首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of an anaerobic hybrid reactor, treating coffee wastewater, to achieve a quick start-up was tested at pilot scale. The unacclimatized seed sludge used showed a low specific methanogenic activity of 26.47 g CH4 as chemical oxygen demand (COD)/kg volatile suspended solids (VSS) x day. This strongly limited the reactor performance. After a few days of operation, a COD removal of 77.2% was obtained at an organic loading rate (OLR) of 1.89 kg COD/m3 x day and a hydraulic retention time (HRT) of 22 h. However, suddenly increasing OLR above 2.4 kg COD/m3 x day resulted in a deterioration in treatment efficiency. The reactor recovered from shock loads after shutdowns of 1 week. The hybrid design of the anaerobic reactor prevented the biomass from washing-out but gas clogging in the packing material was also observed. Wide variations in wastewater strength and flow rates prevented stable reactor operation in the short period of the study.  相似文献   

2.
The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention times (HRT) on the treatment of NB were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system. In the first step of the study, the maximum COD removal efficiencies were found as 88% and 92% at NB concentrations varying between 30 mg L?1 and 210 mg L?1 in ABR. The minimum COD removal efficiency was 79% at a NB concentration of 700 mg L?1. The removal efficiency of NB was nearly 100% for all NB concentrations in the ABR reactor. The methane gas production and the methane gas percentage remained stable (1500 mL day?1 and 48–50%, respectively) as the NB concentration was increased from 30 to 210 mg L?1. In the second step of the study it was found that as the HRT decreased from 10.38 days to 2.5 days the COD removal efficiencies decreased slightly from 94% to 92% in the ABR. For maximum COD and NB removal efficiencies the optimum HRT was found as 2.5 days in the ABR. The total COD removal efficiency was 95% in sequential anaerobic (ABR)/aerobic (CSTR) reactor system at a minimum HRT of 1 day. When the HRT was decreased from 10.38 days to 1 day, the methane percentage decreased from 42% to 29% in an ABR reactor treating 100 mg L?1 NB. Nitrobenzene was reduced to aniline under anaerobic conditions while aniline was mineralized to catechol with meta cleavage under aerobic conditions.  相似文献   

3.
The concepts of feed pretreatment, phase separation, and whole-cell immobilization technology have been incorporated in this investigation for the development of rational and cost-effective two- and three-stage methane recovery systems from water hyacinth (WH)Analyses of laboratory data reveal that a three-stage system could be designed with an alkali pretreatment stage [3.6% Na(2)CO(3) + 2.5% Ca(OH)(2) W/W, 24 h HRT] followed by an open acid reactor (2.1 days HRT) and closed immobilized methane reactor (12 h HRT), providing steady-state COD conversion of 62-65%, TVA conversion of 91-95%, and gas productivity of 4.08-5.36 L/L reactor volume/day with 82% methane. A gas yield of 50 L/kg WH/day (dry wt basis) at 35-37 degrees C is possible with this system. Insulation bricks, with particle size distribution of 500-3000 mum, were used as support material in the reactors at organic loading rate of 20 kg COD/m(3) day. The reactors matured in 15-18 weeksSubstantial reduction in retention time for the conversion of volatile acids in immobilized methane reactors prompted further research on the combined immobilized reactor to make possible an additional reduction in the cost of a WH-based biogas system. Evaluation of laboratory data reveals that a two-stage system could be designed with an open alkali pretreatment stage and a combined immobilized reactor (12 h HRT), providing steady-state COD conversion of 53% and gas productivity of 3.1 L/L reactor volume/day with 86% methane. A gas yield of 44 L/kg WH/day (dry wt basis) at 35-37 degrees C could be obtained from this system. Insulation bricks, with 500-1000 mum particle size distribution, was used as support material at an organic loading rate of 15 kg COD/m(3) day. Notwithstanding the fact that the technology in this study has been developed with water hyacinth as substrate, the implicit principles could be extended to any other organic substrate.  相似文献   

