首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated and cultured neonatal cardiac myocytes contract spontaneously and cyclically. The contraction rhythms of two isolated cardiac myocytes, each of which beats at different frequencies at first, become synchronized after the establishment of mutual contacts, suggesting that mutual entrainment occurs due to electrical and/or mechanical interactions between two myocytes. The intracellular concentration of free Ca(2+) also changes rhythmically in association with the rhythmic contraction of myocytes (Ca(2+) oscillation), and such a Ca(2+) oscillation was also synchronized among cultured cardiac myocytes. In this study, we investigated whether intercellular communication other than via gap junctions was involved in the intercellular synchronization of intracellular Ca(2+) oscillation in spontaneously beating cultured cardiac myocytes. Treatment with either blockers of gap junction channels or an un-coupler of E-C coupling did not affect the intercellular synchronization of Ca(2+) oscillation. In contrast, treatment with a blocker of P2 purinoceptors resulted in the asynchronization of Ca(2+) oscillatory rhythms among cardiac myocytes. The present study suggested that the extracellular ATP-purinoceptor system was responsible for the intercellular synchronization of Ca(2+) oscillation among cardiac myocytes.  相似文献   

2.
Cardiac ischemia results in a rapid decrease of intracellular pH and in the rise of intracellular Ca 2+ , changes that have been shown to reduce intercellular communication via gap junctions (GJ) between cardiac myocytes. Ischemia also results in electrical instability probably caused by the reduced GJ permeability contributing to an increased vulnerability to arrhythmias. This study aims at elucidating whether the fluctuations of contraction rhythm of spontaneously beating cardiac myocytes in culture changes during simulated ischemia/reperfusion. The coefficient of variation (CV) of contraction intervals, reflecting the fluctuation of contraction rhythm, increased significantly during simulated ischemia/reperfusion. However, the contraction rhythm of the cardiac myocytes in an aggregate remained synchronized during simulated ischemia/reperfusion. In contrast, pharmacological blockade of GJ with 12-doxyl stearic acid, a blocker of GJ permeability, resulted in the de-synchronization of contraction rhythm and in an increase in the CV of contraction intervals in normoxic conditions. The present findings lead to the suggestion that GJ remained open during simulated ischemia/reperfusion, and that a mechanism other than electrical uncoupling between myocytes contributed to the observed increase in the fluctuation of beating rhythm during ischemia.  相似文献   

3.
Isolated and cultured neonatal cardiac myocytes contract spontaneously and cyclically. The intracellular concentration of free Ca2+ also changes rhythmically in association with the rhythmic contraction of myocytes (Ca2+ oscillation). Both the contraction and Ca2+ oscillatory rhythms are synchronized among myocytes, and intercellular communication via gap junctions has been considered primarily responsible for the synchronization. However, a recent study has demonstrated that intercellular communication via extracellular ATP-purinoceptor signaling is also involved in the intercellular synchronization of intracellular Ca2+ oscillation. In this study, we aim to elucidate whether the concentration of extracellular ATP changes cyclically and contributes to the intercellular synchronization of Ca2+ oscillation among myocytes. In almost all the cultured cardiac myocytes at four days in vitro (4 DIV), intracellular Ca2+ oscillations were synchronized with each other. The simultaneous measurement of the concentration of extracellular ATP and intracellular Ca2+ revealed the extracellular concentration of ATP actually oscillated concurrently with the intracellular Ca2+ oscillation. In addition, power spectrum and cross-correlation analyses suggested that the treatment of cultured cardiac myocytes with suramin, a blocker of P2 purinoceptors, resulted in the asynchronization of Ca2+ oscillatory rhythms among cardiac myocytes. Treatment with suramin also resulted in a significant decrease in the amplitudes of the cyclic changes in both intracellular Ca2+ and extracellular ATP. Taken together, the present study demonstrated the possibility that the concentration of extracellular ATP changes cyclically in association with intracellular Ca2+, contributing to the intercellular synchronization of Ca2+ oscillation among cultured cardiac myocytes.  相似文献   

