首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.— Systems with genetic variation for the primary sex ratio are important for testing sex-ratio theory and for understanding how this variation is maintained. Evidence is presented for heritable variation of the primary sex ratio in the harpacticoid copepod Tigriopus californicus. Variation in the primary sex ratio among families cannot be accounted for by Mendelian segregation of sex chromosomes. The covariance in sex phenotype between full-sibling clutches and between mothers and offspring suggests that this variation has a polygenic basis. Averaged over four replicates, the full-sibling heritability of sex tendency is 0.13 ± 0.040; and the mother-offspring heritability of sex tendency is 0.31 ± 0.216. Genetic correlations in the sex phenotype across two temperature treatments indicate large genotype-by-temperature interactions. Future experiments need to distinguish between zygotic, parental, or cytoplasmic mechanisms of sex determination in T. californicus.  相似文献   

2.
Environmental sex determination in a splash pool copepod   总被引:3,自引:0,他引:3  
The sex-determining mechanism has important demographic and genetic consequences by virtue of its effect on the population sex ratio. Here we investigate the effect of temperature dependent sex determination (TSD) on the primary sex ratio of the harpacticoid copepod, Tigriopus californicus . At the two experimental temperatures (15° and 22°C) used in this study, the primary sex ratio is almost always biased in favour of males. Higher temperatures induce masculinization and the change in sex ratio is not caused by differential mortality of the sexes. The mean level of TSD in the population is small (proportion of males increases by ~5% between 15° and 22°C) because only one-third of the families actually exhibit a significant sex-ratio response while the rest of the population is insensitive to temperature. A comparison of the primary sex ratio and the level of TSD between two locations reveals few differences among populations. Finally, individuals still exhibited TSD after having been maintained under constant temperature conditions in the lab for several generations. In addition the proportion of temperature-sensitive individuals remained unchanged. This suggests that the observed level of TSD is not an artefact of testing field-captured individuals in a novel laboratory environment. At this point the adaptive significance of temperature-dependent sex determination in T. californicus remains unknown.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 511–520.  相似文献   

3.
Werren JH  van den Assem J 《Genetics》1986,114(1):217-233
Virtually all known cases of extrachromosomal inheritance involve cytoplasmic inheritance through the maternal line. Recently, a paternally transmitted factor that causes the production of all-male families has been discovered in a parasitic wasp. The wasp has haplodiploid sex determination: male offspring are haploid and usually develop from unfertilized eggs, whereas females are diploid and usually develop from fertilized eggs. It has been postulated that this paternal sex-ratio factor (psr) is either (1) an infectious agent (a venereal disease) that is transmitted to the female reproductive tract during copulation with an infected male and, subsequently, causes all-male families or (2) a male cytoplasmic factor that is transmitted by sperm to eggs upon egg fertilization and, somehow, causes loss of the paternal set of chromosomes.—Experimental evidence is presented which shows that the factor requires egg fertilization for transmission to the next generation; therefore, it is likely to be a cytoplasmic factor. Significant potential intragenomic conflict results from the presence of this factor and two other sex-ratio distorters in this wasp species.  相似文献   

4.
5.
The sex-ratio trait that exists in a dozen Drosophila species is a case of naturally occurring X chromosome drive that causes males to produce female-biased progeny. Autosomal and Y polymorphism for suppressors are known to cause variation in drive expression, but the X chromosome polymorphism has never been thoroughly investigated. We characterized 41 X chromosomes from a natural population of Drosophila simulans that had been transferred to a suppressor-free genetic background. We found two clear-cut groups of chromosomes, sex-ratio and standard. The sex-ratio X chromosomes differed in their segregation ratio (81-96% females in the progeny), the less powerful drivers being less stable in their expression. A sib analysis, using a moderate driver, indicated that within-X variation in drive expression depended on genetic (autosomal) or epigenetic factors and that the age of the males also affected the trait. The other X chromosomes produced equal or roughly equal sex ratios, but again with significant variation. The continuous pattern of variation observed within both groups suggested that, in addition to a major sex-ratio gene, many X-linked loci of small effect modify the segregation ratio of this chromosome and are maintained in a polymorphic state. This was also supported by the frequency distribution of sex ratios produced by recombinant X chromosomes.  相似文献   

