首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deleterious interactions among genes cause reductions in fitness of interpopulation hybrids (hybrid breakdown). Identifying genes involved in hybrid breakdown has proven difficult, and few studies have addressed the molecular basis of this widespread phenomenon. Because proper function of the mitochondrial electron transport system (ETS) requires a coadapted set of nuclear and mitochondrial gene products, ETS genes present an attractive system for studying the evolution of coadapted gene complexes within isolated populations and the loss of fitness in interpopulation hybrids. Here we show the effects of single amino acid substitutions in cytochrome c (CYC) on its functional interaction with another ETS protein, cytochrome c oxidase (COX) in the intertidal copepod Tigriopus californicus. The individual and pairwise consequences of three naturally occurring amino acid substitutions in CYC are examined by site-directed mutagenesis and found to differentially effect the rates of CYC oxidation by COX variants from different source populations. In one case, we show that interpopulation hybrid breakdown in COX activity can be attributed to a single naturally occurring amino acid substitution in CYC.  相似文献   

2.
The respiratory enzyme cytochrome c oxidase (COX) is composed of subunits encoded by both nuclear and mitochondrial genes; thus, COX activity reflects, to some extent, the coordinated function of the two genomes. Because extensive mtDNA differentiation exists between populations of the copepod Tigriopus californicus, we hypothesized that laboratory hybridizations that disrupt natural combinations of nuclear and mitochondrial genes might negatively impact COX activity. Although experimental results varied greatly among different crosses, replicate sets of crosses between two particular populations showed consistent evidence for nuclear-cytoplasmic coadaptation.  相似文献   

3.
Electron transport system (ETS) function in mitochondria is essential for the aerobic production of energy. Because ETS function requires extensive interactions between mitochondrial and nuclear gene products, coadaptation between mitochondrial and nuclear genomes may evolve within populations. Hybridization between allopatric populations may then expose functional incompatibilities between genomes that have not coevolved. The intertidal copepod Tigriopus californicus has high levels of nucleotide divergence among populations at mitochondrial loci and suffers F2 hybrid breakdown in interpopulation hybrids. We hypothesize that hybridization results in incompatibilities among subunits in ETS enzyme complexes and that these incompatibilities result in diminished mitochondrial function and fitness. To test this hypothesis, we measured fitness, mitochondrial function, and ETS enzyme activity in inbred recombinant hybrid lines of Tigriopus californicus. We found that (1) both fitness and mitochondrial function are reduced in hybrid lines, (2) only those ETS enzymes with both nuclear and mitochondrial subunits show a loss of activity in hybrid lines, and (3) positive relationships exist between ETS enzyme activity and mitochondrial function and between mitochondrial function and fitness. We also present evidence that hybrid lines harboring mitochondrial DNA (mtDNA) and mitochondrial RNA polymerase (mtRPOL) from the same parental source population have higher fitness than those with mtDNA and mtRPOL from different populations, suggesting that mitochondrial gene regulation may play a role in disruption of mitochondrial performance and fitness of hybrids. These results suggest that disruption of coadaptation between nuclear and mitochondrial genes contributes to the phenomenon of hybrid breakdown.  相似文献   

4.
Abstract .The genetic incompatibilities that underlie F2 hybrid breakdown and reproductive isolation between al-lopatric populations may be susceptible to environmental interactions. Here we show that epistatic interactions between cytochrome c ( CYC ) alleles and mitochondrial DNA (mtDNA) variation are dramatically influenced by environmental temperature in interpopulation hybrids of the copepod Tigriopus californicus . CYC is a nuclear-encoded gene that functionally interacts with electron transport system (ETS) complexes composed in part of mtDNA-encoded proteins. Previous studies have provided evidence for functional coadaptation between CYC and ETS complex IV (cytochrome c oxidase) and for cytoplasmic effects on the fitness of CYC genotype in copepod hybrids. In this study, selection on CYC genotype is shown to continue into advanced generation hybrids (F2-F8) increasing the likelihood that CYC itself is involved in the interaction (and not a linked factor). Relative viabilities varied markedly between copepods raised in two different temperature/light regimes. These results suggest that both intrinsic coadaptation and extrinsic selection will influence the outcome of natural hybridizations between populations. Furthermore, the results indicate that the fitness of particular hybrid genotypes depends on additional non-mtDNA encoded genes that interact with CYC.  相似文献   

