首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an attempt to gain further insight into the nature of the low frequency vibrational modes of hemoglobin and its isolated subunits, a comprehensive study of several different isotopically labeled analogues has been undertaken and is reported herein. Specifically, the resonance Raman spectra, between 200 and 500 cm(-1), are reported for the deoxy and ligated (CO and O2) forms of the isolated alpha and beta subunits containing the natural abundance or various deuterated analogues of protoheme. The deuterated protoheme analogues studied include the 1,3,5,8-C2H3-protoheme (d12- protoheme), the 1,3-C2H3-protoheme (1,3-d6-protoheme), the 5,8-C2H3-protoheme (5,8-d6-protoheme), and the meso-C2H4-protoheme (d4-protoheme). The entire set of acquired spectra has been analyzed using a deconvolution procedure to help correlate the shifted modes with their counterparts in the spectra of the native forms. Interestingly, modes previously associated with so-called vinyl bending modes or propionate deformation modes are shown to be quite sensitive to deuteration of the peripheral methyl groups of the macrocycle, shifting by up to 12-15 cm(-1), revealing their complex nature. Of special interest is the fact that shifts observed for the 1,3-d6- and 5,8-d6-protoheme analogues confirm the fact that certain modes are associated with a given portion of the macrocycle; i.e., only certain modes shift upon deuteration of the 1 and 3 methyl groups, while others shift upon deuteration of the 5 and 8 methyl groups. Compared with the spectra previously reported for the corresponding myoglobin derivatives, the data reported here reveal the appearance of several additional features that imply splitting of modes associated with the propionate groups or that are indicative of greater distortion of the heme prosthetic groups.  相似文献   

2.
Low frequency resonance Raman (RR) spectra are reported for deoxy hemoglobin (Hb), its isolated subunits, its analogue bearing methine-deuterated hemes in all four subunits (Hb-d(4)), and the hybrids bearing the deuterated heme in only one type of subunit, which are [alpha(d4)beta(h4)](2) and [alpha(h4)beta(d4)](2). Analyzed collectively, the spectra reveal subunit-specific modes that conclusively document subtle differences in structure for the heme prosthetic groups in the two types of subunits within the intact tetramer. Not surprisingly, the most significant spectral differences are observed in the gamma(7) mode that has a major contribution from out of plane bending of the methine carbons, a distortion that is believed to relieve strain in the high-spin heme prosthetic groups. The results provide convincing evidence for the utility of selectively labeled hemoglobin hybrids in unraveling the separate subunit contributions to the RR spectra of Hb and its various derivatives and for thereby detecting slight structural differences in the subunits.  相似文献   

3.
Mak PJ  Kaluka D  Manyumwa ME  Zhang H  Deng T  Kincaid JR 《Biopolymers》2008,89(11):1045-1053
Resonance Raman spectra are reported for substrate-free and camphor-bound cytochrome P450cam and its isotopically labeled analogues that have been reconstituted with protoheme derivatives that bear -CD(3) groups at the 1, 3, 5, and 8-positions (d12-protoheme) or deuterated methine carbons (d4-protoheme). In agreement with previous studies of this and similar enzymes, substrate binding induces changes in the high frequency and low frequency spectral regions, with the most dramatic effect in the low frequency region being activation of a new mode near 367 cm(-1). This substrate-activated mode had been previously assigned as a second "propionate bending" mode (Chen et al., Biochemistry, 2004, 43, 1798-1808), arising in addition to the single propionate bending mode observed for the substrate-free form at 380 cm(-1). In this work, this newly activated mode is observed to shift by 8 cm(-1) to lower frequency in the d12-protoheme reconstituted enzyme (i.e., the same shift as that observed for the higher frequency "propionate bending" mode) and is therefore consistent with the suggested assignment. However, the newly acquired data for the d4-protoheme substituted analogue also support an earlier alternate suggestion (Deng et al., Biochemistry, 1999, 38, 13699-13706) that substrate binding activates several heme out-of-plane modes, one of which (gamma(6)) is accidentally degenerate with the 367 cm(-1) propionate bending mode. Finally, the study of the enzyme reconstituted with the protoheme-d4, which shifts the macrocycle nu(10) mode, has now allowed a definitive identification of the vinyl C==C stretching modes. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 1045-1053, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