6.
F Molnár  T Caraco  G Korniss 《PloS one》2012,7(8):e43364
We model sex-structured population dynamics to analyze pairwise competition between groups differing both genetically and culturally. A sex-ratio allele is expressed in the heterogametic sex only, so that assumptions of Fisher's analysis do not apply. Sex-ratio evolution drives cultural evolution of a group-associated trait governing mortality in the homogametic sex. The two-sex dynamics under resource limitation induces a strong Allee effect that depends on both sex ratio and cultural trait values. We describe the resulting threshold, separating extinction from positive growth, as a function of female and male densities. When initial conditions avoid extinction due to the Allee effect, different sex ratios cannot coexist; in our model, greater female allocation always invades and excludes a lesser allocation. But the culturally transmitted trait interacts with the sex ratio to determine the ecological consequences of successful invasion. The invading female allocation may permit population persistence at self-regulated equilibrium. For this case, the resident culture may be excluded, or may coexist with the invader culture. That is, a single sex-ratio allele in females and a cultural dimorphism in male mortality can persist; a low-mortality resident trait is maintained by father-to-son cultural transmission. Otherwise, the successfully invading female allocation excludes the resident allele and culture and then drives the population to extinction via a shortage of males. Finally, we show that the results obtained under homogeneous mixing hold, with caveats, in a spatially explicit model with local mating and diffusive dispersal in both sexes.  相似文献   

7.
In a verbal model, Trivers and Willard proposed that, whenever there is sexual selection among males, natural selection should favor mothers that produce sons when in good condition but daughters when in poor condition. The predictions of this model have been the subject of recent debate. We present an explicit population genetic model for the evolution of a maternal-effect gene that biases offspring sex ratio. We show that, like local mate competition, sexual selection favors female-biased sex ratios whenever maternal condition affects the reproductive competitive ability of sons. However, Fisherian sex-ratio selection, which favors a balanced sex ratio, is an opposing force. We show that the evolution of maternal sex-ratio biasing by these opposing selection forces requires a positive covariance across environments between the sex-ratio bias toward sons (b) and the mating success of sons (r). This covariance alone is not a sufficient condition for the evolution of maternal sex-ratio biasing; it must be sufficiently positive to outweigh the opposing sex-ratio selection. To identify the necessary and sufficient conditions, we partition total evolutionary change into three components: (1) maternal sex-ratio bias, (2) sexual selection on sons, and (3) sex-ratio selection. Because the magnitude of the first component asymmetrically affects the strength of the second, biasing broods toward females in a poor environment evolves faster than the same degree of bias toward males in a good environment. Consequently, female-biased sex ratios, rather than male-biased sex ratios, are more likely to evolve. We discuss our findings in the context of the primary sex-ratio biases observed in strongly sexually selected species and indicate how this perspective can assist the experimental study of sex ratio evolution.  相似文献   

8.
Symbiont-mediated protection   总被引:4,自引:0,他引:4  
Despite the fact that all vertically transmitted symbionts sequester resources from their hosts and are therefore costly to maintain, there is an extraordinary diversity of them in invertebrates. Some spread through host populations by providing their hosts with fitness benefits or by manipulating host sex ratio, but some do not: their maintenance in host lineages remains an enigma. In this review, I explore the evolutionary ecology of vertically transmitted symbionts and their impact on host resistance, and provide an overview of the evidence for the three-way interactions between these symbionts, natural enemies and invertebrate hosts. A number of recent empirical and theoretical studies suggest that vertically transmitted symbionts may protect their hosts from pathogens. If this 'symbiont-mediated protection' is widespread, it is likely that vertically transmitted symbionts contribute significantly to variation in measures of invertebrate resistance to natural enemies.  相似文献   