5.
The prevalence of F2 hybrid breakdown in interpopulation crosses of the marine copepod Tigriopus californicus can be explained by disruption of coadapted gene complexes. This study further dissects the nature of hybrid gene interactions, revealing that parental populations may also harbor maladapted gene complexes. Diagnostic molecular markers (14) were assayed in reciprocal F2 hybrids to test for gene interactions affecting viability. Results showed some evidence of nuclear–nuclear coadaptation. Although there were no significant examples of pairwise linkage disequilibrium between physically unlinked loci, one of the two reciprocal crosses did show an overall excess of parental double homozygotes and an overall dearth of nonparental double homozygotes. In contrast, the nuclear–cytoplasmic data showed a stronger tendency toward maladaptation within the specific inbred lines used in this study. For three out of four loci with significant frequency differences between reciprocal F2, homozygotes were favored on the wrong cytoplasmic background. A separate study of reciprocal backcross hybrids between the same two populations (but different inbred lines) revealed faster development time when the full haploid nuclear genome did not match the cytoplasm. The occurrence of such suboptimal gene complexes may be attributable to effects of genetic drift in small, isolated populations.  相似文献   

6.
Because of their extensive functional interaction, mitochondrial DNA (mtDNA) and nuclear genes may evolve to form coadapted complexes within reproductively isolated populations. As a consequence of coadaptation, the fitness of particular nuclear alleles may depend on mtDNA genotype. Among populations of the copepod Tigriopus californicus, there are high levels of amino acid substitutions in both the mtDNA genes encoding subunits of cytochrome c oxidase (COX) and the nuclear gene encoding cytochrome c (CYC), the substrate for COX. Because of the functional interaction between enzyme and substrate proteins, we hypothesized that the fitness of CYC genotypes would depend on mtDNA genotype. To test this hypothesis, segregation ratios for CYC and a second nuclear marker (histone H1) unrelated to mitochondrial function were scored in F2 progeny of several reciprocal interpopulation crosses. Genotypic ratios at the CYC locus (but not the H1 locus) differed between reciprocal crosses and differed from expected Mendelian ratios, suggesting that CYC genotypic fitnesses were strongly influenced by cytoplasmic (including mtDNA) background. However, in most cases the nature of the deviations from Mendelian ratios and differences between reciprocal crosses are not consistent with simple coevolution between CYC and mtDNA background. In a cross in which both newly hatched larvae and adults were sampled, only the adult sample showed deviations from Mendelian ratios, indicating that genotypic viabilities differed. In two of six crosses, large genotypic ratio differences for CYC were observed between the sexes. These results suggest that significant variation in nuclear-mtDNA coadaptation may exist between T. californicus populations and that the relative viability of specific cytonuclear allelic combinations is somehow affected by sex.  相似文献   

7.
Introgression is the effective exchange of genetic information between species through natural hybridization. Previous genetic analyses of the Drosophila yakuba—D. santomea hybrid zone showed that the mitochondrial genome of D. yakuba had introgressed into D. santomea and completely replaced its native form. Since mitochondrial proteins work intimately with nuclear‐encoded proteins in the oxidative phosphorylation (OXPHOS) pathway, we hypothesized that some nuclear genes in OXPHOS cointrogressed along with the mitochondrial genome. We analyzed nucleotide variation in the 12 nuclear genes that form cytochrome c oxidase (COX) in 33 Drosophila lines. COX is an OXPHOS enzyme composed of both nuclear‐ and mitochondrial‐encoded proteins and shows evidence of cytonuclear coadaptation in some species. Using maximum‐likelihood methods, we detected significant gene flow from D. yakuba to D. santomea for the entire COX complex. Interestingly, the signal of introgression is concentrated in the three nuclear genes composing subunit V, which shows population migration rates significantly greater than the background level of introgression in these species. The detection of introgression in three proteins that work together, interact directly with the mitochondrial‐encoded core, and are critical for early COX assembly suggests this could be a case of cytonuclear cointrogression.  相似文献   