4.
The treatment of the wastewater taken from a wool dyeing processing in a wool manufacturing plant was investigated using an anaerobic/aerobic sequential system. The process units consisted of an anaerobic UASB reactor and an aerobic CSTR reactor. Glucose, alkalinity and azo dyes were added to the raw acid dyeing wastewater in order to simulate the dye industry wastewater since the raw wastewater contained low levels of carbon, NaHCO3 and color through anaerobic/aerobic sequential treatment. The UASB reactor gave COD and color removals of 51–84% and 81–96%, respectively, at a HRT of 17 h. The COD and color removal efficiencies of the UASB/CSTR sequential reactor system were 97–83% and 87–80%, respectively, at a hydraulic retention time (HRTs) of 3.3 days. The aromatic amines (TAA) formed in the anaerobic stage were effectively removed in the aerobic stage.  相似文献   

5.
Anaerobic treatment of wastewater from a selected seafood processing plant was conducted at organic loading rates (OLR) ranging from 0.3 to 1.8 kg chemical oxygen demand (COD)/m3.day and hydraulic retention times (HRT) ranging from 36 to 6 days. COD reduction decreased with increasing OLR. More than 75% COD reduction could be maintained up to an OLR of about 1 kg COD/m3.day with an HRT of 11 days. An OLR of 1.3 kg COD/m3.day corresponding to an HRT of 6.6 days gave maximal biogas productivity of 1.5 m3/m3.day or 1.3 m3 biogas/kg COD with a 65% COD reduction. If the HRT was kept constant at 11 days, an OLR of 1.3 kg COD/m3.day achieved maximal biogas productivity (1.1 m3/m3.day) and yield (0.75 m3/kg COD) and a 60% COD reduction for treatment of tuna condensate.P. Prasertsan and S. Jung are with the Department of Agro-Industry, Faculty of Natural Resources, Prince of Songkla University, Hatyai 90110, Thailand. K.A. Buckle is with the Department of Food Science and Technology, University of New South Wales, Kensington, NSW 2033, Australia.  相似文献   

6.
A 450-m(3) multiplate anaerobic reactor (MPAR) has been started-up in April 1992 for treating wastewater (whey permeate and domestic wastewater) at the Nutrinor (Lactel) cheese factory in Chambord (Québec, Canada). The MPAR consists of four superimposed sections. The liquid flows upwards from one section to the next, while the gas is collected below each plate and evacuated through side-outlets. The wastewater is concurrently distributed at the bottom of the first, second, and third sections, as 50%, 33%, and 17% of the total influent stream, respectively. Granular anaerobic sludge at an initial concentration of 30 kg of volatile suspended solids (VSS) per cubic meter of reactor liquid volume was used to inoculate the reactor. Under normal operation of the factory, the chemical oxygen demand (COD) concentration of the influent ranged from 20 to 37 kg COD m(-3). The reactor organic loading rate (OLR) fluctuated between 9 and 14.7 kg COD m(-3) d(-1) for hydraulic retention times (HRT) maintained between 55 and 68 h. At the highest OLR, the MPAR showed an efficiency of 98% and 92% for soluble and total COD removal, respectively, and a methane production rate averaging around 4 m(3) m(-3) d(-1).Biomass-specific activities ranged between 7 and 51, 1.3 and 8.5, 5.3 and 12.2, 60 and 119, and 119 and 211 mmol g(-1) VSS d(-1) for glucose, propionate, acetate, formate, and hydrogen, respectively. Average equivalent-diameter of the granules was around 0.65 mm. The MPAR reactor generally showed a large capacity for solid retention with a biomass content between 32 and 37 kg VSS m(-3). (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
Hydrolysis of waste activated sludge (WAS) has been regarded as the rate limiting step of anaerobic sludge digestion. Therefore, in this study, the effect of ultrasound and hydraulic residence time during sludge hydrolysis was investigated with the goal of enhancing methane production from anaerobic digestion (AD). WAS was ultrasonically disintegrated for hydrolysis, and it was semi-continuously fed to an anaerobic digesters at various hydraulic retention times (HRTs). The results of these experiments showed that the solids and chemical oxygen demand (COD) removal efficiencies when using ultrasonically disintegrated sludge were higher during AD than the control sludge. The longer the HRT, the higher the removal efficiencies of solids and COD, while methane production increased with lower HRT. Sludge with 30% hydrolysis produced 7 × more methane production than the control sludge. The highest methane yields were 0.350 m(3)/kg volatile solids (VS)(add) and 0.301 m(3)/kg COD(con) for 16 and 30% hydrolyzed sludge, respectively. In addition, we found that excess ultrasound irradiation may inhibit AD since the 50% hydrolyzed sludge produced lower methane yields than 16 and 30% hydrolyzed sludge.  相似文献   