9.
Extraordinary sex ratio patterns and the underlying sex-determining mechanisms in various organisms are worth investigating, particularly because they shed light on adaptive sex-ratio adjustment. Here, we report an extremely large variation in the brood sex ratio in the freshwater snail, Pomacea canaliculata. In eight rearing series originating from three wild populations, sex ratios were highly variable among broods, ranging continuously from almost exclusively males to almost exclusively females. However, sex ratios were similar between broods from the same mating pair, indicating that sex ratio is a family trait. Irrespective of the large variations, the average sex ratios in all rearing series were not significantly different from 0.5. We argue that Fisher's adaptive sex-ratio theory can explain the equal average sex ratios, and the results, in turn, directly support Fisher's theory. Polyfactorial sex determination (in which sex is determined by three or more genetic factors) is suggested as the most likely mechanism producing the variable brood sex ratio.  相似文献   

10.
11.
Previous studies have shown that in most pair matings of Mytilus edulis, M. trossulus, and M. galloprovincialis there is a large sex-ratio bias in favor of either males or females. The degree of bias is a characteristic property of the female parent, as matings of the same female with different males produce the same sex ratio, but matings of the same male with different females produce different sex ratios. All three species possess the unusual feature of doubly uniparental inheritance of mitochondrial DNA (mtDNA); i.e., they contain two distinct types of mtDNA, one that is transmitted matrilinearly and one that is transmitted patrilinearly. This coupling of sex and mtDNA transmission raises the possibility that the mechanism of sex-ratio determination in mussels might be under the control of the mtDNA of the female parent. Here we present data from pedigreed crosses that confirm the previous observations that in mussel matings there is a strong sex-ratio bias and that the bias is under the control of the female parent. In addition, these data strongly suggest that this control is exercised by the mother's nuclear rather than mitochondrial genotype. Making use of these findings we develop a model of mother-dependent sex determination and use data from crosses involving wild females to test the model's predictions at the population level.  相似文献   

12.
We investigate an instance of conflict between mates over the sex ratio of their brood. We construct a kin-selection model for the evolution of the sex ratio assuming local resource competition (LRC) among females. We explore two basic scenarios: (a) the case where parents make simultaneous sex-ratio decisions (the simultaneous allocation model); and (b) the case where parental sex-ratio decisions occur one after the other (the sequential allocation model). In the simultaneous investment model, resolution of the conflict between mates depends on the extent to which relative paternal contribution influences the brood sex ratio. In the sequential allocation model, fathers determine primary sex-ratio through fertilization bias; then mothers modify the paternal sex-ratio decision by adjusting the level of investment of some resource that contributes to offspring survival. Under the sequential model, a compromise is always achieved; however this compromise favours one perspective or the other, depending on the extent to which maternal investment influences offspring survival.  相似文献   

13.
Evolutionary theory predicts that dioecious species should produce a balanced primary sex ratio maintained by frequency-dependent selection. Organisms with environmental sex determination, however, are vulnerable to maladaptive sex ratios, because environmental conditions vary spatio-temporally. For reptiles with temperature-dependent sex determination, nest-site choice is a behavioural maternal effect that could respond to sex-ratio selection, as mothers could adjust offspring sex ratios by choosing nest sites that will have particular thermal properties. This theoretical prediction has generated decades of empirical research, yet convincing evidence that sex-ratio selection is influencing nesting behaviours remains absent. Here, we provide the first experimental evidence from nature that sex-ratio selection, rather than only viability selection, is probably an important component of nest-site choice in a reptile with temperature-dependent sex determination. We compare painted turtle (Chrysemys picta) neonates from maternally selected nest sites with those from randomly selected nest sites, observing no substantive difference in hatching success or survival, but finding a profound difference in offspring sex ratio in the direction expected based on historical records. Additionally, we leverage long-term data to reconstruct our sex ratio results had the experiment been repeated in multiple years. As predicted by theory, our results suggest that sex-ratio selection has shaped nesting behaviour in ways likely to enhance maternal fitness.  相似文献   