4.
Cultured cardiac myocytes from neonatal rats show spontaneous and rhythmic contractions. The intracellular concentration of free Ca2 +  also changes rhythmically, associated with the rhythmic contraction of myocytes (Ca2 +  oscillation). This study aims to elucidate whether spontaneous rhythmic contraction affects the dynamics of intracellular Ca2 +  oscillation in cultured cardiac myocytes. In cultures at four days in vitro (4 DIV), spontaneous Ca2 +  oscillation was synchronized among myocytes. Treatment of cultures with an uncoupler of E - C coupling resulted in a cessation of the spontaneous contraction of cardiac myocytes, but did not abolish the Ca2 +  oscillation. The intercellular synchronization of intracellular Ca2 +  oscillation persisted, and both the intervals and the fluctuation of the oscillation tended to increase after the termination of rhythmic contraction. The present study demonstrated that mechanical factors associated with rhythmic contraction did not affect the intercellular synchronization of intracellular Ca2 +  oscillation, but possibly contributed to the stability of the oscillatory rhythm.  相似文献   

5.
 Isolated and cultured neonatal cardiac myocytes contract spontaneously and cyclically, and have the properties of a non-linear oscillator. In this study, we have analyzed the relationship between the fluctuation of contraction rhythm of spontaneously beating cultured cardiac myocytes, and the coupling strength among them. The coefficient of variation of contraction intervals increased transiently in the early stages of incubation, and then decreased almost monotonically with time. The contraction rhythm of the myocytes became synchronized in the late stage of the culture. The day on which synchronization occurred almost coincided with the day when the coefficient of variation reached its lowest value. In addition, we have performed a mathematical analysis using interacting Bonhoeffer–van der Pol oscillators to clarify the mechanisms underlying the changes in the fluctuation of contraction rhythm with time. As the coupling strength among oscillators increased, the coefficient of variation of oscillation periods increased temporarily, but then decreased rapidly when the oscillators showed synchronization. These results suggest that the changes in the fluctuation of beating rhythm result from the increase in strength of electrical coupling among spontaneously beating cardiac myocytes. Received: 10 August 2000 / Accepted in revised form: 19 August 2001  相似文献   

6.
Little is known about connexin expression and function in murine cardiac fibroblasts. The authors isolated native ventricular fibroblasts from adult mice and determined that although they expressed both connexin43 (Cx43) and connexin45 (Cx45), the relative abundance of Cx45 was greater than that of Cx43 in fibroblasts compared to myocytes, and the electrophoretic mobility of both Cx43 and Cx45 differed in fibroblasts and in myocytes. Increasing Cx43 expression by adenoviral infection increased intercellular coupling, whereas decreasing Cx43 expression by genetic ablation decreased coupling. Interestingly, increasing Cx43 expression reduced fibroblast proliferation, whereas decreasing Cx43 expression increased proliferation. These data demonstrate that native fibroblasts isolated from the mouse heart exhibit intercellular coupling via gap junctions containing both Cx43 and Cx45. Fibroblast proliferation is inversely related to the expression level of Cx43. Thus, connexin expression and remodeling is likely to alter fibroblast function, maintenance of the extracellular matrix, and ventricular remodeling in both normal and diseased hearts.  相似文献   

