首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Weakly electric fish generate an electric field around their body by electric organ discharge (EOD). By measuring the modulation of the electric field produced by an object in the field these fish are able to accurately locate an object. Theoretical and experimental studies have focused on the amplitude modulations of EODs produced by resistive objects. However, little is known about the phase modulations produced by objects with complex impedance. The fish must be able to detect changes in object impedance to discriminate between food and nonfood objects. To investigate the features of electric images produced by objects with complex impedance, we developed a model that can be used to map the electric field around the fish body. The present model allows us to calculate the spatial distribution of the amplitude and phase shift in an electric image. This is the first study to investigate the changes in amplitude and phase shift of electric images induced by objects with complex impedance in wave-type fish. Using the model, we show that the amplitude of the electric image exhibits a sigmoidal change as the capacitance and resistance of an object are increased. Similarly, the phase shift exhibits a significant change within the object capacitance range of 0.1–100 nF. We also show that the spatial distribution of the amplitude and phase shifts of the electric image resembles a “Mexican hat” in shape for varying object distances and sizes. The spatial distribution of the phase shift and the amplitude was dependent on the object distance and size. Changes in the skin capacitance were associated with a tradeoff relationship between the magnitude of the amplitude and phase shift of the electric image. The specific range of skin capacitance (1–100 nF) allows the receptor afferents to extract object features that are relevant to electrolocation. These results provide a useful basis for the study of the neural mechanisms by which weakly electric fish recognize object features such as distance, size, and impedance.  相似文献   

2.
The weakly electric fish Apteronotus leptorhynchus produces wave-like electric organ discharges distinguished by a high degree of regularity. Transient amplitude and frequency modulations (“chirps”) can be evoked in males by stimulation with the electric field of a conspecific. During these interactions, the males examined in this study produced six types of chirps, including two novel ones. Stimulation of a test fish with a conspecific at various distances showed that two electrically interacting fish must be within 10 cm of each other to evoke chirping behavior in the neighboring fish. The chirp rate of all but one chirp type elicited by the neighboring fish was found to be negatively correlated with the absolute value of the frequency difference between the two interacting fish, but independent of the sign of this difference. Correlation analysis of the instantaneous rates of chirp occurrence revealed two modes of interactions characterized by reciprocal stimulation and reciprocal inhibition. Further analysis of the temporal relationship between the chirps generated by the two fish during electric interactions showed that the chirps generated by one individual follow the chirps of the other with a short latency of approximately 500–1000 ms. We hypothesize that this “echo response” serves a communicatory function.  相似文献   

3.
Electric images of two low resistance objects in weakly electric fish   总被引:5,自引:0,他引:5  
Electroreceptive fish detect nearby objects by processing the information contained in the pattern of electric currents through their skin. In weakly electric fish, these currents arise from a self-generated field (the electric organ discharge), depending on the electrical properties of the surrounding medium. The electric image can be defined as the pattern of transepidermal voltage distributed over the receptive surface. To understand electrolocation it is necessary to know how electric image of objects are generated. In pulse mormyrids, the electric organ is localized at the tail, far from the receptors and fires a short biphasic pulse. Consequently, if all the elements in the environment are resistive, the stimulus at every point on the skin has the same waveform. Then, any measure of the amplitude (for example, the peak to peak amplitude) could be the unique parameter of the stimulus at any point of the skin. We have developed a model to calculate the image, corroborating that images are spread over the whole sensory surface and have an opposite center-surround, "Mexican-hat" shape. As a consequence, the images of different objects superimpose. We show theoretically and by simulation that the image of a pair of objects is not the simple addition of the individual images of these objects.  相似文献   

4.
Recent wins and losses can inform individuals about their relative fighting abilities and modify their subsequent contest decisions. Using a mangrove rivulus, Kryptolebias marmoratus, we tested the hypothesis that visual and limited physical interactions can also convey information and modify subsequent contest decisions. Individuals were exposed to a stronger or weaker conspecific through a glass or a mesh partition before a contest with a size‐matched naïve opponent. Individuals were expected to (a) assess themselves to have worse/better fighting ability and behave less/more aggressively after having interacted with a stronger/weaker conspecific and (b) display different degrees of behavioural modifications for the two partition treatments (mesh‐partition > glass‐partition). The results showed that interactions with a stronger/weaker conspecific through a glass partition did not have a strong effect on the fish's subsequent contest behaviour. Restricted physical interaction with a stronger/weaker conspecific through a mesh partition, however, had an unexpected effect, causing individuals to behave more/less aggressively (matching the behaviour of the conspecifics) and/or win more/fewer subsequent contests. These results indicate that contest resolution is important for the fish to exhibit the loser–winner effects (i.e. behaving less/more aggressively after having lost/won against a stronger/weaker conspecific) detected in previous studies of the fish. We propose and discuss the possibility that the “behavioural matching” of the mesh‐partition treatment results from unresolved physical interactions with a stronger/weaker conspecific causing the individuals to either anticipate stronger/weaker opponents in subsequent competitions or assess themselves to be an equally good/bad fighter as the conspecific. The results of previous studies and the present study of the fish show that pre‐exposing an individual to the same type of conspecifics could elicit diverse, sometimes opposite, behavioural responses depending on how the individual is permitted to interact with the conspecific.  相似文献   