14.
Parasitism is known to be an important factor in determining the success of biological invasions. Here we examine Crangonyx pseudogracilis, a North American amphipod invasive in the United Kingdom and describe a novel microsporidium, Fibrillanosema crangonycis n.sp., n.g. The primary site of infection is the female gonad and the parasite is transovarially transmitted to the eggs. PCR screening reveals a female bias in the distribution of parasites (96.6% of females, N=29; 22.2% of males, N=27), which is indicative of host sex ratio distortion. The morphological and molecular characterisations of this new microsporidium place it outside all currently established genera. On the basis of these differences, we erect the new genus Fibrillanosema n.g. While F. crangonycis is morphologically identical to uncharacterised microsporidia from populations of North American amphipods, it is distinct from microsporidia found in European populations of amphipods. These data support the hypothesis that vertically transmitted parasites may be selectively retained during invasion events. Furthermore where vertical transmission is combined with host sex ratio distortion these parasites may directly enhance host invasion success through increased rates of population growth.  相似文献   

15.
Sex allocation theory and empirical evidence both suggest that natural selection should favour maternal control of offspring sex ratio in relation to their ability to invest in the offspring. Generalist parasites constitute a particularly interesting group to test this theory as different females commonly utilize different host species showing large variation in provisioning ability. The common cuckoo (Cuculus canorus) is a generalist brood parasite that lays its eggs in the nest of many different passerine birds, but each female tends to specialize on one particular host species giving rise to highly specialized host races. The different host species show large variation in their ability to invest in the parasitic offspring, presenting an opportunity for female cuckoos to bias offspring sex ratio in relation to host species quality. Here, we investigate host-race specific sex allocation controlling for maternal identity in the common cuckoo. We found no evidence of any significant relationship between host race and sex ratio in one sympatric population harbouring three different host races, or in a total of five geographically separated populations. There was also no significant association between host quality, as determined by species-specific female host body mass, and cuckoo sex ratio. Finally, we found no significant relationship between individual cuckoo maternal quality, as determined by her egg volume, and sex ratio within each host race. We conclude that the generalist brood-parasitic common cuckoo show no significant sex-ratio bias in relation to host race and discuss this finding in light of gene flow and host adaptations.  相似文献   

16.
This study investigates the evolution of the sex ratio (parental investment in sons) when breeding adults are supported by help provided by nonbreeding individuals of one sex. The study also assumes that the helping sex remains on its natal site to compete for the opportunity to breed, whereas the nonhelping sex disperses. Two kin-selection models are presented, both of which incorporate the age structure found in many natural populations where such helping occurs. The first model assumes that helpers increase the survival of their parents. The second model assumes that helpers are indiscriminant: a helper chooses to increase the survival of a random pair of adults breeding on its natal patch. In both models, sex ratios are not always biased toward the sex that provides the most help. When helpers do not discriminate (second model), the direction of sex-ratio bias is determined solely by the size of the benefit of helping behavior. When this benefit is small, sex-ratio evolution is primarily influenced by local resource competition and sex ratios are biased toward the nonhelping (dispersive) sex. If the benefit of help is large enough, the effect of local resource competition is reduced and sex-ratio bias favors the helpful sex. When helpers help only their parents, the same qualitative relationship exists between the direction of sex-ratio bias and the benefit of helping. In this case, however, the direction of sex-ratio bias is also influenced by the size of the social group, mortality, and which individual (mother or father) controls the sex ratio. This study also investigates a sex-ratio conflict that exists between mates. Helping behavior of nonbreeders can act to alleviate the disparities between the optimal sex ratio from the perspective of a mother and that from the perspective of a father. This consequence of helping has not been previously recognized.  相似文献   