7.
Isolated and cultured neonatal cardiac myocytes contract spontaneously and cyclically. The intracellular concentration of free Ca2+ also changes rhythmically in association with the rhythmic contraction of myocytes (Ca2+ oscillation). Both the contraction and Ca2+ oscillatory rhythms are synchronized among myocytes, and intercellular communication via gap junctions has been considered primarily responsible for the synchronization. However, a recent study has demonstrated that intercellular communication via extracellular ATP‐purinoceptor signaling is also involved in the intercellular synchronization of intracellular Ca2+ oscillation. In this study, we aim to elucidate whether the concentration of extracellular ATP changes cyclically and contributes to the intercellular synchronization of Ca2+ oscillation among myocytes. In almost all the cultured cardiac myocytes at four days in vitro (4 DIV), intracellular Ca2+ oscillations were synchronized with each other. The simultaneous measurement of the concentration of extracellular ATP and intracellular Ca2+ revealed the extracellular concentration of ATP actually oscillated concurrently with the intracellular Ca2+ oscillation. In addition, power spectrum and cross‐correlation analyses suggested that the treatment of cultured cardiac myocytes with suramin, a blocker of P2 purinoceptors, resulted in the asynchronization of Ca2+ oscillatory rhythms among cardiac myocytes. Treatment with suramin also resulted in a significant decrease in the amplitudes of the cyclic changes in both intracellular Ca2+ and extracellular ATP. Taken together, the present study demonstrated the possibility that the concentration of extracellular ATP changes cyclically in association with intracellular Ca2+, contributing to the intercellular synchronization of Ca2+ oscillation among cultured cardiac myocytes.  相似文献   

8.
We analyzed the expression, phosphorylation, and localization of the major cardiac gap-junction protein connexin 43 (Cx43) during the establishment of a synchronized contraction in confluent monolayers of primary cultured neonatal rat cardiac myocytes, combined with a functional assay of gap junctions by the microinjection-dye transfer method. Monitoring of the beating rate and synchronization by Fotonic Sensor showed that at Day 1 of culture cardiac myocytes contracted spontaneously but irregularly, that the contractile rate increased with culture time, and that a synchronized contraction was gradually formed. At Day 7, the confluent cells exhibited synchronous contraction with a relatively constant rate (125 ± 20 beats/min). Cardiac myocytes expressed a large amount of Cx43 mRNA even at Day 1 and maintained the expression until at least Day 7. Immunofluorescence of Cx43 showed that the localization of Cx43-positive spots was mostly restricted to cell-cell contacts between myocytes and that few Cx43-positive spots were present between myocytes and fibroblasts or between fibroblasts. The amount of Cx43 protein, the proportion of phosphorylated forms to the nonphosphorylated one, and the number and total area of Cx43-positive spots increased with culture time. Gap-junctional intercellular communication measured by dye transfer assay was also increased with culture time and correlated well with the number and total area of Cx43-positive spots. Our systematic study suggests that a concerted action of the expression, phosphorylation, and localization of Cx43 and gap-junctional intercellular communication plays a major role in the reestablishment of synchronous beating of cultured neonatal rat cardiac myocytes.  相似文献   

9.
Cardiomyocytes (CMs) fuse with various cells including endothelial cells, cardiac fibroblasts (CFs). In addition, recent studies have shown that stem cells fuse spontaneously with cells remaining in the damaged tissues, and restore tissue functions after myocardial infarction. In this study, we investigated whether cultured cardiomyocytes fused with proliferative cardiac fibroblasts maintained the phenotype of functional myocytes by analyzing the spontaneous contraction rhythm after fusion with CFs lacking a beating capability. CMs and CFs cultured for 4 days in vitro were used in this study. The fusion of cultured CMs and CFs was achieved with polyethylene glycol (PEG) and hemagglutinating virus of Japan (HVJ). Analyses of CMs fused with CFs by using either PEG or HVJ to imitate spontaneous fusion in vivo demonstrated that CMs and CFs actually fused together and fused cells expressed lineage marker proteins of both CMs and CFs. In addition, fused cells reentered the G2-M phase of the cell cycle. Furthermore, fused cells retained the spontaneous contraction activity. The present study demonstrated that CMs fused with proliferative CFs showed the phenotype of both CMs and CFs and spontaneous rhythmic contraction.  相似文献   