8.
Rawson PD  Brazeau DA  Burton RS 《Gene》2000,248(1-2):15-22
Mitochondrial energy production requires complex interactions among proteins encoded in both the nuclear and mitochondrial genomes. The intergenomic coevolution of interacting gene products has been previously suggested based on interspecific comparisons of cytochrome c (encoded by the nuclear CYC gene) and cytochrome c oxidase (partly encoded in the mitochondrial DNA by the COX1, COX2 and COX3 genes). In the intertidal copepod, Tigriopus californicus, non-synonymous substitutions in the COX1 gene have previously been found in interpopulation comparisons. In order to determine if CYC also shows interpopulation variation, this gene was isolated from a cDNA library using a degenerate primer/polymerase chain reaction approach. Characterization of a cDNA sequence and 25 genomic DNA sequences derived from four T. californicus populations yielded the following results: (1) the T. californicus CYC gene is interrupted by an intron that occurs at the same position as the intron found in vertebrate CYC genes; (2) there is extensive sequence variation within both the coding region and intron of this gene and the vast majority of this variation occurs between sequences drawn from geographically distinct populations; (3) the coding sequence variation includes a minimum of five amino acid replacement substitutions; (4) segregation of length variants among offspring in an interpopulation cross revealed genotypic ratios consistent with the proposed allelic nature of the CYC variants. These results demonstrate that the requisite genetic variation required for intergenomic coevolution exists in the CYC-COX system in T. californicus.  相似文献   

9.
Hybridization between divergent populations may cause a reduction in fitness due either to disruption in local adaptation or disruption in intrinsic coadaptation. We tested for both effects in the tidepool copepod Tigriopus californicus. Fitness surrogates were measured in pure populations and interpopulation hybrids, with broods split between three environmental treatments: (1) Standard: 15 °C/100% seawater; (2) High temperature: 25 °C/100% seawater; and (3) Low salinity: 15 °C/50% seawater. Effects of these treatments were independent of population, providing no evidence for local adaptation. Comparison of mean fitness in pure populations, F1 hybrids and F2 hybrids showed that hybridization caused beneficial interactions between alleles at the same locus and detrimental interactions between loci (i.e., disruption of intrinsic coadaptation). The effects of hybridization were environmentally dependent as exposure to the most stressful treatment (high temperature) resulted in the maintenance of F1 heterosis and a substantial reduction in F2 breakdown.  相似文献   

10.
Aerobic energy production occurs via the oxidative phosphorylation pathway (OXPHOS), which is critically dependent on interactions between the 13 mitochondrial DNA (mtDNA)-encoded and approximately 70 nuclear-encoded protein subunits. Disruptive mutations in any component of OXPHOS can result in impaired ATP production and exacerbated oxidative stress; in mammalian systems, such mutations are associated with ageing as well as numerous diseases. Recent studies have suggested that oxidative stress plays a role in fitness trade-offs in life-history evolution and functional ecology. Here, we show that outcrossing between populations with divergent mtDNA can exacerbate cellular oxidative stress in hybrid offspring. In the copepod Tigriopus californicus, we found that hybrids that showed evidence of fitness breakdown (low fecundity) also exhibited elevated levels of oxidative damage to DNA, whereas those with no clear breakdown did not show significantly elevated damage. The extent of oxidative stress in hybrids appears to be dependent on the degree of genetic divergence between their respective parental populations, but this pattern requires further testing using multiple crosses at different levels of divergence. Given previous evidence in T. californicus that hybridization disrupts nuclear/mitochondrial interactions and reduces hybrid fitness, our results suggest that such negative intergenomic epistasis may also increase the production of damaging cellular oxidants; consequently, mtDNA evolution may play a significant role in generating postzygotic isolating barriers among diverging populations.  相似文献   

