首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effects of route of administration on the stereoselective pharmacokinetics of tramadol (T) and its active metabolite (M1) were studied in rats. A single 20 mg/kg dose of racemic T was administered through intravenous, intraperitoneal, or oral route to different groups of rats, and blood and urine samples were collected. Samples were analyzed using chiral chromatography, and pharmacokinetic parameters (mean +/- SD) were estimated by noncompartmental methods. Following intravenous injection, there was no stereoselectivity in the pharmacokinetics of T. Both enantiomers showed clearance values (62.5 +/- 27.2 and 64.4 +/- 39.0 ml/min/kg for (+)- and (-)-T, respectively) that were equal or higher than the reported liver blood flow in rats. Similar to T, the area under the plasma concentration-time curves (AUCs) of M1 did not exhibit stereoselectivity after intravenous administration of the parent drug. However, the systemic availability of (+)-T was significantly (P < 0.05) higher than that of its antipode following intraperitoneal (0.527 +/- 0.240 vs. 0.373 +/- 0.189) and oral (0.307 +/- 0.136 vs. 0.159 +/- 0.115) administrations. The AUC of the M1 enantiomers, on the other hand, remained mostly nonstereoselective regardless of the route of administration. Pharmacokinetic analysis indicated that the stereoselectivity in the pharmacokinetics of oral T is due to stereoselective first pass metabolism in the liver and, possibly, in the gastrointestinal tract. The direction and extent of stereoselectivity in the pharmacokinetics of T and M1 in rats were in agreement with those previously reported in humans, suggesting that the rat may be a suitable model for enantioselective studies of T pharmacokinetics.  相似文献   

2.
Zhu CJ  Zhang JT 《Chirality》2003,15(8):668-673
The pharmacokinetics of clausenamide (CLA) enantiomers and their metabolites were investigated in Wistar rat. After intravenous and oral administration at a dose of 80 and 160 mg/kg each enantiomer, plasma concentrations of (-)- or (+)-CLA and its major metabolites were simultaneously determined by reverse-phase HPLC with UV detection. Notably, stereoselective differences in pharmacokinetics were found. The mean plasma levels of (+)-CLA were higher at almost all time points than those of (-)-CLA. (+)-CLA also exhibited greater t(max), C(max), t(1/2beta), AUC(0-12h), and AUC(0--> infinity) and smaller CL (or CL/F) and V(d) (or V(d)/F), than its antipode. The (+)/(-) isomer ratios for t(1/2beta), t(max), AUC(0-12 h), and AUC(0--> infinity), which ranged from 1.26 to 2.08. The ratio for CL (or CL/F) was about 0.5, and there were significant differences in these values between CLA enantiomers (P < 0.05), implying that the absorption, distribution, and elimination of (-)-CLA were more rapid than those of (+)-CLA. Similar findings for (-)-7-OH-CLA, the major metabolite of (-)-CLA, and (+)-4-OH-CLA, the major metabolite of (+)-CLA, can be also seen in rat plasma. The contributing factors for the differences in stereoselective pharmacokinetics of CLA enantiomers appeared to be involved in their different plasma protein binding, first-pass metabolism and interaction with CYP enzymes, especially with their metabolizing enzyme CYP 3A isoforms.  相似文献   

3.
The affinity of the enantiomers of phenglutarimide at three muscarinic receptor subtypes was examined in vitro using field-stimulated rabbit vas deferens (M1 receptors) and guinea pig atria (M2 alpha receptors) and ileum (M2 beta receptors). Extremely high stereoselectivity was observed and higher affinities (up to 6000-fold) were found for the (+)-S-enantiomer. The stereoselectivity ratios were different at the three subtypes, and the stereochemical demands made by the muscarinic receptors were most stringent at M1 receptors. (+)-(S)-Phenglutarimide was found to be a potent M1-selective antagonist (pA2 at M1 = 8.53). Its receptor selectivity profile is qualitatively similar to that of pirenzepine. (-)-(R)-Phenglutarimide showed no comparable discriminatory properties.  相似文献   