10.
In the heart, individual cardiac muscle cells are linked by gap junctions. These junctions form low resistance pathways along which the electrical impulse flows rapidly and repeatedly between all the cells of the myocardium, ensuring their synchronous contraction. To obtain probes for mapping the distribution of gap junctions in cardiac tissue, polyclonal antisera were raised to three synthetic peptides, each matching different cytoplasmically exposed portions of the sequence of connexin43, the major gap-junctional protein reported in the heart. The specificity of each antiserum for the peptide to which it was raised was established by dot blotting. New methods were developed for isolating enriched fractions of gap junctions from whole heart and from dissociated adult myocytes, in which detergent-treatment and raising the temperature (potentially damaging steps in previously described techniques) are avoided. Analysis of these fractions by SDS-polyacrylamide gel electrophoresis revealed major bands at 43 kDa (matching the molecular mass of connexin43) and at 70 kDa. Western blot experiments using our antisera indicated that both the 43-kDa and the 70-kDa bands represent cardiac gap-junctional proteins. Pre-embedding immunogold labelling of isolated gap junctions and post-embedding immunogold labelling of Lowicryl-embedded whole tissue demonstrated the specific binding of the antibodies to ultrastructurally defined gap junctions. One antiserum (raised to residues 131–142) was found to be particularly effective for cytochemical labelling. Using this antiserum for immunofluorescence labelling in combination with confocal scanning laser microscopy enabled highly sensitive detection and three-dimensional mapping of gap junctions through thick slices of cardiac tissue. By means of the serial optical sectioning ability of the confocal microscope, images of the entire gap junction population of complete en face-viewed disks were reconstructed. These reconstructions reveal the presence of large junctions arranged as a peripheral ring around the disk, with smaller junctions in an interior zone: an arrangement that may facilitate efficient intercellular transfer of current. By applying our immunolabelling techniques to tissue from hearts removed from transplant patients with advanced ischaemic heart disease, we have demonstrated that gap junction distribution between myocytes at the border zone of healed infarcts is markedly disordered. This abnormality may contribute to the genesis of reentrant arrhythmias in ischaemic heart disease.  相似文献   

11.
We analyzed by Fotonic Sensor, a fiber-optic displacement measurement instrument, the effects of heptanol on synchronized contraction of primary neonatal rat cardiac myocytes cultured at confluent density. We also examined the effect of heptanol on the changes in gap junctional intercellular communication by using the microinjection dye transfer method, and on intercellular Ca2+ fluctuation by confocal laser scanning microscopy of myocytes loaded with the fluorescent Ca2+ indicator fluo 3. In addition, we studied expression, phosphorylation, and localization of the major cardiac gap junction protein connexin 43 (Cx43) using immunofluorescence and Western blotting. At Day 6 of culture, numerous myocytes exhibited spontaneous, synchronous contractions, excellent dye coupling, and synchronized intracellular Ca2+ fluctuations. We treated the cells with 1.5, 2.0, 2.5, and 3.0 mmol/liter heptanol. With 1.5 mmol/liter heptanol, we could not observe significant effects on spontaneous contraction of myocytes. At 3.0 mmol/liter, the highest concentration used in the current experiment, heptanol inhibited synchronous contractions and even after washing out of heptanol, synchronous contraction was not rapidly recovered. On the other hand, at the intermediate concentrations of 2.0 and 2.5 mmol/liter, heptanol reversely inhibited synchronized contraction, gap junctional intercellular communication, and synchronization of intracellular Ca2+ fluctuations in the myocytes without preventing contraction and changes of intracellular Ca2+ in individual cells. Brief exposure (5-20 min) to heptanol (2.0 mmol/liter) did not cause detectable changes in the expression, phosphorylation, or localization of Cx43, despite strong inhibition of gap junctional intercellular communication. These results suggest that gap junctional intercellular communication plays an important role in synchronous intracellular Ca2+ fluctuations, which facilitate synchronized contraction of cardiac myocytes.  相似文献   