4.
Assignments of resonances of the heme and distal amino acid protons in spectra of the CO and O2 complexes of sperm whale myoglobin are reported. These resonances provide information on the conformation of the heme pocket. For oxymyoglobin, the assignments of the heme meso protons disagree with those proposed previously on the basis of partial deuteration experiments. Rapid ring flips about the C beta-C gamma bond are detected for Phe-CD1. Recent claims for two conformational substates of valine-E11 in carbonmonoxymyoglobin (Bradbury, J.H. and Carver, J.A. (1984) Biochemistry 23, 4905-4913) are shown to be in error. The pK of His-97 (FG3) in carbonmonoxymyoglobin has been determined (pK = 5.9). This residue appears to influence many spectroscopic properties of myoglobin. The distal His-E7 in carbonmonoxymyoglobin has pK less than 5.0. Differences in the heme pocket conformation in the CO complexes of myoglobin and leghemoglobin are discussed. These differences may be influential in O2 and CO association reactions.  相似文献   

5.
We have investigated the resonance Raman spectra of monomeric insect cyanomethemoglobins (CTT III and CTT IV) reconstituted with (1) protohemes IX selectively deuterated at the 4-vinyl as well as the 2,4-divinyls, (2) monovinyl-truncated hemes such as pemptoheme (2-hydrogen, 4-vinyl) and isopemptoheme (2-vinyl, 4-hydrogen), (3) symmetric hemes such as protoheme III (with 2- and 3-vinyls) and protoheme XIII (with 1- and 4-vinyls), and (4) hemes without 2- and 4-vinyls such as mesoheme IX, deuteroheme IX, 2,4-dimethyldeuteroheme IX, and 2,4-dibromodeuteroheme IX. Evidence is presented that the highly localized vinyl C = C stretching vibrations at the 2- and 4-positions of the heme in these cyanomet CTT hemoglobins are noncoupled and inequivalent; i.e., the 1631- and 1624-cm-1 lines have been assigned to 2-vinyl and 4-vinyl, respectively. The elimination of the 2-vinyl (in pemptoheme) or the 4-vinyl (in isopemptoheme) does not affect the C = C stretching frequency of the remaining vinyl. Furthermore, two low-frequency vinyl bending modes at 412 and 591 cm-1 exhibit greatly different resonance Raman intensities between 2-vinyl and 4-vinyl. The observed intensity at 412 cm-1 is primarily derived from 4-vinyl, whereas the 591-cm-1 line results exclusively from the 2-vinyl. Again, there is no significant coupling between 2-vinyl and 4-vinyl for these two bending modes.  相似文献   

6.
Chen Z  Wang LH  Schelvis JP 《Biochemistry》2003,42(9):2542-2551
Thromboxane synthase is a hemethiolate enzyme that catalyzes the isomerization of prostaglandin H2 to thromboxane A2. We report the first resonance Raman (RR) spectra of recombinant human thromboxane synthase (TXAS) in both the presence and the absence of substrate analogues U44069 and U46619. The resting enzyme and its U44069 complex are found to have a 6-coordinate, low spin (6c/ls) heme, in agreement with earlier experiments. The U46619-bound enzyme is detected as a 6c/ls heme too, which is in contradiction with a previous conclusion based on absorption difference spectroscopy. Two new vibrations at 368 and 424 cm(-1) are observed upon binding of the substrate analogues in the heme pocket and are assigned to the second propionate and vinyl bending modes, respectively. We interpret the changes in these vibrational modes as the disruption of the protein environment and the hydrogen-bonding network of one of the propionate groups when the substrate analogues enter the heme pocket. We use carbocyclic thromboxane A2 (CTA2) to convert the TXAS heme cofactor to its 5-coordinate, high spin (5c/hs) form, as is confirmed by optical and RR spectroscopy. In this 5c/hs state of the enzyme, the Fe-S stretching frequency is determined at 350 cm(-1) with excitation at 356.4 nm. This assignment is supported by comparison to the spectrum of resting enzyme excited at 356.4 nm and by exciting at different wavelengths. Implications of our findings for substrate binding and the catalytic mechanism of TXAS will be discussed.  相似文献   