4.
This article describes the enantioselective analysis of cyclophosphamide (CPA) in human plasma using LC-MS/MS. CPA enantiomers were extracted from plasma using a mixture of ethyl acetate and chloroform (75:25, v/v). The enantiomers were separated on a Chiralcel(R) OD-R column, with the mobile phase consisting of a mixture of acetonitrile and water (75:25, v/v) plus 0.2% formic acid. The protonated ions and their respective product ions were monitored using two functions, 261 > 141 for CPA enantiomers and 189 > 104 for the internal standard (antipyrine). Recovery rates were higher than 95% and the quantification limit was 2.5-ng/ml plasma for both enantiomers. The coefficients of variation and the relative errors obtained for the validation of intra- and interassay precision and accuracy were less than 10%. The method was applied for the investigation of the enantioselective pharmacokinetics of CPA in a lupus nephritis patient treated with 1 g CPA infused over 2 h and in a breast cancer patient treated with 0.9 g infused over 1 h. No stereoselectivity in the pharmacokinetic parameters was observed for either patient. Clearance values of 2.63 and 2.93 l/h and of 3.36 and 3.61 l/h for (-)-(S) and (+)-(R)-CPA were obtained for the breast cancer and lupus nephritis patient, respectively.  相似文献   

5.
The stereoselective pharmacokinetics of two enantiomers of [14C]-labeled KE-298 [2-acetylthiomethyl-4-(4-methylphenyl)-4-oxobutanonic acid] were investigated in rats. The blood levels of radioactivity after the oral administration of (+)-(S)-[14C]KE-298 were higher than that for (−)-(R)-[14C]KE-298; the AUC of the former was approximately twice that of the latter. No significant stereoselectivity was observed in absorption rate. The tissue/plasma level ratios at 30 min after oral administration of (−)-(R)-[14C]KE-298 in the liver and kidney, the major metabolic and/or excretory organs, were 2 to 3 times higher than those for (+)-(S)-[14C]KE-298. Neither was evidence of stereoselectivity found in the excretion of radioactivity. During incubation with isolated rat hepatocytes in vitro, the metabolic rates of KE-298 enantiomers were not significantly different. Plasma protein binding 30 min after the oral administration of (+)-(S)-[14C]KE-298 and (−)-(R)-[14C]KE-298 was 99.3% and 97.0%, respectively. Comparing the unbound fraction, (−)-(R)-[14C]KE-298 was approximately 4 times higher than (+)-(S)-[14C]KE-298. In order to make clear the relationship between stereoselective pharmacokinetics and protein binding for [14C]KE-298, the comparative pharmacokinetics of (+)-(S)-[14C]KE-298 and (−)-(R)-[14CC]KE-298 were investigated in analbuminemic rats. In these animals, no evidence of stereoselectivity was found for either blood level-time profiles or plasma protein binding. These results revealed that the stereoselective pharmacokinetics of KE-298 in rats might be due to enantiomeric differences in binding to plasma albumin. © 1996 Wiley-Liss, Inc.  相似文献   

6.
The aim of this study was to assess the interconversion pharmacokinetics and tissue distribution of pentoxifylline and the active (R)-enantiomer of its metabolite M1, lisofylline in male CD-1 mice. Both compounds were administered intravenously at a dose of 50 mg/kg on two separate occasions. Serum and tissues were collected at different time points following drug administration. In addition, the (S)-enantiomer of M1 was administered to a group of mice and serum samples were obtained. Analyte concentrations were measured by chiral HPLC. All serum concentration versus time data were fitted simultaneously to a pharmacokinetic model incorporating interconversion processes of parent drug and metabolites. The estimated conversion clearance of (-)-(R)-M1 to pentoxifylline (CL21) was six times greater than that for the reverse process (CL12). The interconversion of pentoxifylline and (+)-(S)-M1 was faster as reflected by the values of conversion clearances CL13 and CL31 which were approximately 16 and 7 times greater in comparison with the corresponding clearances for the interconversion of pentoxifylline and (-)-(R)-M1. When fitting pharmacokinetic data of both parent compounds to a one-compartment model, the values of elimination clearances assessed were close to those obtained on the basis of the interconversion model. After administration of pentoxifylline, tissue-to-serum AUC ratios ranged from 0.1 for liver and lungs to 0.32 for brain tissue. Serum levels of its metabolite, (-)-(R)-M1 were very low, whereas its tissue levels exceeded serum concentrations. The highest value of metabolite-to-parent AUC ratio (4.98) was observed in lungs. When (-)-(R)-M1 was given as a parent drug, tissue-to-serum AUC ratios in liver, kidney, and lungs were very close and ranged from 0.64 to 0.72. At the same time, levels of its metabolite, pentoxifylline were relatively low both in serum and all tissues studied. In consequence, metabolite-to-parent AUC ratios did not exceed the value of 0.27. In conclusion, reversible metabolism plays a modest role in the disposition of pentoxifylline and (-)-(R)-M1. It seems that pentoxifylline has less favourable pharmacokinetic properties than (-)-(R)-M1 due to lower concentrations attained in target organs. High levels of (-)-(R)-M1 observed after pentoxifylline administration in certain tissues such as liver or lungs suggest that pentoxifylline may constitute an effective prodrug for (-)-(R)-M1 in these organs.  相似文献   