11.
Geographically separated populations of the intertidal copepod Tigriopus californicus are sharply differentiated at several enzyme-encoding gene loci. Two studies were performed to investigate the extent to which the gene pools of local populations are organized into harmoniously interacting (or “coadapted”) gene complexes. In the first, the effects of interpopulation hybridization on development time were assessed. Results showed that while F1 hybrids did not differ from parental lines, mean F2 developmental times were as much as 50% longer. The second study used two unlinked enzyme polymorphisms as genetic markers to determine the genotypic specificity of F2 hybrid breakdown. For two sets of parental populations, the relative viabilities of the different two-locus genotypes were determined from segregation ratios among the F2 progeny. Sharp deviations from Mendelian ratios were observed; in the extreme, a block of genes marked by the MeF allozyme from the LJ (La Jolla) population was found to be nearly lethal when homozygous in the F2 of LJ × AB (Los Angeles) crosses. This same block of genes had a tenfold higher viability in crosses between LJ and SC (Santa Cruz). In the AB × LJ crosses, the two marker loci had independent (multiplicative) effects on viability. In the SC × LJ crosses, deviations from the multiplicative model were observed; the data indicate that parental homozygous genotypes have higher viability than predicted by independence, while nonparental homozygotes have lower than predicted viability. These results suggest that substantial integration of the genome has occurred within natural T. californicus populations.  相似文献   

12.
13.
Willett CS 《Genetica》2011,139(5):575-588
Deleterious interactions within the genome of hybrids can lower fitness and result in postzygotic reproductive isolation. Understanding the genetic basis of these deleterious interactions, known as Dobzhansky-Muller incompatibilities, is the subject of intense current study that seeks to elucidate the nature of these deleterious interactions. Hybrids from crosses of individuals from genetically divergent populations of the intertidal copepod Tigriopus californicus provide a useful model in which to study Dobzhansky-Muller incompatibilities. Studies of the basis of postzygotic reproductive isolation in this species have revealed a number of patterns. First, there is evidence for a breakdown in genomic coadaptation between mtDNA-encoded and nuclear-encoded proteins that can result in a reduction in hybrid fitness in some crosses. It appears from studies of the individual genes involved in these interactions that although this coadaptation could lead to asymmetries between crosses, patterns of genotypic viabilities are not often consistent with simple models of genomic coadaptation. Second, there is a large impact of environmental factors on these deleterious interactions suggesting that they are not strictly intrinsic in nature. Temperature in particular appears to play an important role in determining the nature of these interactions. Finally, deleterious interactions in these hybrid copepods appear to be complex in terms of the number of genetic factors that interact to lead to reductions in hybrid fitness. This complexity may stem from three or more factors that all interact to cause a single incompatibility or the same factor interacting with multiple other factors independently leading to multiple incompatibilities.  相似文献   

14.
Developmental instability shown by increased fluctuating asymmetry can be caused by either genetic or environmental stress. Genomic coadaptation and heterozygosity are the genetic factors that are commonly assumed to increase the level of developmental stability. Therefore, in hybrid populations the level of fluctuating asymmetry (FA) can be lower due to higher heterozygosity or higher due to disruption of coadapted gene complexes, depending on the degree of divergence between hybridizing taxa. Here I present data on FA in petals from hybrids between Lychnis viscaria (Caryophyllaceae) and Lychnis alpina and from parental species grown in a common garden environment. Petal asymmetry of hybrids was clearly higher than that of either parental species grown in common environment. Between the two parental species petal asymmetry did not differ. The mean size of the petals in hybrids was about the same as in L. viscaria, thus indicating no heterotic effect. Therefore, it seems that hybrids between L. viscaria and L. alpina do suffer from the disruption of coadapted gene complexes as indicated by higher developmental instability.  相似文献   