7.
Reaction of horse myoglobin with H2O2 oxidizes the iron to the ferryl (Fe(IV) = O) state and produces a protein radical that is rapidly dissipated by poorly understood mechanisms. As reported here, the reaction with H2O2 results in covalent binding of up to 18% of the prosthetic heme group to the protein. The chromophore of the protein-bound prosthetic group is very similar to that of heme itself. High performance liquid chromatography of tryptic digests indicates that the formation of heme-bound peptides is associated with disappearance of the peptide with the sequence YLE-FISDAIIHVLHSK corresponding to residues 103-118 of horse myoglobin. Amino acid analysis, terminal amino acid sequencing, and liquid secondary ion mass spectrometry establish that the heme is primarily attached to this peptide. The heme appears to be bound to the tyrosine residue because the tyrosine is the only amino acid that disappears from the amino acid analysis. The mass spectrometric data indicates that the heme-peptide is formed without addition or loss of an oxygen or other major structural fragment. The site of attachment to the heme group has not been unambiguously determined, but the heme vinyl groups are not essential for the reaction because equal cross-linking is observed in H2O2-treated mesoheme-reconstituted myoglobin. The results are most consistent with binding of tyrosine 103 to a meso-carbon of the prosthetic heme group.  相似文献   

8.
Recent progress in generating and stabilizing reactive heme protein enzymatic intermediates by cryoradiolytic reduction has prompted application of a range of spectroscopic approaches to effectively interrogate these species. The impressive potential of resonance Raman spectroscopy for characterizing such samples has been recently demonstrated in a number of studies of peroxo- and hydroperoxo-intermediates. While it is anticipated that this approach can be productively applied to the wide range of heme proteins whose reaction cycles naturally involve these peroxo- and hydroperoxo-intermediates, one limitation that sometimes arises is the lack of enhancement of the key intraligand ν(O-O) stretching mode in the native systems. The present work was undertaken to explore the utility of cobalt substitution to enhance both the ν(Co-O) and ν(O-O) modes of the CoOOH fragments of hydroperoxo forms of heme proteins bearing a trans-axial histidine linkage. Thus, having recently completed RR studies of hydroperoxo myoglobin, attention is now turned to its cobalt-substituted analogue. Spectra are acquired for samples prepared with 16O2 and 18O2 to reveal the ν(M-O) and ν(O-O) modes, the latter indeed being observed only for the cobalt-substituted proteins. In addition, spectra of samples prepared in deuterated solvents were also acquired, providing definitive evidence for the presence of the hydroperoxo-species.  相似文献   

9.
UV-visible absorption and magnetic circular dichroism (MCD) data are reported for the cavity mutants of sperm whale H93G myoglobin and human H25A heme oxygenase in their ferric states at 4 degreesC. Detailed spectral analyses of H93G myoglobin reveal that its heme coordination structure has a single water ligand at pH 5.0, a single hydroxide ligand at pH 10.0, and a mixture of species at pH 7.0 including five-coordinate hydroxide-bound, and six-coordinate structures. The five-coordinate aquo structure at pH 5 is supported by spectral similarity to acidic horseradish peroxidase (pH 3.1), whose MCD data are reported herein for the first time, and acidic myoglobin (pH 3.4), whose structures have been previously assigned by resonance Raman spectroscopy. The five-coordinate hydroxide structure at pH 10.0 is supported by MCD and resonance Raman data obtained here and by comparison with those of other known five-coordinate oxygen donor complexes. In particular, the MCD spectrum of alkaline ferric H93G myoglobin is strikingly similar to that of ferric tyrosinate-ligated human H93Y myoglobin, whose MCD data are reported herein for the first time, and that of the methoxide adduct of ferric protoporphyrin IX dimethyl ester (FeIIIPPIXDME). Analysis of the spectral data for ferric H25A heme oxygenase at neutral pH in the context of the spectra of other five-coordinate ferric heme complexes with proximal oxygen donor ligands, in particular the p-nitrophenolate and acetate adducts of FeIIIPPIXDME, is most consistent with ligation by a carboxylate group of a nearby glutamyl (or aspartic) acid residue.  相似文献   

10.
In the course of a study of 6-N-amino-substituted analogues of NB-506 (1), a more potent anticancer drug, J-109,404 (2), in which the formyl group of NB-506 was replaced with a 1,3-dihydroxypropane group, was reported. A study of further modification in the positions of two hydroxyl groups at the indole rings of 2 resulted in the discovery of a 2,10-dihydroxy analogue, J-107,088 (3), which is a promising anticancer agent with a broader therapeutic window than J-109,404.  相似文献   