7.
The aim of the study was to characterize the individual pharmacokinetics of (-)-R- and (+)-S-clevidipine following intravenous constant rate infusion of rac-clevidipine to essential hypertensive patients. Twenty patients received three out of five randomized treatments with clevidipine. The pharmacokinetics of the separate enantiomers were evaluated by compartmental analysis of blood concentrations vs. time curves using the population approach. The derived pharmacokinetic parameters were used to simulate the time for 50 and 90% postinfusion decline following various infusion times of rac-clevidipine. A two-compartment model was used to describe the dispositions of the enantiomers; there were only minor differences between the estimated pharmacokinetic parameters of the separate enantiomers. The mean blood clearance values of (-)-R- and (+)-S-clevidipine were 0.103 and 0.096 l/min/kg, and the corresponding volumes of distribution at steady state were 0.39 and 0.54 l/kg, respectively. The context-sensitive half-time was approximately 2 min regardless of stereochemical configuration, and a 90% decline in concentration was achieved approximately 8 min postinfusion for (-)-R-clevidipine and 11 min for (+)-S-clevidipine, following clinically relevant infusion times with clevidipine. In conclusion, both enantiomers are high-clearance compounds with similar blood clearance values. The volume of distribution for the enantiomers is slightly different, presumably due to differences in the protein binding. From a pharmacokinetic point of view, the use of a single enantiomer as an alternative to the racemic clevidipine will not offer any clinical advantages.  相似文献   

8.
The results of a previous pharmacokinetic study of disopyramide (DP) enantiomers in humans suggested that DP and/or mono-N-desisopropyldisopyramide (MND) may show stereoselective extrarenal elimination. Thus, the present study investigates the biliary elimination of DP and MND enantiomers in three patients who had undergone cholecystectomy for cholelithiasis. DP and MND enantiomers displayed biliary elimination. In both subjects, this elimination pathway showed the same characteristics: (1) biliary elimination of DP and MND was stereoselective, (2) the stereoselectivity was opposite to that observed for the metabolic and renal elimination pathways, i.e., the elimination of the (-)-(R)-enantiomer was higher than that of the (+)-(S)-enantiomer, and (3) biliary elimination of MND was higher than that of DP, for both enantiomers. Estimates of the relative contribution of the biliary clearance in the total clearance of DP and MND indicated that this elimination pathway was secondary, especially for DP. The biliary clearance (expressed as % of total clearance) was 1.9 to 4.0% for (-)-(R)-DP, 1.2 to 1.7% for (+)-(S)-DP, 7.8 to 22.9% for (-)-(R)-MND, and 5.2 to 10.5% for (+)-(S)-MND.  相似文献   