15.
A central question in evolutionary biology concerns the population and genetic processes by which new species arise. Here, the genetic basis of hybrid breakdown between two haplodiploid species, Nasonia vitripennis and N. giraulti is investigated. Hybridization between the two species is normally prevented by microorganisms that cause bidirectional incompatibility. However, after elimination of microorganisms, F1 hybrids females are readily produced (due to haplodiploidy, males develop from unfertilized eggs and are therefore not hybrids). F1 hybrid females are viable and fecund, but recombinant (haploid) F2 male offspring suffer from severe hybrid breakdown (larval and pupal mortality). This is typically interpreted as evidence for the existence of different coadapted gene complexes in the two species, which are broken up by recombination. F2 recombinant eggs were rescued by fertilization with the complete chromosome complement from either species, supporting the view that hybrid lethality genes tend to be recessive. Negative epistatic interactions occur between nuclear genes of the two species, and between cytoplasmically inherited factors (cytoplasmic genes) of giraulti and nuclear genes of vitripennis. Interactions between nuclear genes and cytoplasmic genes are asymmetric. Experiments clearly demonstrate that the latter incompatibility is not due to maternal-effect genes, but to cytoplasmically inherited elements. Nuclear-mitochondrial interactions are possibly involved.  相似文献   

16.
The intertidal copepod Tigriopus californicus was used as a model organism to look at effects of crossing distance on fitness and to investigate the genetic mechanisms responsible. Crosses were conducted between 12 pairs of populations spanning a broad range of both geographic distance (5 m to 2007 km) and genetic distance (0.2% to 22.3% sequence divergence for a 606-bp segment of the mitochondrial COI gene). For each pair of populations, three fitness components (hatching number, survivorship number, and metamorphosis number) were measured in up to 16 cohorts including parentals, reciprocal F1, F2, F3, and first-generation backcross hybrids. Comparisons of each set of cohorts allowed estimation of within- and between-locus gene interaction. Relative to parentals, F1 hybrids showed a trend toward increased fitness, with no correspondence with population divergence, and a decrease in variance, which in some cases correlated with population divergence. In sharp contrast, F2 hybrids had a decrease in fitness and an increase in variance that both corresponded to population divergence. Genetic interpretation of these patterns suggests that both the beneficial effects of dominance and the detrimental effects of breaking up coadaptation are magnified by increasing evolutionary distance between populations. Because there is no recombination in T. californicus females, effects of recombination can be assessed by comparing F1 hybrid males and females backcrossed to parentals. Both recombinant and nonrecombinant backcross hybrids showed a decline in fitness correlated with population divergence, indicating that segregation among chromosomes contributes to the breakup of coadaptation. Although there was no difference in mean fitness between the two backcross types, recombinational backcrosses showed greater variance for fitness than nonrecombinational backcrosses, suggesting that the breakup of parental gene ombinations within chromosomes has both beneficial and detrimental effects.  相似文献   

17.
Hybridization between genetically divergent populations is an important evolutionary process, with an outcome that is difficult to predict. We used controlled crosses and freely mating hybrid swarms, followed for up to 30 generations, to examine the morphological and fitness consequences of interpopulation hybridization in the copepod Tigriopus californicus. Patterns of fitness in two generations of controlled crosses were partly predictive of long‐term trajectories in hybrid swarms. For one pair of populations, controlled crosses revealed neutral or beneficial effects of hybridization after the F1 generation, and hybrid swarm fitness almost always equalled or exceeded that of the midparent. For a second pair, controlled crosses showed F2 hybrid breakdown, but increased fitness in backcrosses, and hybrid swarm fitness deviated both above and below that of the parentals. Nevertheless, individual swarm replicates exhibited different fitness trajectories over time that were not related in a simple manner to their hybrid genetic composition, and fixation of fitter hybrid phenotypes was not observed. Hybridization did not increase overall morphological variation, and underlying genetic changes may have been masked by phenotypic plasticity. Nevertheless, one type of hybrid swarm exhibited a repeatable pattern of transgressively large eggsacs, indicating a positive effect of hybridization on individual fecundity. Additionally, both parental and hybrid swarms exhibited common phenotypic trends over time, indicating common selective pressures in the laboratory environment. Our results suggest that, in a system where much work has focused on F2 hybrid breakdown, the long‐term fitness consequences of interpopulation hybridization are surprisingly benign.  相似文献   

