi potential to produce cellulase, xylanase, laccase, and manganese peroxidase (MnP) showed that the enzyme yield and their ratio in enzyme preparations significantly depends on the fungus species, lignocellulosic growth substrate, and cultivation method. The fruit residues were appropriate growth substrates for the production of hydrolytic enzymes and laccase. The highest endoglucanase (111 U ml−1) and xylanase (135 U ml−1) activities were revealed in submerged fermentation (SF) of banana peels by Pycnoporus coccineus. In the same cultivation conditions Cerrena maxima accumulated the highest level of laccase activity (7,620 U l−1). The lignified materials (wheat straw and tree leaves) appeared to be appropriate for the MnP secretion by majority basidiomycetes. With few exceptions, SF favored to hydrolases and laccase production by fungi tested whereas SSF was appropriate for the MnP accumulation. Thus, the Coriolopsis polyzona hydrolases activity increased more than threefold, while laccase yield increased 15-fold when tree leaves were undergone to SF instead SSF. The supplementation of nitrogen to the control medium seemed to have a negative effect on all enzyme production in SSF of wheat straw and tree leaves by Pleurotus ostreatus. In SF peptone and ammonium containing salts significantly increased C. polyzona and Trametes versicolor hydrolases and laccase yields. However, in most cases the supplementation of media with additional nitrogen lowered the fungi specific enzyme activities. Especially strong repression of T. versicolor MnP production was revealed.  相似文献   

16.
Drimys winteri and Nothofagus dombeyi, two native Chilean wood species with high potential for pulp production, were biodegraded by Ganoderma australe. This fungus is known to provoke extensive and selective biodelignification of these wood species in the field. Under laboratory conditions, N. dombeyi underwent higher weight and component losses than D. winteri. In neither case was the lignin removal selective, because glucan loss was almost simultaneous with lignin degradation. The decayed wood chips became progressively discoloured throughout the biodegradation time. The brightness increase was only partly reversed in thermal reversion assays. Nothofagus dombey solubility in 1% NaOH increased by 13.7% after 9 weeks of biodegradation, while D. winteri solubility increased by 14.2% in a shorter period (6 weeks). In both cases, the solubility increase was proportional to the liquor absorbance increase at 272 nm, which indicates that the wood solubility in 1% NaOH was dependent of lignin solubilization.  相似文献   

17.
The initiation and progress of wood degradation of Pinus sylvestris sapwood exposed to the brown-rot fungus Antrodia vaillantii was studied on a cellular level by scanning UV microspectrophotometry (UMSP 80, Zeiss, MSP 800 Spectralytics). This improved analytical technique enables direct imaging of lignin modification within individual cell wall layers. The topochemical analyses were supplemented by light and transmission electron microscopy (TEM) studies in order to characterize morphological changes during the first days of degradation. Small wood blocks (1.5 × 1.5 × 5 mm) of Scots pine (P. sylvestris) were exposed to fungal decay by A. vaillantii for 3, 7, 11, 16, and 22 days. No significant weight loss was determined in the initial decay periods within three up to 7 days. After three days of decay the topochemical investigation revealed that the lignin modification starts at the outermost part of the secondary wall layer, especially in the region of the latewood tracheids. During advanced degradation after exposure of 22 days, lignin modification occurs non-homogeneously throughout the tissue. Even among the significantly damaged cells, some apparently unmodified cells still exist. Knowledge about lignin modification at initial stages of wood degradation is of fundamental importance to provide more information on the progress of brown-rot decay.  相似文献   

18.
Yang YS  Zhou JT  Lu H  Yuan YL  Zhao LH 《Biodegradation》2011,22(5):1017-1027
A fungus strain F-3 was selected from fungal strains isolated from forest soil in Dalian of China. It was identified as one Aspergillus sp. stain F-3 with its morphologic, cultural characteristics and high homology to the genus of rDNA sequence. The budges or thickened node-like structures are peculiar structures of hyphae of the strain. The fungus degraded 65% of alkali lignin (2,000 mg l−1) after day 8 of incubation at 30°C at pH 7. The removal of colority was up to 100% at 8 days. The biodegradation of lignin by Aspergillus sp. F-3 favored initial pH 7.0. Excess acid or alkali conditions were not propitious to lignin decomposing. Addition of ammonium l-tartrate or glucose delayed or repressed biodegradation activities. During lignin degradation, manganese peroxidase (28.2 U l−1) and laccase (3.5 U l−1)activities were detected after day 7 of incubation. GC-MS analysis of biodegraded products showed strain F-3 could convert alkali lignin into small molecules or other utilizable products. Strain F-3 may co-culture with white rot fungus and decompose alkali lignin effectively.  相似文献   

19.
Biodegradation of Pinus radiata softwood by white- and brown-rot fungi   总被引:4,自引:0,他引:4  
The weight and component losses of Pinus radiata wood after decay by six species of white-rot and two species of brown-rot fungi for periods varying from 30 to 360 days were evaluated. Three groups of decayed wood samples were identified based on the principal component analysis (PCA) of the data on their weight and component losses. Selective lignin degradation was produced by Ceriporiopsis subvermispora and Punctularia atropurpurascens within different periods, the longest one lasting 90 days, and also by Merulius tremellosus after 90 days of biodegradation. Comparing the data on biodegradation of P. radiata by Trametes versicolor with the ones reported for biodegradation of Eucalyptus globulus and E. grandis indicated that P. radiata is as susceptible to wood decay by this white-rot fungus as the two types of hardwood.  相似文献   

20.
The roles of lignin peroxidase, manganese peroxidase, and laccase were investigated in the biodegradation of pentachlorophenol (PCP) by several white rot fungi. The disappearance of pentachlorophenol from cultures of wild type strains,P. chrysosporium, Trametes sp. andPleurotus sp., was observed. The activities of manganese peroxidase and laccase were detected inTiametes sp. andPleurotus sp. cultures. However, the activities of ligninolytic enzymes were not detected inP. chrysosporium cultures. Therefore, our results showed that PCP was degraded under ligninolytic as well as nonligninolytic conditions. Indicating that lignin peroxidase, manganese peroxidase, and laccase are not essential in the biodegradation of PCP by white rot fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号