5.
Modeling the electric field and images in electric fish contributes to a better understanding of the pre-receptor conditioning of electric images. Although the boundary element method has been very successful for calculating images and fields, complex electric organ discharges pose a challenge for active electroreception modeling. We have previously developed a direct method for calculating electric images which takes into account the structure and physiology of the electric organ as well as the geometry and resistivity of fish tissues. The present article reports a general application of our simulator for studying electric images in electric fish with heterogeneous, extended electric organs. We studied three species of Gymnotiformes, including both wave-type (Apteronotus albifrons) and pulse-type (Gymnotus obscurus and Gymnotus coropinae) fish, with electric organs of different complexity. The results are compared with the African (Gnathonemus petersii) and American (Gymnotus omarorum) electric fish studied previously. We address the following issues: 1) how to calculate equivalent source distributions based on experimental measurements, 2) how the complexity of the electric organ discharge determines the features of the electric field and 3) how the basal field determines the characteristics of electric images. Our findings allow us to generalize the hypothesis (previously posed for G. omarorum) in which the perioral region and the rest of the body play different sensory roles. While the “electrosensory fovea” appears suitable for exploring objects in detail, the rest of the body is likened to a “peripheral retina” for detecting the presence and movement of surrounding objects. We discuss the commonalities and differences between species. Compared to African species, American electric fish show a weaker field. This feature, derived from the complexity of distributed electric organs, may endow Gymnotiformes with the ability to emit site-specific signals to be detected in the short range by a conspecific and the possibility to evolve predator avoidance strategies.  相似文献   

6.
A number of tropical coral reef fish hold station and display restricted home ranges. If artificially displaced, they will return to their home site. We questioned if marine fish are using the same mechanisms for home site detection as many freshwater fish, that is, by olfactory sensing of chemical signals deposited on the substrate by conspecific fish. Behavioral experiments were conducted on Lizard Island Research Station, Queensland, Australia, in 2001 and 2002. Five-lined cardinalfish (Cheilodipterus quinquelineatus) were tested in groups with split-branded cardinalfish (Apogon compressus) as a reference species and individually against Apogon leptacanthus as well as conspecifics of another reef site. The group tests showed that both species preferred artificial reef sites that had previously been occupied by conspecifics. Individual C. quinquelineatus preferred scent of conspecifics from their own reef site to that from another site. They also preferred the scent released by artificial reefs previously occupied by conspecifics of their reef site to that of similar reefs previously occupied by conspecifics of another reef site. No discrimination between species from the same reef site was obtained in experiments with individual fish. Our data suggest that cardinalfish are keeping station and are homing by use of conspecific olfactory signals.  相似文献   

7.
Studies of social learning and tradition formation under field conditions have recently gained momentum, but suffer from the limited control of socio-ecological factors thought to be responsible for transmission patterns. The use of artificial visual stimuli is a potentially powerful tool to overcome some of these problems. Here, in a field experiment, we used video images of unfamiliar conspecifics performing virtual demonstrations of foraging techniques. We tested 12 family groups of wild common marmosets. Six groups received video demonstrations (footage of conspecifics either pulling a drawer open or pushing a lid upwards, in an ‘artificial fruit’); the other six groups served as controls (exposed to a static image of a conspecific next to the fruit). Subjects in video groups were more manipulative and successful in opening the fruit than controls; they were also more likely to use the technique they had witnessed and thus could serve as live models for other family members. To our knowledge, this is the first study that used video demonstrations in the wild and demonstrated the potent force of social learning, even from unfamiliar conspecifics, under field conditions.  相似文献   