8.
The study was aimed at treating the complex, combined wastewater generated in Mangolpuri industrial cluster. It was considered as a low strength wastewater with respect to its organic content. Anaerobic treatment of this wastewater was studied using an anaerobic hybrid reactor (AHR) which combined the best features of both the upflow anaerobic sludge blanket (UASB) reactor and anaerobic fluidized bed rector (AFBR). The performance of the reactor under different organic and hydraulic loading rates were studied. The COD removal reached 94% at an organic loading rate (OLR) of 2.08 kg COD m(-3)d(-1) at an hydraulic retention time (HRT) of 6.0 h. The granules developed were characterized in terms of their diameter and terminal settling velocity.  相似文献   

9.
This paper examines the effect of organic loading rate on the removal efficiency of COD and TOC anaerobic thermophilic fluidized bed reactor (AFBR) in the treatment of cutting-oil wastewater at different hydraulic retention time (HRT) conditions. The essays are development at laboratory scale using a porous support medium. The AFBR reactor was subjected to a programme of steady-state operation over a range of hydraulic retention times, HRTs, in the range 12-2h and organic loading rates, OLRs, between 11.9 and 51.3kgCOD/m(3)d. The highest efficiency was 95.9% for an OLR of 13kgCOD/m(3)d and HRT of 11h. Over an operating period of 92 days, an OLR of 51.3kgCOD/m(3)d was achieved with 67.1% COD removal efficiency (71.3% TOC) in the experimental AFBR reactor. Although the level of biogas generation was not high, the anaerobic fluidized bed technology provided significant advantages over the conventional physico-chemical treatment applied in the factory. The effluent had a better quality (lower organic loading) and it was possible to reuse it in different applications in the factory (e.g., irrigation of gardens). The biological treatment did not lead to the generation of oily sludge, which is considered as hazardous waste by legislation. Furthermore, a continuous stream is produced and this reduced the impact of large flows discharged 4-5 times per week to the urban collector and MWWTP (municipal wastewater treatment plant).  相似文献   

10.
The feasibility of using upflow anaerobic sludge blanket (UASB) reactors for the treatment of dairy wastewaters was explored. Two types of UASBs were used--one operating on anaerobic sludge granules developed by us from digested cowdung slurry (DCDS) and the other on the granules obtained from the reactors of M/s EID Parry treating sugar industry wastewaters. The reactors were operated at HRT of 3 and 12 h and on COD loading rates ranging from 2.4 kg per m3 of digester volume, per day to 13.5 kg m(-3) d(-1). At the 3 h HRT, the maximum COD reduction in the DCDS-seeded and the industrial sludge-seeded reactors was 95.6% and 96.3%, respectively, better than at 12 h HRT (90% and 92%, respectively). In both the reactors, the maximum, the second best, and the third best COD reduction occurred at the loading rates of 10.8, 8.6 and 7.2 kg m3 d(-1), respectively. At loading rates higher than 10.8 kg, the reactor performance dropped precipitously. Whereas in the first few months the reactors operating on sludge from EID Parry achieved better biodegradation of the waste, compared to the reactors operated on DCDS, the performance of the latter gradually improved and matched with the performance of the former.  相似文献   

11.
Shao X  Peng D  Teng Z  Ju X 《Bioresource technology》2008,99(8):3182-3186
Brewery wastewater was treated in a pilot-scale anaerobic sequencing batch reactor (ASBR) in which a floating cover(@) was employed. Long time experiments showed that the reactor worked stably and effectively for COD removal and gas production. When the organic loading rate was controlled between 1.5 kg COD/m3 d and 5.0 kg COD/m(3)d, and hydraulic retention time one day, COD removal efficiency could reach more than 90%. Sludge granulation was achieved in the reactor in approximately 60 days, which is much less than the granulation time ever reported. In addition, high specific methanogenic activity (SMA) for formate was observed. The study suggests that the ASBR technology is a potential alternative for brewery wastewater treatment.  相似文献   