11.
M R Thomas  S G Boxer 《Biochemistry》2001,40(29):8588-8596
Nitric oxide (NO) binds to the myoglobin (Mb) cavity mutant, H93G, forming either a 5- or 6-coordinate Fe--NO heme complex. The H93G mutation replaces the proximal histidine of Mb with glycine, allowing exogenous ligands to occupy the proximal binding site. In the absence of the covalently attached proximal ligand, NO could bind to H93G from the proximal side of the heme rather than the typical diatomic binding pocket on the distal side when the 5-coordinate complex forms. The question of whether NO binds on the distal or proximal side was addressed by (19)F NMR. Site-directed mutagenesis was used to introduce unique cysteine residues at the protein surface on either the distal (S58C) or proximal (L149C) side, approximately equidistant from and perpendicular to the heme plane of both wild-type and H93G Mb. The cysteine thiols were alkylated with 3-bromo-1,1,1-trifluoroacetone to attach a trifluoroacetyl group at the mutation site. (19)F NMR spectra of 5-coordinate, NO bound S58C/H93G and L149C/H93G double mutants depict peaks with line widths of 100 and 23 Hz, respectively. As fluorine peaks broaden with increasing proximity to paramagnetic centers, such as 5-coordinate Fe--NO, the (19)F NMR data are consistent with NO binding in the distal heme pocket of H93G, even in the absence of a sixth axial ligand. Additionally, (19)F NMR spectra are reported for deoxy, oxy, CO, met CN, and met H(2)O forms of the labeled cysteine mutants. These results demonstrate that the fluorine probes are sensitive to subtle conformational changes in the protein structure due to ligation and oxidation state changes of the heme iron in Mb.  相似文献   

12.
Reconstitution of liver fluke (Dicrocoelium dendriticum) apo-hemoglobin with hemins selectively deuterated at specific positions has permitted the assignment of several heme resonances in the proton nuclear magnetic resonance spectrum of the Met-aquo and Met-cyano forms of the holoprotein. It was established that in the Met-aquo form the meso protons resonate at positions characteristic of a six-co-ordinated in-plane iron. From this, we deduced that the Met-aquo species retains a bound water molecule at pH values as low as 4.5. The orientation of the proximal histidine imidazole ring with respect to the heme group in the cavity was determined through the identification of the heme methyl signals and the analysis of the hyperfine shift pattern in the Met-cyano hemoglobin proton nuclear magnetic resonance spectrum. Compared to sperm whale myoglobin, the heme appears to be rotated by 180 degrees about the alpha, gamma meso-axis. Protein isomers with the heme group in a reversed orientation were not detected, even shortly after reconstitution. In the Met-cyano form, the resonances most affected by the Bohr transition were shown to arise from the heme propionates.  相似文献   

13.
Time-dependent NOE studies of the C13(1) and C17(1) methylene proton resonances of the heme peripheral propanoate groups have elucidated their mobility in the active site of the ferric high-spin form of Galeorhinus japonicus myoglobin. A large difference in the chemical shift due to the non-equivalence of the heme C13(1) and C17(1) methylene proton resonances allows selective irradiation of a given proton resonance by a high-power selective decoupler pulse in spite of their fast relaxation rates. NOE accumulation of the resonance of one methylene proton after saturation of the resonance of the other proton essentially follows the theoretical prediction derived using the two-spin approximation, and the cross-relaxation rates for the heme C13(1) and C17(1) methylene proton spin systems were quantitatively determined. The correlation time for the mobility of the internuclear vector connecting the heme C13(1) or C17(1) methylene protons was then calculated from the cross-relaxation rate and values of approximately 11 ns were obtained for both C13(1) and C17(1) methylene groups in 2 mM Galeorhinus japonicus myoglobin at 35 degrees C. The immobile C13(1) and C17(1) methylenes of the heme propanoate groups, together with a large difference in chemical shift between the methylene proton resonances, dictate their fixed orientation with respect to the protein moiety as well as the heme plane, and are therefore consistent with the immobile heme in the active site of myoglobin.  相似文献   