17.
Samuel Way Skinner 《Genetics》1985,109(4):745-759
An extrachromosomal factor, termed son-killer (sk), affects the sex ratio in a parasitoid wasp, Nasonia (=Mormoniella) vitripennis. The factor is maternally transmitted and alters the secondary sex ratio of an infected female through mortality of approximately 80% of the male embryos. No effect on the primary (zygotic) sex ratio is observed. Ninety-five percent of the daughters of an infected female inherit son-killer. The factor can also be transmitted contagiously when the progeny of infected and uninfected females develop simultaneously on a single host. In newly infected strains, the sex ratio effects are equivalent to those in the original.  相似文献   

18.
Maternally inherited endosymbionts have been implicated as significant drivers of sexual conflict within their hosts, typically through sex-ratio manipulation. Empirical studies show that some of these endosymbionts have the potential to influence sexual conflict not by sex-ratio distortion, but by altering reproductive traits within their hosts. Research has already shown that reproductive traits involved in mating/fertilization process are integral 'players' in sexual conflict, thus suggesting the novel hypothesis that endosymbiont-induced changes in reproductive phenotypes can impact the dynamics of sexual conflict. Here, we use a standard quantitative genetic approach to model the effects of endosymbiont-induced changes in a female reproductive trait on the dynamics of sexual conflict over mating/fertilization rate. Our model shows that an endosymbiont-induced alteration of a host female reproductive trait that affects mating rate can maintain the endosymbiont infection within the host population, and does so in the absence of sex-ratio distortion and cytoplasmic incompatibility.  相似文献   

19.
Nucleocytoplasmic genetic conflicts arise as a result of asymmetric transmission of cytoplasmic and nuclear genes. Spread of a cytoplasmic element promoting female-biased sex ratios creates selection on nuclear genes for mechanisms that decrease the bias. Here we investigate the conflict over sex ratio between the cytoplasmic bacterium Wolbachia and the two-spotted spider mite Tetranychus urticae Koch. We show that, first, infected females produce significantly more female-biased sex ratios than uninfected (cured) females. Second, this effect is not due to parthenogenesis, male killing, or feminization, phenotypes commonly associated with infection by Wolbachia. Third, sex ratio is a trait with a heritable component in this species; thus, it can evolve under selection. Fourth, the sex ratio produced by uninfected (cured) females changes over time, approaching the sex ratio produced by females from the infected culture. On the basis of these results, we suggest that after sex ratio manipulation by Wolbachia, a host compensatory mechanism evolved that allows infected females to produce the sex ratio favored by nuclear genes. We discuss the evolution of "mutualism" with respect to the evolution of host mechanisms that compensate for effects induced by vertically transmitted "parasites."  相似文献   

20.
Yusa Y 《Heredity》2006,96(1):100-105
The brood sex ratio in the apple snail Pomacea canaliculata varies almost continuously from all male to all female, but the population sex ratio is nearly 1:1. In this study, regressions of the offspring sex ratio on the sex ratios of the parents' siblings as well as correlations in the brood sex ratios between sisters or brothers were investigated, in order to infer the genetic system that produces the sex-ratio pattern. There were significant positive relationships between the offspring sex ratio and the sex ratio of the mother's siblings (slope=0.28), and between the offspring sex ratios of two sisters (r=0.41). On the other hand, the father-offspring regression (slope=0.10), and the correlations between two brothers (r=-0.13) or between the brother and the sister (r=0.17) were not significant. These patterns differed from predictions using typical cytoplasmic sex factors, sex-ratio genes or sex-determining polygenes. Thus, the results suggest the involvement of either a small number of sex-determining genes or a more complicated system such as sex-ratio or sex-determining polygenes that act nonadditively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号