12.
Following myocardial infarction (MI) inflammatory responses transform cardiac fibroblasts to myofibroblasts, which in vitro studies show form heterocellular gap junctions with cardiac myocytes via Connexin43 (Cx43). The ability to form heterocellular junctions in the intact heart and the impact of these junctions on propagation is unclear. We used a canine model of MI and characterized the distribution and quantity of myofibroblasts in surviving epicardial cells [epicardial border zone (EBZ)]. We found a significant increase in myofibroblasts within the EBZ and no gap junction plaques between myofibroblasts and myocytes. Because myofibroblasts produce IL-1β, which downregulates Cx43, we asked whether myofibroblast proliferation causes loss of Cx43 near myofibroblast clusters. In vitro studies showed that IL-1β caused loss of Cx43 and reduced coupling. Western blot showed a significant increase of IL-1β in the EBZ, and immunohistochemistry showed a loss of Cx43 in regions of myofibroblasts in the intact heart. Additionally, dye studies in intact heart showed no coupling between myocytes and myofibroblasts. To quantify the effect of myofibroblasts on propagation we used a two-dimensional subcellular computer model of the EBZ, which showed that heterogeneities in myofibroblast density lead to conduction abnormalities. In conclusion, an increase of myofibroblasts in the infarcted heart causes heterogeneous Cx43 levels, possibly as a result of the release of IL-1β and decreased cell-cell communication, which leads to conduction abnormalities following MI.  相似文献   

13.
Pituitary neuropeptide oxytocin is increasingly recognised as a cardiovascular hormone, in addition to its many regulatory roles in other organ systems. Studies in atrial and ventricular myocytes from the neonatal and adult rats have identified synthesis of oxytocin and the expression of oxytocin receptors in these cells. In cardiac fibroblasts, the most populous non-myocyte cell type in mammalian heart, the oxytocin receptors have not been described before. In the present study, we have investigated the direct effects of oxytocin on intracellular Ca2+ dynamics in ventricular myocytes and fibroblasts from new born rats. In myocytes, oxytocin increased the frequency of spontaneous Ca2+ transients and decreased their amplitude. Our data suggest that oxytocin receptors are also present and functional in the majority of cardiac fibroblasts. We used selective oxytocin receptor inhibitor L-371,257 and a number of intracellular Ca 2+ release blockers to investigate the mechanism of oxytocin induced Ca2+ signalling in cardiac fibroblasts. Our findings suggest that oxytocin induces Ca2+ signals in cardiac fibroblasts by triggering endoplasmic reticulum Ca2+ release via inositol trisphosphate activated receptors. The functional significance of the oxytocin induced Ca2+ signalling in cardiac fibroblasts, especially for their activation into secretory active myofibroblasts, remains to be investigated.  相似文献   

14.
Basic fibroblast growth factor (bFGF) is a ubiquitous and multifunctional polypeptide that is believed to have a role in tissue repair and to act as a morphogen in embryonic development. Here, we have used immunohistochemical and biochemical methods with antibodies directed against the amino-terminal domain of bFGF, designated IS2, which recognize native and denatured bFGF, to demonstrate that in addition to its known intracellular and extracellular localization in heart, bFGF is also associated with cardiomyocyte gap junctions. In tissue sections, IS2 labeled regions of intercalated discs, producing an immunofluorescence pattern virtually indistinguishable from that obtained with antibodies against the heart gap junction protein connexin-43. By electron microscopy, gap junctions but not other regions of plasma membrane were heavily immunolabeled with this antibody. By solid phase immunoassay, bFGF was found to be more concentrated in a fraction enriched in cardiac gap junctions than in whole sarcolemmal preparations. Finally, an 18-kDa protein was recognized by several different antibodies specific for bFGF on Western blots of heart subcellular fractions enriched in gap junctions. We suggest that bFGF-like peptides are either an integral part of, or exist in close association with, cardiac gap junctions and thus may play a role in modulating gap junctional intercellular communication.  相似文献   