14.
The Ser82 and Phe82 variants of yeast iso-1 cytochrome c were studied by resonance Raman spectroscopy. In both oxidation states, distinct spectral changes were observed for some of those bands in the low-frequency region, which sensitively respond to conformational perturbations of the protein environment of the heme. These bands can be assigned to modes which include strong contributions of vibrations largely localized in the propionate-carrying pyrrole rings A and D. This indicates structural differences in the deeper part of the heme crevice, remote from the mutation site. This conclusion is in line with previous results from X-ray crystallography and NMR spectroscopy. No differences in the resonance-Raman spectra were observed which can be directly correlated with conformational changes of the heme pocket in the vicinity of the mutation site. Temperature-dependent resonance Raman experiments of the oxidized mutants revealed spectral changes which are closely related to those observed for cytochrome c upon adsorption to charged silver surfaces by surface-enhanced resonance Raman spectroscopy. These spectral changes can be attributed to an opening of the heme crevice accompanied by a weakening of the iron-methionine ligand bond. The temperature-dependent conformational transition occurs at approximately 30 degrees C for the Ser82 variant and at about 45 degrees C for the Phe82 variant, implying that the Phe----Ser substitution significantly lowers the thermal stability of the heme pocket. The reduced forms of both mutants are stable up to 65 degrees C.  相似文献   

15.
The tautomeric state of histidines in myoglobin   总被引:4,自引:1,他引:3       下载免费PDF全文
1H-15N HMQC spectra were collected on 15N-labeled sperm whale myoglobin (Mb) to determine the tautomeric state of its histidines in the neutral form. By analyzing metaquoMb and metcyanoMb data sets collected at various pH values, cross-peaks were assigned to the imidazole rings and their patterns interpreted. Of the nine histidines not interacting with the heme in sperm whale myoglobin, it was found that seven (His-12, His-48, His-81, His-82, His-113, His-116, and His-119) are predominantly in the N epsilon2H form with varying degrees of contribution from the Ndelta1 H form. The eighth, His-24, is in the Ndelta1H state as expected from the solid state structure. 13C correlation spectra were collected to probe the state of the ninth residue (His-36). Tentative interpretation of the data through comparison with horse Mb suggested that this ring is predominantly in the Ndelta1H state. In addition, signals were observed from the histidines associated with the heme (His-64, His-93, and His-97) in the 1H-15N HMQC spectra of the metcyano form. In several cases, the tautomeric state of the imidazole ring could not be derived from inspection of the solid state structure. It was noted that hydrogen bonding of the ring was not unambiguously reflected in the nitrogen chemical shift. With the experimentally determined tautomeric state composition in solution, it will be possible to broaden the scope of other studies focused on the electrostatic contribution of histidines to the thermodynamic properties of myoglobin.  相似文献   

16.
Dimyristoylphosphatidylcholine (DMPC), selectively deuterated in the sn-2 chain at the 3, 6, and 10 positions is used to probe DMPC-cholesterol interactions in multilamellar dispersions. Using the Raman spectral linewidths of the 2100 cm-1 C2H2 stretching modes as an index of membrane disorder, we demonstrate that cholesterol tends to order, or increase the number of trans carbon-carbon bonds within the DMPC acyl chain near the headgroup region at all temperatures. At low temperatures, cholesterol disorders the acyl chains near the methyl termini by inducing gauche conformers; cholesterol orders the entire chain at higher temperatures. These determinations are qualitatively consistent with conclusions drawn from deuterium nuclear magnetic resonance studies, but specifically reflect acyl chain trans/gauche isomerization on the 10(-12)-10(-13) s vibrational time scale.  相似文献   

17.
The oxidative reaction of equine myoglobin with alkylhydrazines results primarily in introduction of the alkyl group at the sterically hindered gamma-meso position. The gamma-meso adducts formed with ethyl- and n-butylhydrazine have been isolated and unambiguously identified. With high pressure liquid chromatography, evidence for the formation of similar adducts with methyl- and n-propylhydrazine but not tert-butyl-, 2,2,2-trifluoroethyl-, or 2-phenylethylhydrazine has also been obtained. The gamma regiospecificity of the reaction of myoglobin with alkylhydrazines contrasts with the delta meso regiospecificity in the alkylation of peroxidases. Addition to the porphyrin vinyl groups is not detected, but N-alkylheme adducts appear to be formed in very low yield. Cofactor studies establish that H2O2 is absolutely required for meso heme alkylation and EPR/spin trapping studies show that alkyl free radicals are the probable alkylating species. In contrast, the reductive reaction of sperm whale myoglobin with CBrCl3 results in addition of the CCl3.radical to the 2-vinyl moiety of the heme group (Osawa, Y., Highet, R. J., Murphy, C. M., Cotter. R.J., and Pohl, L.R. (1989) J. Am. Chem. Soc. 111, 4462-4467). Carbon radicals thus apparently add to different sites of the myoglobin prosthetic group under reductive and oxidative conditions, presumably because of differences in the oxidation state of the heme and/or the intrinsic reactivities of alkyl and polyhaloalkyl radicals.  相似文献   