9.
ABSTRACT. Field tests showed ( S )-(-)- cis -verbenol and ( R )-(+)- trans -verbenol in combination with a second pheromonal component, 2-methyl-3-buten-2-ol, more attractive than the combination with their optical antipodes. Inhibition of response to the attractant component, ( S )-(-)- cis -verbenol, by high concentrations of its optical antipode did not occur. No significant differences were noted for response to the attractant, ( S )-(-)- cis -verbenol and 2-methyl-3-buten-2-ol, with the addition of either ipsdienol enantiomer or a racemic mixture of ipsdienol enantiomers. Electroantennogram (EAG) studies correlated well with the behavioural studies. EAGs recorded from male and female beetles revealed both sexes to have a lower threshold for the pheromone, ( S )-(-)- cis -verbenol, than its host terpene precursor, (-)- alpha -pinene. EAGs showed a greater number of acceptors for (-)- alpha-pinene in males than in females. EAGs at acceptor saturation to the enantiomers of alpha -pinene and the verbenol isomers showed males more responsive to (-)- alpha -pinene, (±)- cis -verbenol, and ( R )-(+)- trans -verbenol. Significantly greater EAGs were elicited in females than in males to (-)- alpha -pinene, and (±)- and ( S )-(-)- cis -verbenol. No significant differences in EAGs of females to the enantiomers of trans -verbenol were noted. EAGs showed similar thresholds in males and females to the pheromone component, 2-methyl-3-buten-2-ol; however, female response at threshold was significantly greater than male response. The results are discussed with regard to olfactory acceptor evolution.  相似文献   

10.
This study describes the enantioselective analysis of unbound and total concentrations of tramadol and its main metabolites O-desmethyltramadol (M1) and N-desmethyltramadol (M2) in human plasma. Sample preparation was preceded by an ultrafiltration step to separate the unbound drug. Both the ultrafiltrate and plasma samples were submitted to liquid/liquid extraction with methyl t-butyl ether. Separation was performed on a Chiralpak(?) AD column and tandem mass spectrometry consisting of an electrospray ionization source, positive ion mode and multiple reaction monitoring was used as the detection system. Linearity was observed in the following ranges: 0.2-600 and 0.5-250 ng/mL for analysis of total and unbound concentrations of the tramadol enantiomers, respectively, and 0.1-300 and 0.25-125 ng/mL for total and unbound concentrations of the M1 and M2 enantiomers, respectively. The lower limits of quantitation were 0.2 and 0.5 ng/mL for analysis of total and unbound concentration of each tramadol enantiomer, respectively, and 0.1 and 0.25 ng/mL for total and unbound concentrations of M1 and M2 enantiomers, respectively. Intra- and interassay reproducibility and inaccuracy did not exceed 15%. Clinical application of the method to patients with neuropathic pain showed plasma accumulation of (+)-tramadol and (+)-M2 after a single oral dose of racemic tramadol. Fractions unbound of tramadol, M1 or M2 were not enantioselective in the patients investigated.  相似文献   

11.
The purposes of this work were (1) to develop a high performance liquid chromatographic (HPLC) assay for the enantiomers of thalidomide in blood, (2) to study their inversion and degradation in human blood, and (3) to study the pharmacokinetics of (+)-(R)- and (?)-(S)-thalidomide after oral administration of the separate enantiomers or of the racemate to healthy male volunteers. The enantiomers of thalidomide were determined by direct resolution on a tribenzoyl cellulose column. Mean rate constants of chiral inversion of (+)-(R)-thalidomide and (?)-(S)-thalidomide in blood at 37°C were 0.30 and 0.31 h?1, respectively. Rate constants of degradation were 0.17 and 0.18 h?1. There was rapid interconversion in vivo in humans, the (+)-(R)-enantiomer predominating at equilibrium. The pharmacokinetics of (+)-(R)- and (?)-(S)-thalidomide could be characterized by means of two one-compartment models connected by rate constants for chiral inversion. Mean rate constants for in vivo inversion were 0.17 h?1 (R to S) and 0.12 h?1 (S to R) and for elimination 0.079 h?1 (R) and 0.24 h?1 (S), i.e., a considerably faster rate of elimination of the (?)-(S)-enantiomer. Putative differences in therapeutic or adverse effects between (+)-(R)- and (?)-(S)-thalidomide would to a large extent be abolished by rapid interconversion in vivo. © 1995 Wiley-Liss, Inc.  相似文献   

12.
The present experiments used methylcholines to examine the stereoselectivity of choline transport into rat synaptosomes. R(+)-alpha-methylcholine and S(+)-beta-methylcholine were significantly better inhibitors of the high-affinity choline transport system than were their enantiomers. Although both enantiomers of alpha- and of beta-methylcholine inhibited [3H]choline transport, only R(+)-alpha-methylcholine and S(+)-beta-methylcholine could be transported by the high-affinity choline uptake mechanism. Therefore, we conclude that the chiral requirements for recognition of and for transport by the high-affinity transporter are clearly different. In addition to high-affinity choline transport, Na(+)-independent low-affinity transport was measured. This process transported R(+)-alpha-methylcholine, but not S(-)-alpha-methylcholine; however, it showed no stereoselectivity for the enantiomers of beta-methylcholine. Thus, high- and low-affinity choline transport mechanisms exhibit distinct differences in their substrate selectivities. We suggest that the stereoselective properties of choline transport might present a unique opportunity to study choline uptake and metabolism.  相似文献   