8.
A characteristic electric organ discharge display in social encounters between mormyrid fish is a temporary discharge cessation. Using this response, we have investigated the useful range of electrocommunication under different water conductivity conditions in the mormyrid Brienomyrus niger. An individual fish was confined to a porous ceramic shelter tube and moved from a starting distance of 380 cm toward a similarly confined conspecific until discharge, cessation occurred. The moved fish was subsequently returned to its original, position. Water conductivity affects the peak-to-peak source voltage of the electric organ and the sensitivity of the fish's electroreceptors. Within a range of 10 to 36 000 μS/cm, the peak-to-peak amplitude of the electric organ discharge declined as a power function. At 120 μS/cm, the amplitude was 50%, and at 300μS/cm, 30% of the 10 μS/cm value. The interfish distance at which discharge cessation occurred and the associated electric field gradients were dependent on water conductivity and upon the spatial orientation of the two fish (end-to-end or parallel orientations of their shelter tubes). The respective ranges were from 135 cm and 0.02 mV/cm at 52 μS/cm (parallel orientation) to 22 cm and 0.36 mV/cm at 678 μS/cm (end-to-end orientation). When the data for both tube orientations were combined, the relationship between water conductivity (x) and the distance at which discharge cessation occurred (y) could be expressed by a power function, y=K·xa (with K=102.97 and a=?0.56). When an electrically ‘silent’ fish was moved away from its conspecific, a discharge resumption in the form of a high-frequency rebound occasionally effected changes in the other fish's discharge activity at distances up to 157 cm (with an associated electric, field gradient of 0.01 mV/cm under the lowest conductivity condition).  相似文献   

9.
How might electric fish determine, from patterns of transdermal voltage changes, the size, shape, location, and impedance of a nearby object? I have investigated this question by measuring and simulating electric images of spheres and ellipsoids near an Apteronotus leptorhynchus. Previous studies have shown that this fish's electric field magnitude, and perturbations of the field due to objects, are complicated nonliner functions of distance from the fish. These functions become much simpler when distance is measured from the axes of symmetry of the fish and the object, instead of their respective edges. My analysis suggests the following characteristics of high frequency electric sense and electric images. 1. The shape of electric images on the fish's body is relatively independent of a spherical object's radius, conductivity, and rostrocaudal location. 2. An image's relative width increases linearly with lateral distance, and might therefore unambiguously encode object distance. 3. Only objects with very large dielectric constants cause appreciable phase shifts, and the degree of shift depends strongly on water conductivity. 4. Several parameters, such as the range of electric sense, may depend on the rostrocaudal location of an object. Large objects may be detectable further from the head than the tail, and conversely, small objects may be detectable further from the tail than head. 5. Asymmetrical objects produce different electric images, correlated with their cross-sections, for different orientations and phases of the electric field. 6. The steep attenuation with distance of the field magnitude causes spatial distortions in electric images, somewhat analogous to the perspective distortion inherent in wide angle optical lenses.  相似文献   

10.
Active electroreception in Gymnotus omarorum is a sensory modality that perceives the changes that nearby objects cause in a self generated electric field. The field is emitted as repetitive stereotyped pulses that stimulate skin electroreceptors. Differently from mormyriformes electric fish, gymnotiformes have an electric organ distributed along a large portion of the body, which fires sequentially. As a consequence shape and amplitude of both, the electric field generated and the image of objects, change during the electric pulse. To study how G. omarorum constructs a perceptual representation, we developed a computational model that allows the determination of the self-generated field and the electric image. We verify and use the model as a tool to explore image formation in diverse experimental circumstances. We show how the electric images of objects change in shape as a function of time and position, relative to the fish's body. We propose a theoretical framework about the organization of the different perceptive tasks made by electroreception: 1) At the head region, where the electrosensory mosaic presents an electric fovea, the field polarizing nearby objects is coherent and collimated. This favors the high resolution sampling of images of small objects and perception of electric color. Besides, the high sensitivity of the fovea allows the detection and tracking of large faraway objects in rostral regions. 2) In the trunk and tail region a multiplicity of sources illuminate different regions of the object, allowing the characterization of the shape and position of a large object. In this region, electroreceptors are of a unique type and capacitive detection should be based in the pattern of the afferents response. 3) Far from the fish, active electroreception is not possible but the collimated field is suitable to be used for electrocommunication and detection of large objects at the sides and caudally.  相似文献   

11.
Weakly electric fish are unique model systems in neuroethology, that allow experimentalists to non-invasively, access, central nervous system generated spatio-temporal electric patterns of pulses with roles in at least 2 complex and incompletely understood abilities: electrocommunication and electrolocation. Pulse-type electric fish alter their inter pulse intervals (IPIs) according to different behavioral contexts as aggression, hiding and mating. Nevertheless, only a few behavioral studies comparing the influence of different stimuli IPIs in the fish electric response have been conducted. We developed an apparatus that allows real time automatic realistic stimulation and simultaneous recording of electric pulses in freely moving Gymnotus carapo for several days. We detected and recorded pulse timestamps independently of the fish’s position for days. A stimulus fish was mimicked by a dipole electrode that reproduced the voltage time series of real conspecific according to previously recorded timestamp sequences. We characterized fish behavior and the eletrocommunication in 2 conditions: stimulated by IPIs pre-recorded from other fish and random IPI ones. All stimuli pulses had the exact Gymontus carapo waveform. All fish presented a surprisingly long transient exploratory behavior (more than 8 h) when exposed to a new environment in the absence of electrical stimuli. Further, we also show that fish are able to discriminate between real and random stimuli distributions by changing several characteristics of their IPI distribution.  相似文献   