15.
Electrophysiological remodeling involving gap junctions has been demonstrated in failing hearts and may contribute to intercellular uncoupling, delayed conduction, enhanced arrhythmias, and vulnerability to sudden death in patients with heart failure. Recently, we showed that failing human hearts exhibit marked increases in connexin45 (Cx45) expression in addition to previously documented decreases in connexin43 (Cx43) expression. Each of these changes results in reduced gap junction coupling. The objective of the present study was to examine functional consequences of increased Cx45 in cardiac gap junctions. Transgenic mice with cardiac-selective overexpression of the developmentally downregulated cardiac connexin, connexin45 (Cx45OE mice) were subjected to in vivo electrophysiology studies in which an intracardiac catheter was used to induce ventricular arrhythmias in anesthetized mice, and in which ambulatory ECG monitoring was used to detect spontaneous arrhythmias in unanesthetized mice. Hearts were analyzed by TaqMan RT-PCR, immunostaining, immunoblotting, and echocardiography. Lucifer yellow and neurobiotin dye transfer was used to assess coupling in transgenic and control myocyte cultures. Cx45 mRNA was two orders of magnitude greater in Cx45OE mice. Cx45-immunoreactive signal at gap junctions increased twofold and total Cx45 protein by immunoblotting increased 25% in Cx45OE mice compared with nontransgenic littermate controls. Functionally, Cx45OE mice exhibited more inducible ventricular tachycardia than controls but did not exhibit any other functional or structural derangements as assessed by echocardiography. Ventricular myocytes isolated from Cx45OE mice exhibited diminished intercellular transfer of Lucifer yellow dye and increased transfer of neurobiotin, consistent with altered cell-to-cell communication. Thus increased myocardial expression of Cx45 results in remodeling of intercellular coupling and greater susceptibility to ventricular arrhythmias in vivo.  相似文献   

16.
Cardiac fibroblasts, myocytes, endothelial cells, and vascular smooth muscle cells are the major cellular constituents of the heart. The aim of this study was to observe alterations in myocardial cell populations during early neonatal development in the adult animal and to observe any variations of the cardiac cell populations in different species, specifically, the rat and mouse. Whole hearts were isolated from either mice or rats during the neonatal and adult stages of development, and single cell suspensions were prepared via sequential collagenase digestion. Heterogeneous cell populations were immunolabeled for specific cell types and analyzed using fluorescence-activated cell sorting (FACS). In addition, the left ventricle, right ventricle, and septa were isolated, fixed, and sectioned for morphometric analyses. These same cardiac regions were also analyzed using FACS. We observed that the adult murine myocardium is composed of approximately 56% myocytes, 27% fibroblasts, 7% endothelial cells, and 10% vascular smooth muscle cells. Moreover, our morphometric and FACS data demonstrated similar percentages in the three regions examined. During murine neonatal cardiac development, we observed a marked increase in numbers of cardiac fibroblasts and a resultant decrease in percentages of myocytes in late neonatal development (day 15). Finally, FACS analyses of the rat heart during development displayed similar results in relation to increases in cardiac fibroblasts during development; however, cell populations in the rat differed markedly from those observed in the mouse. Taken together, these data enabled us to establish a homeostatic model for the myocardium that can be compared with genetic and cardiac disease models.  相似文献   

17.
Memory in the nervous system is essentially a network effect, resulting from activity-dependent synaptic modification in a network of neurons. Like the nervous system, the heart is a network of cardiac cells electrically coupled by gap junctions. The heart too has memory, termed cardiac memory, whereby the effect of an external electrical activation persists long after the presentation of stimulus is terminated. We have earlier proposed that adaptation of gap junctions, as a function of membrane voltages of the cells that are coupled by the gap junctions, is related to cardiac memory [V.S. Chakravarthy, J. Ghosh, On Hebbian-like adaption in heart muscle: a proposal for "Cardiac Memory", Biol. Cybern. 76 (1997) 207, J. Krishnan, V.S. Chakravarthy, S. Radhakrishnan, On the role of gap junctions on cardiac memory effect, Comput. Cardiol. 32 (2005) 13]. Using the proposed mechanism, we demonstrate memory effect using computational models of interacting cell pairs. In this paper, we address the biological validity of the proposed mechanism of gap junctional adaptation. It is known from electrophysiology of gap junctions that the conductance of these channels adapts as a function of junctional voltage. At a first sight, this form of voltage dependence seems to be at variance with the form required by our mechanism. But we show, with the help of a theoretical model, that the proposed mechanism of voltage-dependent adaptation of gap junctions, is compatible with the known voltage-sensitivity of gap junctions observed in electrophysiological studies. Our analysis suggests a new significance of the voltage-sensitivity of gap junctions and its possible link to the phenomenon of cardiac memory.  相似文献   