13.
Chen Y  Liu XQ  Zhong J  Zhao X  Wang Y  Wang G 《Chirality》2006,18(10):799-802
The pharmacokinetics of ornidazole (ONZ) were investigated following i.v. administration of racemic mixture and individual enantiomers in beagle dogs. Plasma concentrations of ONZ enantiomers were analyzed by chiral high-performance liquid chromatography (HPLC) on a Chiralcel OB-H column with quantification by UV at 310 nm. Notably, the mean plasma levels of (-)-ONZ were higher in the elimination phase than those of (+)-ONZ. (-)-ONZ also exhibited greater t1/2, MRT, AUC(0-t) and smaller CL, than those of its antipode. The area under the plasma concentration-time curve (AUC(0-t)) of (-)-ONZ was about 1.2 times as high as that of (+)-ONZ. (+)-ONZ total body clearance (CL) was 1.4 times than its optical antipode. When given separately, there were significant differences in the values of AUC(0-infinity) and CL between ONZ enantiomers (P < 0.05), indicating that elimination of (+)-ONZ was more rapid than that of (-)-ONZ. No significant differences were found between the estimates of the pharmacokinetic parameters of (+)-ONZ or (-)-ONZ, obtained following administration as the individual and as a racemic mixture. This study demonstrates that the elimination of ONZ enantiomers is stereoselective and chiral inversion and enantiomer/enantiomer interaction do not occur when the enantiomers are given separately and as racemic mixture.  相似文献   

14.
Gu X  Wang P  Liu D  Lv C  Lu Y  Zhou Z 《Chirality》2008,20(2):125-129
The stereoselective degradation of the racemic benalaxyl in vegetables such as tomato, tobacco, sugar beet, capsicum, and the soil has been investigated. The two enantiomers of benalaxyl in the matrix were extracted by organic solvent and determined by validated chiral high-performance liquid chromatography with a cellulose-tris-(3, 5-dimethylphenylcarbamate)-based chiral column. Rac-benalaxyl was fortified into the soil and foliar applied to vegetables. The assay method was linear over a range of concentrations (0.5-50 microg ml(-1)) and the mean recoveries in all the samples were more than 70% for the two enantiomers. The limit of detection for both enantiomers was 0.05 microg g(-1). The results in soil showed that R-(-)-enantiomer dissipated faster than S-(+)-enantiomer and the stereoselectivity might be caused by microorganisms. In tomato, tobacco, sugar, beet, and capsicum plants, there was significantly stereoselective metabolism. The preferential absorption and degradation of S-(+)-enantiomer resulted an enrichment of the R-(-)-enantiomer residue in all the vegetables.  相似文献   

15.
Guan J  Yang J  Li J  Li X  Li F 《Chirality》2009,21(6):613-618
The enantioselective pharmacokinetics of tenatoprazole were studied in Wistar rats after the administration of a single oral dose of rac-tenatoprazole. Serial plasma samples were collected; and the pharmacokinetic behavior of each enantiomer was characterized using a sequential achiral and chiral liquid chromatographic method. Tenatoprazole was extracted from a small aliquot of plasma (100 microl) by one-step extraction using hexane-dichloromethane-isopropanol (20:10:1, v/v/v) as extract solvent. Plasma drug concentration-time data were analyzed for each enantiomer by using a noncompartmental method. The AUC(0-infinity) and C(max) values of (+)-tenatoprazole were significantly greater than those of (-)-tenatoprazole (P < 0.001). The mean AUC(0-infinity) value of (+)-tenatoprazole was 7.5 times greater than that of (-)-tenatoprazole after oral administration of rac-tenatoprazole to rats at a dose of 5 mg/kg. There are also significant differences in t(1/2) and CL/F (P < 0.01 and P < 0.001, respectively) values between enantiomers. This study suggests that the pharmacokinetics of tenatoprazole are enantioselective in rats.  相似文献   