12.
The mesophilic anaerobic treatment of concentrated sludge from an Atlantic salmon smolt hatchery (total solids (TS): 6.3-12.3wt%) was investigated in a continuous stirred tank reactor (CSTR) at 35 degrees C and 55-60 days hydraulic retention time (HRT). COD-stabilization between 44% and 54% and methane yields between 0.140 and 0.154l/g COD added (0.260-0.281l/g VS added) were achieved. The process was strongly inhibited, with volatile fatty acid concentrations of up to 28 g/l. But the buffer capacity was sufficient to keep the pH-value at 7.4-7.55 during the whole operation. The fertilizing value of the treated sludge was estimated to be 3.4-6.8 kg N and 1.2-2.4 kg P per ton. However, the high VFA content would necessitate special means of application. The energy from the methane that was achieved in the present study would be sufficient to cover about 2-4% of the energy demands of a flow-through hatchery.  相似文献   

13.
Anaerobic digestion of cheese whey wastewaters (CW) was investigated in a system consisting of an ecological pretreatment followed by upflow anaerobic filter (UAF). The pretreatment was conducted to solve the inhibition problems during anaerobic treatment of CW caused by the amounts of fats, proteins and carbohydrates and to avoid the major problems of clogging in the reactor. The optimized ecological pretreatment of diluted CW induce removal yields of 50% of chemical oxygen demand (COD) and 60% of total suspended solids (TSS) after acidification by Lactobacillus paracasei at 32 degrees C during 20 h and neutralization with lime. The pretreated CW was used to feed UAF (35 degrees C). The effects of organic loading rate (OLR) and hydraulic retention time (HRT) on the pretreated CW anaerobic degradation were examined. The average total COD removals achieved was 80-90%. The performance of the reactor was depressed by increasing the COD concentration to 20 g/l (OLR = 4 gCOD/ld) and the COD removal efficiency was reduced to 72%. Significant methane yield (280 l/kg COD removal) was obtained at an HRT of 2 days.  相似文献   

14.
Treatment of beet sugar wastewater by UAFB bioprocess   总被引:1,自引:0,他引:1  
The aim of this work was to study the treatment of strong beet sugar wastewater by an upflow anaerobic fixed bed (UAFB) at pilot plant scale. Three fixed bed bioreactors (each 60 L) were filled with standard industrial packing, inoculated with anaerobic culture (chicken manure, cow manure, anaerobic sludge digested from domestic wastewater) and operated at 32-34 degrees C with 20 h hydraulic retention time (HRT) and influent COD ranging between 2000-8000 mg/L. Under these conditions the maximum efficiency of organic content reduction in the reactor ranged from 75% to 93%. The reactor filled with standard pall rings made of polypropylene with an effective surface area of 206 m(2)/m(3) performed best in comparison to the reactor filled with cut polyethylene pipe 134 m(2)/m(3) and reactor filled with PVC packing (50 m(2)/m(3)). There was 2-7% decrease in efficiency with PE while it was 10-16% in case of PVC when compared to standard pall rings. The study provided a very good basis for comparing the effect of packing in reduction efficiency of the system.  相似文献   

15.
Investigations were carried out by using rigid polyurethane foam as a packing material in the anaerobic contact filter (series) to treat distillery spentwash. The effect of hydraulic retention time (HRT) in treatment efficiency of reactor (I) and (II) was evaluated at different initial substrate concentrations ranging from 1500 mg/l to 19,000 mg/l. The effect of toxic parameters such as sulphate present in the distillery spentwash and the corresponding parameters such as total sulphide and un-ionized hydrogen sulphide generated during digestion of wastewater were evaluated to assess the reactor performance. The results showed that at 4 d HRT the overall COD removal percent ranged from 98% to 73% for an influent COD of 1500 mg/l to 19,000 mg/l. The overall performance of COD removal percent in reactor (I) and (II) at 2, 3 and 4 d HRT's were investigated. At 3 d HRT the reactor (II) showed a higher COD removal percent when compared to reactor (I), which clearly shows the role of hydraulic retention time in degradation of the organic matter present in the wastewater above an influent COD concentration of 5000 mg/l.  相似文献   