12.
We describe two field experiments with wild guppies, Poecilia reticulata, in Trinidad that demonstrated that guppies can acquire foraging and predator escape-response information from conspecifics. In the foraging experiment, subjects were presented with two distinctly marked feeders in their home rivers. One feeder contained a conspecific shoal in a transparent container. Guppies preferred to enter the feeder containing this artificial shoal over the other feeder. In a test phase, the artificial shoal was removed and the feeders replaced at the testing site after a 5-min delay. More guppies entered the feeder that had contained the artificial shoal over the other feeder, a difference that can be explained only by the fish learning the characteristics or location of the feeder during the training phase. We suggest that subjects acquired a foraging patch preference through a propensity to approach feeding conspecifics, a local enhancement process. In the predator escape-response experiment, na?ve ‘observer’ guppies could avoid an approaching trawl net by escaping through either a hole to which ‘demonstrator’ guppies had been trained or through an alternative hole. When the demonstrators were present, the na?ve observers escaped more often and more rapidly by the demonstrated route than the alternative route. When the demonstrators were removed, observers maintained a route preference according to the training of their demonstrators, which suggests that the observers had learned an escape route through following or observing their more knowledgeable conspecifics. Thus, both experiments reveal that guppies can socially learn in the wild. Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

13.
Fish of the family Mormyridae emit weak, pulse-like electric organ discharges (EODs). The discharge rhythm is variable, but the waveform of the EOD is constant for each fish, with species- and individual characteristics. The ability of Pollimyrus isidori and Gnathonemus petersii (Mormyridae) to discriminate between different EOD waveforms was tested using a differential conditioning procedure. Fish were first trained to respond to a reference signal in swimming to a dish to receive a bloodworm (food reward). The reference signal consisted of a 10-Hz train of the digitally recorded EOD of a conspecific. Second, an alternative signal (10-Hz train of a different EOD, either from another species, or from a conspecific of the other sex) was associated with air bubbles as punishment. The two signals were played at successive trials in random order. On each trial the latency was measured between the onset of the signal and the response. 7 out of the 8 P. isidori tested and both of the two G. petersii tested associated the reference EOD with food. Among these, five P. isidori and two G. petersii responded differentially (p < 0.01) to EODs of different species. P. isidori similarly discriminated between conspecific EODs of different sexes. The quantity of different alternative EODs which could be tested was limited when fish eventually habituated to the punishment. Even when the amplitude of the EODs was randomly changed at each trial, two out of two G. petersii differentiated between EODs of the two species, and three out of three P. isidori tested differentiated between EODs within their own species. Response latencies to the rewarded signal during the basic training and during discrimination (when it had to be distinguished from the S-) were similar. G. petersii showed differential responses for S+ and S- also in the rhythm of discharge exhibited during playback, after five EOD pulses for one fish, and after a single pulse for the other. Mormyrids may therefore distinguish between conspecifics and members of other species, and even between individual conspecifics, by their EOD waveform.  相似文献   

14.
In cyprinid fish, density of epidermal club cells (i.e. alarm substance cells) has been found to vary between lakes with different predator fauna. Because predators can be labelled with chemical cues from prey, we questioned if club cell density could be controlled indirectly by predators releasing prey cues. In particular, we suspected a possible feedback mechanism between chemical alarm signals and their cellular source. We raised crucian carp singly and in groups of four. For both rearing types, fish were exposed to skin extracts of either conspecifics or brown trout (without club cells), and provided either low or high food rations. Independent of rearing type, condition factor and club cell density increased with food ration size, but no change was found in club cell density following exposure to conspecific alarm signals. However, the density of club cells was found significantly higher for fish raised in groups than for fish raised alone. We conclude that an increased condition factor results in more club cells, but crucian carp may also possess an awareness of conspecific presence, given by higher club cell densities when raised in groups. This increase in club cell density may be induced by unknown chemical factors released by conspecifics.  相似文献   