16.
Wang QX  Qiu J  Wang P  Jia GF  Wang P  Li JL  Zhou ZQ 《Chirality》2005,17(4):186-192
Hexaconazole [(RS)-2-(2,4-dichlorophenyl)-1-(1H-1,2,4-triazol-1-yl)hexan-2-ol] is a potent triazole fungicide. The (-) isomer accounts for most of the fungicidal activity. The stereo- and/or enantioselective kinetics of hexaconazole were investigated in rabbits by intravenous injection. The concentrations of (-)- and (+)-hexaconazole in plasma, liver, and kidney tissue were determined by HPLC with a cellulose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phase and by gas chromatography-mass spectrometry. After intravenous administration of racemic hexaconazole (rac-hexaconazole) at 30 mg/kg, plasma, liver, and kidney levels of the (+)-enantiomer decreased more rapidly than those of the (-)-enantiomer. The (-)-/(+)-enantiomer ratio of the area under the concentration-time curve (AUC(0-infinity)) was 1.35. The total plasma clearance value (CL) of (+)-enantiomer was more than 1.3-fold higher than that of the (-)-hexaconazole. The enantiomeric ratio (ER) increased with time in plasma, liver, and kidney. Other pharmacokinetic parameters of the enantiomers were also different. These results indicate substantial stereoselectivity in the kinetics of hexaconazole enantiomers in rabbits.  相似文献   

17.
Hong Y  Tang Y  Zeng S 《Chirality》2009,21(7):692-698
The interaction of propafenone (PPF) enantiomers with human plasma, human serum albumin (HSA), alpha(1)-acid glycoprotein (AGP), as well as with plasma from rat, rabbit, and cow was investigated using indirect chiral high performance liquid chromatography (HPLC) and ultrafiltration techniques. The stronger binding of the S-PPF found in human plasma was due to AGP. Two classes of binding sites in AGP were identified: one with high-affinity and small binding capacity (K(1(S)) = 7.65 x 10(6) M(-1), n(1(S)) = 0.50; K(1(R)) = 2.81 x 10(6) M(-1), n(1(R)) = 0.46), which revealed stereoselectivity; the other with low-affinity and high-binding capacity (n(2(S)) K(2(S)) = 9.95 x 10(3) M(-1); n(2(R)) K(2(R)) = 9.74 x 10(3) M(-1)). The binding to HSA was found to be weak and not enantioselective (nK(S) = 2.08 x 10(3) M(-1), nK(R) = 2.05 x 10(3) M(-1)). The interaction between enantiomers observed in human plasma was confirmed as a competitive type interacting at the high-affinity site in AGP. The binding mode of both enantiomers with AGP was mainly hydrophobic bond. PPF enantiomers had higher-binding affinity for the F-S variant of human AGP. Drug-drug binding interaction studies showed that verapamil, diazepam, nifedipine, furosemide, nitrendipine, and nimodipine did not affect the binding of PPF enantiomers except quinidine and aprindine at the therapeutic concentration. Comparative studies indicated considerable species-dependent binding stereoselectivity between plasma of the four species investigated.  相似文献   

18.
Główka FK  Caldwell J 《Chirality》2002,14(9):736-741
The binding of the enantiomers of indobufen (INDB) to human serum proteins was investigated using the racemic mixture or the pure (+)-S-enantiomer in a concentration range of 2.5-100.0 mg/L. In addition, the pharmacokinetics of free (unbound) and total INDB enantiomers were studied 1) following administration of a single 200 mg rac-INDB tablet to healthy volunteers, and 2) in obliterative atherosclerosis patients at steady state. The free fraction of INDB was obtained by ultrafiltration. Using the racemic mixture, the binding parameters of the two enantiomers were different, showing enantioselectivity in protein binding. The (-)-R-enantiomer was bound more strongly to human serum albumin, with association constant K = 11.95 +/- 0.98 x 10(5) M(-1) and n = 0.72 +/- 0.02 binding sites. The comparable data for the (+)-S-enantiomer were K = 4.65 +/- 0.02 x 10(5) M(-1), n = 0.92 +/- 0.01. When the binding of (+)-S-enantiomer was studied alone, the association constant K (2.10 +/- 0.18 x 10(5) M(-1)) was lower and the number of binding sites was increased, to n = 1.87 +/- 0.17. Competition occurred between the enantiomers, with the (-)-R-enantiomer displacing its antipode. The fraction of both enantiomers bound to serum proteins was 99.0%, which increased with decreasing initial concentration of the enantiomers. In healthy volunteers the (+)-S-enantiomer was eliminated faster than its (-)-R antipode, resulting in a lower AUC for the (+)-S-enantiomer. Significant differences were observed in the total INDB enantiomer concentrations. The mean unbound fraction of (-)-R- and (+)-S-INDB was 0.45% and 0.43%, respectively. Levels of the free (+)-S-enantiomer were higher than its (-)-R-antipode at steady state in patients with obliterative atherosclerosis who also took other drugs. The free enantiomer fraction increased to around 1% upon repeated administration. We conclude that the more rapid elimination of the (+)-S enantiomer is associated with its weaker binding to serum proteins.  相似文献   