18.
T-tubes in cultured mammalian myocardial cells   总被引:2,自引:0,他引:2  
Summary T-tubes are among the last structural elements of the mammalian myocyte to develop in vivo. We were able to identify T-tubes in early cultures of neonatal rat myocytes. Ventricles were excised from 3- to 4-day-old neonatal rats, incubated overnight in cold trypsin, and treated with sequential changes of collagenase-hyaluronidase. Fractions of cells isolated in this manner were pooled and cultured in plastic petri dishes. In cells prepared for transmission electron microscopy, T-tubes were observed at the cell periphery of cultured myocytes, but were more difficult to identify as the cultures aged and became overgrown by fibroblasts. T-tubes were identified by virtue of their continuity with the sarcolemma, their relatively large diameter, and their regular entry at the level of the Z line. Even at optimal culture ages, T-tubes were not present in every myocyte. At the times T-tubes could be located, myocytes were beating and had begun to establish intercalated discs and gap junctions. The de novo formation of T-tubes in cultured myocytes of neonatal rat heart reflects a duplication of in vivo differentiation by the cultured myocyte. The appropriateness of cultured myocytes in the study of the development and physiology of the heart is emphasized by the in vitro formation of T-tubes.Supported by research grants from the Muscular Dystrophy Association, Inc., The Schlieder Foundation, and USPH-Training Grant HL 07098-04. The authors are indebted to Philip Constantin for assistance in dissociating and culturing heart tissue.  相似文献   

19.
Abstract

Cardiac conduction is the propagation of electrical excitation through the heart and is responsible for triggering individual myocytes to contract in synchrony. Canonically, this process has been thought to occur electrotonically, by means of direct flow of ions from cell to cell. The intercalated disk (ID), the site of contact between adjacent myocytes, has been viewed as a structure composed of mechanical junctions that stabilize the apposition of cell membranes and gap junctions which constitute low resistance pathways between cells. However, emerging evidence suggests a more active role for structures within the ID in mediating intercellular electrical communication by means of non-canonical ephaptic mechanisms. This review will discuss the role of the ID in the context of the canonical, electrotonic view of conduction and highlight new, emerging possibilities of its playing a more active role in ephaptic coupling between cardiac myocytes.  相似文献   

20.
Cardiac fibroblasts contribute to the structure and function of the myocardium. However their involvement in electrophysiological processes remains unclear; particularly in pathological situations when they proliferate and develop fibrosis. We have identified the connexins involved in gap junction channels between fibroblasts from adult mouse heart and characterized their functional coupling. RT-PCR and Western blotting results show that mRNA and proteins of connexin40 and connexin43 are expressed in cultured cardiac fibroblasts, while Cx45 is not detected. Analysis of gap junctional communications established by these connexins with the gap-FRAP technique demonstrates that fibroblasts are functionally coupled. The time constant of permeability, k, calculated from the fluorescence recovery curves between cell pairs is 0.066 ± 0.005 min− 1 (n = 65). Diffusion analysis of Lucifer Yellow through gap junction channels with the scrape-loading method demonstrates that when they are completely confluent, a majority of fibroblasts are coupled forming an interconnecting network over a distance of several hundred micrometers. These data show that cardiac fibroblasts express connexin40 and connexin43 which are able to establish functional communications through homo and/or heterotypic junctions to form an extensive coupled cell network. It should then be interesting to study the conditions to improve efficiency of this coupling in pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号