15.
Interactions among animals can result in complex sensory signals containing a variety of socially relevant information, including the number, identity, and relative motion of conspecifics. How the spatiotemporal properties of such evolving naturalistic signals are encoded is a key question in sensory neuroscience. Here, we present results from experiments and modeling that address this issue in the context of the electric sense, which combines the spatial aspects of vision and touch, with the temporal aspects of audition. Wave-type electric fish, such as the brown ghost knifefish, Apteronotus leptorhynchus, used in this study, are uniquely identified by the frequency of their electric organ discharge (EOD). Multiple beat frequencies arise from the superposition of the EODs of each fish. We record the natural electrical signals near the skin of a "receiving" fish that are produced by stationary and freely swimming conspecifics. Using spectral analysis, we find that the primary beats, and the secondary beats between them ("beats of beats"), can be greatly influenced by fish swimming; the resulting motion produces low-frequency envelopes that broaden all the beat peaks and reshape the "noise floor". We assess the consequences of this motion on sensory coding using a model electroreceptor. We show that the primary and secondary beats are encoded in the afferent spike train, but that motion acts to degrade this encoding. We also simulate the response of a realistic population of receptors, and find that it can encode the motion envelope well, primarily due to the receptors with lower firing rates. We discuss the implications of our results for the identification of conspecifics through specific beat frequencies and its possible hindrance by active swimming.  相似文献   

16.
17.
The conspecific attraction hypothesis predicts that individuals are attracted to conspecifics because conspecifics may be cues to quality habitat and/or colonists may benefit from living in aggregations. Poison frogs (Dendrobatidae) are aposematic, territorial, and visually oriented—three characteristics which make dendrobatids an appropriate model to test for conspecific attraction. In this study, we tested this hypothesis using an extensive mark‐recapture dataset of the strawberry poison frog (Oophaga pumilio) from La Selva Biological Station, Costa Rica. Data were collected from replicate populations in a relatively homogenous Theobroma cacao plantation, which provided a unique opportunity to test how conspecifics influence the spatial ecology of migrants in a controlled habitat with homogenous structure. We predicted that (1) individuals entering a population would aggregate with resident adults, (2) migrants would share sites with residents at a greater frequency than expected by chance, and (3) migrant home ranges would have shorter nearest‐neighbor distances (NND) to residents than expected by chance. The results were consistent with these three predictions: Relative to random simulations, we observed significant aggregation, home‐range overlap, and NND distribution functions in four, five, and six, respectively, of the six migrant–resident groups analyzed. Conspecific attraction may benefit migrant O. pumilio by providing cues to suitable home sites and/or increasing the potential for social interactions with conspecifics; if true, these benefits should outweigh the negative effects of other factors associated with aggregation. The observed aggregation between migrant and resident O. pumilio is consistent with conspecific attraction in dendrobatid frogs, and our study provides rare support from a field setting that conspecific attraction may be a relevant mechanism for models of anuran spatial ecology.  相似文献   

18.
Synopsis Recent studies show that fish forage actively when perceived risk is low, but decrease foraging and increase vigilance when perceived risk is high. Isolated juvenile chum salmon,Oncorhynchus keta, were visually exposed to groups of conspecifics engaged in different activities to examine their ability to gain information about foraging opportunity and risk by interpreting conspecific behavior. Isolates ate most when exposed to feeding groups, less when exposed to nonfeedig groups, and least when exposed to alarmed groups. Isolates exposed to alarmed conspecifics also spent more time motionless than did fish exposed to either feeding or nonfeeding conspecifics. These findings indicate that schooling fish gain information by interpreting conspecific behavior, and are consistent with research showing that animals balance the conflicting demands of foraging and vigilance.  相似文献   

19.
20.

Organisms rely on sensory cues to interpret their environment and make important life-history decisions. Accurate recognition is of particular importance in diverse reef environments. Most evidence on the use of sensory cues focuses on those used in predator avoidance or habitat recognition, with little information on their role in conspecific recognition. Yet conspecific recognition is essential for life-history decisions including settlement, mate choice, and dominance interactions. Using a sensory manipulated tank and a two-chamber choice flume, anemonefish conspecific response was measured in the presence and absence of chemical and/or visual cues. Experiments were then repeated in the presence or absence of two heterospecific species to evaluate whether a heterospecific fish altered the conspecific response. Anemonefishes responded to both the visual and chemical cues of conspecifics, but relied on the combination of the two cues to recognize conspecifics inside the sensory manipulated tank. These results contrast previous studies focusing on predator detection where anemonefishes were found to compensate for the loss of one sensory cue (chemical) by utilizing a second cue (visual). This lack of sensory compensation may impact the ability of anemonefishes to acclimate to changing reef environments in the future.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号