19.
Tramadol (T) is available as a racemic mixture of (+)‐trans‐T and (−)‐trans‐T. The main metabolic pathways are O‐demethylation and N‐demethylation, producing trans‐O‐desmethyltramadol ( M1 ) and trans‐N‐desmethyltramadol ( M2 ) enantiomers, respectively. The analgesic effect of T is related to the opioid activity of (+)‐trans‐T and (+)‐ M1 and to the monoaminergic action of (+/−)‐trans‐T. This is the first study using tandem mass spectrometry as a detection system for the simultaneous analysis of trans‐T, M1 , and M2 enantiomers. The analytes were resolved on a Chiralpak® AD column using hexane:ethanol (95.5:4.5, v/v) plus 0.1% diethylamine as the mobile phase. The quantitation limits were 0.5 ng/ml for trans‐T and M1 and 0.1 ng/ml for M2 . The method developed and validated here was applied to a pharmacokinetic study in rats. Male Wistar rats (n = 6 at each time point) received a single oral dose of 20 mg/kg racemic trans‐T. Blood samples were collected up to 12 h after drug administration. The kinetic disposition of trans‐T and M2 was enantioselective (AUC(+)/(−) ratio = 4.16 and 6.36, respectively). The direction and extent of enantioselectivity in the pharmacokinetics of trans‐T and M2 in rats were comparable to data previously reported for healthy volunteers, suggesting that rats are a suitable model for enantioselective studies of trans‐T pharmacokinetics. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Hatami M  Farhadi K  Tukmechi A 《Chirality》2012,24(8):634-639
The applicability of two-phase liquid-phase micro-extraction (LPME) in porous hollow polypropylene fiber for the sample preparation and the stereoselective pharmacokinetics of mebeverine (MEB) enantiomers (an antispasmodic drug) in rat after intramuscular administration were studied. Plasma was assayed for MEB enantiomer concentrations using stereospecific high-performance liquid chromatography with ultraviolet detection after a simple, inexpensive, and efficient preconcentration and clean-up hollow fiber-based LPME. Under optimized micro-extraction conditions, MEB enantiomers were extracted with 25 μl of 1-octanol within a lumen of a hollow fiber from 0.5 ml of plasma previously diluted with 4.5 ml alkalized water (pH 10). The chromatographic analysis was carried out through chiral liquid chromatography using a DELTA S column and hexane-isopropyl alcohol (85:15 v/v) containing 0.2% triethylamine as mobile phase. The mean recoveries of (+)-MEB and (-)-MEB were 75.5% and 71.0%, respectively. The limit of detection (LOD) was 3.0 ng/ml with linear response over the concentration range of 10-2500 ng/ml with correlation coefficient higher than 0.993 for both enantiomers. The pharmacokinetic studies showed that the mean plasma levels of (+)-MEB were higher than those of (-)-MEB at almost all time points. Also, (+)-MEB exhibited greater t(max) (peak time in concentration-time profile), C(max) (peak concentration in concentration-time profile), t(1/2) (elimination half-life), and AUC(0-240 min) (area under the curve for concentration versus time) and smaller CL (clearance) and V(d) (apparent distribution volume) than its antipode. The obtained results implied that the absorption, distribution, and elimination of (-)-MEB were more rapid than those of (+)-MEB and there were stereoselective differences in pharmacokinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号