16.
Development of an improved reactor configuration of anaerobic filter was carried out for the elimination of clogging of filter media. The experiments over different hydraulic retention times (HRTs) indicated that the HRT of 12 h was the most appropriate one for the system studied while treating the municipal wastewater, which resulted 90% and 95% BOD and COD reduction, respectively. Reduction up to 95% in suspended solids concentration could be achieved without any pretreatment. The specific biogas yield obtained was 0.35 m(3) CH(4)/kgCODr with 70% of CH(4) content in the biogas generated from the system at the HRT of 12 h. Operational problems such as clogging of filter media were not observed throughout the period of study over 600 d.  相似文献   

17.
The effects of different hydraulic retention time (HRT) on (RS)-MCPP utilisation was investigated by decreasing the feed flow rate in an anaerobic membrane bioreactor (AnMBR). Results showed an average COD removal efficiency of 91.4%, 96.9% and 94.4% when the reactor was operated at HRT 3, 7 and 17 d, respectively. However, when the HRT was reduced to 1d, the COD removal efficiency declined to just only 60%, confirming the AnMBR is stable to a large transient hydraulic shock loads. The (RS)-MCPP removal efficiency fluctuated from 6% to 39% at HRT 3 d, however when it was increased to 7 and 17 d, the removal efficiency increased to an average of 60% and 74.5%. In addition, (RS)-MCPP specific utilisation rates (SUR) were dependent on the HRT and gradually improved from 18 to 43 μg mg VSS(-1) d(-1) as flow rate increased.  相似文献   

18.
The aim of this work is to evaluate the feasibility of an inverse fluidized bed reactor for the anaerobic digestion of distillery effluent, with a carrier material that allows low energy requirements for fluidization, providing also a good surface for biomass attachment and development. Inverse fluidization particles having specific gravity less than one are carried out in the reactor. The carrier particles chosen for this study was perlite having specific surface area of 7.010 m2/g and low energy requirements for fluidization. Before starting up the reactor, physical properties of the carrier material were determined. One millimeter diameter perlite particle is found to have a wet specific density of 295 kg/m3. It was used for the treatment of distillery waste and performance studies were carried out for 65 days. Once the down flow anaerobic fluidized bed system reached the steady state, the organic load was increased step wise by reducing hydraulic retention time (HRT) from 2 days to 0.19 day, while maintaining the constant feed of chemical oxygen demand (COD) concentration. Most particles have been covered with a thin biofilm of uniform thickness. This system achieved 84% COD removal at an organic loading rate (OLR) of 35 kg COD/m3/d.  相似文献   

19.
Anaerobic biodegradation of fermented spent sulphite liquor, SSL, which is produced during the manufacture of sulphite pulp, was investigated. SSL contains a high concentration of lignin products in addition to hemicellulose and has a very high COD load (173 g COD l(-1)). Batch experiments with diluted SSL and pretreated SSL indicated a potential of 12-22 l methane per litre SSL, which corresponds to 0.13-0.22 l methane (g VS)(-1) and COD removal of up to 37%. COD removal in a mesophilic upflow anaerobic sludge blanket, UASB. reactor ranged from 10% to 31% at an organic loading rate, OLR, of 10-51 g (1 d)(-1) and hydraulic retention time from 3.7 to 1.5 days. The biogas productivity was 3 1 (l(reactor d)(-1), with a yield of 0.05 l gas (g VS)(-1). These results suggest that anaerobic digestion in UASB reactors may provide a new alternative for the treatment of SSL to other treatment strategies such as incineration. Although the total COD reduction achieved is limited, bioenergy is produced and readily biodegradable matter is removed causing less load on post-treatment installations.  相似文献   

20.
Khanh D  Quan L  Zhang W  Hira D  Furukawa K 《Bioresource technology》2011,102(24):11147-11154
The feasibility of treating low-strength wastewater with an up-flow anaerobic sludge blanket (UASB) reactor, using a poly(vinyl alcohol)-gel carrier, at various temperatures and hydraulic retention times (HRTs) was examined. The temperature was decreased from 35°C to 25°C and then to 15°C. The HRT was reduced from 2.0 h to 0.22 h. The COD removal rate reached 28 kg-COD m(-3)d(-1) at 35°C, 16 kg-COD m(-3)d(-1) at 25°C, and 6 kg-COD m(-3)d(-1) at 15°C. The COD removal rate was reduced by half for each temperature reduction of 10°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号