18.
Sperm whale metmyoglobin, which has tyrosine residues at positions 103, 146, and 151, dimerizes in the presence of H2O2. Equine metmyoglobin, which lacks Tyr-151, and red kangaroo metmyoglobin, which lacks Tyr-103 and Tyr-151, do not dimerize in the presence of H2O2. The dityrosine content of the sperm whale myoglobin dimer shows that it is primarily held together by dityrosine cross-links, although more tyrosine residues are lost than are accounted for by dityrosine formation. Digestion of the myoglobin dimer with chymotrypsin yields a peptide with the fluorescence spectrum of dityrosine. The amino acid composition, amino acid sequence, and mass spectrum of the peptide show that cross-linking involves covalent bond formation between Tyr-103 of one myoglobin chain and Tyr-151 of the other. Replacement of the prosthetic group of sperm whale myoglobin with zinc protoporphyrin IX prevents H2O2-induced dimerization even when intact horse metmyoglobin is present in the incubation. This suggests that the tyrosine radicals required for the dimerization reaction are generated by intra- rather than intermolecular electron transfer to the ferryl heme. Rapid electron transfer from Tyr-103 to the ferryl heme followed by slower electron transfer from Tyr-151 to Tyr-103 is most consistent with the present results.  相似文献   

19.
The influence of the heme iron coordination on nitric oxide binding dynamics was investigated for the myoglobin mutant H93G (H93G-Mb) by picosecond absorption and resonance Raman time-resolved spectroscopies. In the H93G-Mb, the glycine replacing the proximal histidine does not interact with the heme iron so that exogenous substituents like imidazole may coordinate to the iron at the proximal position. Nitrosylation of H93G-Mb leads to either 6- or 5-coordinate species depending on the imidazole concentration. At high concentrations, (imidazole)-(NO)-6-coordinate heme is formed, and the photoinduced rebinding kinetics reveal two exponential picosecond phases ( approximately 10 and approximately 100 ps) similar to those of wild type myoglobin. At low concentrations, imidazole is displaced by the trans effect leading to a (NO)-5-coordinate heme, becoming 4-coordinate immediately after photolysis as revealed from the transient Raman spectrum. In this case, NO rebinding kinetics remain bi-exponential with no change in time constant of the fast component whose amplitude increases with respect to the 6-coordinate species. Bi-exponential NO geminate rebinding in 5-coordinate H93G-Mb is in contrast with the single-exponential process reported for nitrosylated soluble guanylate cyclase (Negrerie, M., Bouzhir, L., Martin, J. L., and Liebl, U. (2001) J. Biol. Chem. 276, 46815-46821). Thus, our data show that the iron coordination state or the heme iron out-of-plane motion are not at the origin of the bi-exponential kinetics, which depends upon the protein structure, and that the 4-coordinate state favors the fast phase of NO geminate rebinding. Consequently, the heme coordination state together with the energy barriers provided by the protein structure control the dynamics and affinity for NO-binding enzymes.  相似文献   

20.
In this study fragment-based drug design is combined with molecular docking simulation technique, to design databases of virtual sialic acid (SA) analogues with new substitutions at C2, C5 and C6 positions of SA scaffold. Using spaces occupied by C2, C5 and C6 natural moieties of SA when bound to hemagglutinin (HA) crystallographic structure, new fragments that are commercially available were docked independently in all the pockets. The oriented fragments were then connected to the SA scaffold with or without incorporation of linker molecules. The completed analogues were docked to the whole SA binding site to estimate their binding conformations and affinities, generating three databases of HA-bound SA analogues. Selected new analogues showed higher estimated affinities than the natural SA when tested against H3N2, H5N1 and H1N1 subtypes of influenza A. An improvement in the binding energies indicates that fragment-based drug design when combined with molecular docking simulation is capable to produce virtual analogues that can become lead compound candidates for anti-flu drug discovery program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号