18.
Abstract The cytochrome c oxidase enzyme (COX) is comprised of 10 nuclear-encoded subunits and three mito-chondrial-encoded subunits in close physical association in the inner mitochondrial membrane. COX passes electrons from cytochrome c to molecular oxygen and pumps protons into the inner mitochondrial space for ATP production. Selection on nuclear-mitochondrial interactions within species should lead to coadaptation of the proteins comprising this important enzyme. Under this model, there should be relatively little disruption of COX activity when mitochondrial genomes are crossed among strains within species. A more pronounced disruption of activity is expected when the mitochondrial genome is expressed in the nuclear background of a different species. We test these hypotheses in Drosophila using hybridization and backcrossing among lines of D. simulans and D. mauritiana. Disrupted cytonuclear genotypes were constructed using backcrosses between two lines of D. simulans (siI and si II ) that introduced each divergent mitochondrial DNA (mtDNA) into each nuclear background due to maternal inheritance of mtDNA. Similar crosses were used to introduce eachD. simulans mtDNA into the D. mauritiana maI nuclear background. Reconstituted cytonuclear control genotypes were constructed by backcrossing the initial F1 females to males of the maternal genotype. COX enzyme activities were compared among these disrupted and reconstituted backcross genotypes within and between species. The disruption effect on COX activity was restricted to males of interspecific genotypes. These data support the coadaptation hypothesis and are consistent with predictions that the evolution of modifiers of male mitochondrial dysfunction is hindered by the maternal inheritance of mtDNA. New sequence data for nuclear encoded subunits of COX identified amino acids that may play a role in the disruption effect.  相似文献   

19.
Metazoans exist only with a continuous and rich supply of chemical energy from oxidative phosphorylation in mitochondria. The oxidative phosphorylation machinery that mediates energy conservation is encoded by both mitochondrial and nuclear genes, and hence the products of these two genomes must interact closely to achieve coordinated function of core respiratory processes. It follows that selection for efficient respiration will lead to selection for compatible combinations of mitochondrial and nuclear genotypes, and this should facilitate coadaptation between mitochondrial and nuclear genomes (mitonuclear coadaptation). Herein, we outline the modes by which mitochondrial and nuclear genomes may coevolve within natural populations, and we discuss the implications of mitonuclear coadaptation for diverse fields of study in the biological sciences. We identify five themes in the study of mitonuclear interactions that provide a roadmap for both ecological and biomedical studies seeking to measure the contribution of intergenomic coadaptation to the evolution of natural populations. We also explore the wider implications of the fitness consequences of mitonuclear interactions, focusing on central debates within the fields of ecology and biomedicine.  相似文献   

20.
A possible effect of interpopulation hybridization is either outbreeding depression, as a consequence of breakdown of coadapted gene complexes which can increase developmental instability (DI) of the traits, or increased heterozygosity, which can reduce DI. One of the principal methods commonly used to estimate DI is the variability of fluctuating asymmetry (FA). We analysed the effect of interpopulation hybridization in Drosophila subobscura through the variability in the wing size and the FA of wing length and width for both sexes in parental, F1 and F2 generations. The results of the wing size per se in intra- and interpopulation hybrids of D. subobscura do not explicitly reveal the significance of either of the two hypotheses. However, the results of the FA of the wing traits give a different insight. The FA of wing length and width generally increases in interpopulation crosses in F1 with respect to the FA in the parental generation, which suggests the possibility that outbreeding depression occurred in the first generation after the hybridization event. We generally observed that the FA values for the wing length and width of interpopulation hybrids were higher in F1 and F2 generations, compared to intrapopulation hybrids in same generations. These results suggest that the association between coadaptive genes with the same evolutionary history are the most probable mechanism that maintains the developmental homeostasis in Drosophila subobscura populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号