首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite nearly universal conservation through evolution, the precise function of the DinB/pol κ branch of the Y-family of DNA polymerases has remained unclear. Recent results suggest that DinB orthologs from all domains of life proficiently bypass replication blocking lesions that may be recalcitrant to DNA repair mechanisms. Like other translesion DNA polymerases, the error frequency of DinB and its orthologs is higher than the DNA polymerases that replicate the majority of the genome. However, recent results suggest that some Y-family polymerases, including DinB and pol κ, bypass certain types of DNA damage with greater proficiency than an undamaged template. Moreover, they do so relatively accurately. The ability to employ this mechanism to manage DNA damage may be especially important for types of DNA modification that elude repair mechanisms. For these lesions, translesion synthesis may represent a more important line of defense than for other types of DNA damage that are more easily dealt with by other more accurate mechanisms.  相似文献   

2.
The Y-family translesion DNA polymerases enable cells to tolerate many forms of DNA damage, yet these enzymes have the potential to create genetic mutations at high rates. Although this polymerase family was defined less than a decade ago, more than 90 structures have already been determined so far. These structures show that the individual family members bypass damage and replicate DNA with either error-free or mutagenic outcomes, depending on the polymerase, the lesion and the sequence context. Here, these structures are reviewed and implications for polymerase function are discussed.  相似文献   

3.
The genetic information is continuously subjected to the attack by endogenous and exogenous chemical and physical carcinogens that damage the DNA template, thus compromising its biochemical functions. Despite the multiple and efficient DNA repair systems that have evolved to cope with the large variety of damages, some lesions may persist and, as a consequence, interfere with DNA replication. By essence, the damaged-DNA replication process (hereafter termed translesion synthesis or TLS) is a major source of point mutations and is therefore deeply involved in the onset of human diseases such as cancer. Recent identification of numerous DNA polymerases involved in TLS has shed new light onto the molecular mechanisms of mutagenesis. Here, we show that in vivo, both error-free and mutagenic bypass activities of the three DNA polymerases known to be involved in TLS in Escherichia coli (PolII, PolIV and PolV) strictly depend upon the integrity of small peptidic sequences identified as their beta-clamp binding motif. Thus, in addition to its crucial role as the processivity factor of the PolIII replicase, the beta-clamp plays a pivotal role during the TLS process.  相似文献   

4.
Schürer KA  Rudolph C  Ulrich HD  Kramer W 《Genetics》2004,166(4):1673-1686
The MPH1 gene from Saccharomyces cerevisiae, encoding a member of the DEAH family of proteins, had been identified by virtue of the spontaneous mutator phenotype of respective deletion mutants. Genetic analysis suggested that MPH1 functions in a previously uncharacterized DNA repair pathway that protects the cells from damage-induced mutations. We have now analyzed genetic interactions of mph1 with a variety of mutants from different repair systems with respect to spontaneous mutation rates and sensitivities to different DNA-damaging agents. The dependence of the mph1 mutator phenotype on REV3 and REV1 and the synergy with mutations in base and nucleotide excision repair suggest an involvement of MPH1 in error-free bypass of lesions. However, although we observed an unexpected partial suppression of the mph1 mutator phenotype by rad5, genetic interactions with other mutations in postreplicative repair imply that MPH1 does not belong to this pathway. Instead, mutations from the homologous recombination pathway were found to be epistatic to mph1 with respect to both spontaneous mutation rates and damage sensitivities. Determination of spontaneous mitotic recombination rates demonstrated that mph1 mutants are not deficient in homologous recombination. On the contrary, in an sgs1 background we found a pronounced hyperrecombination phenotype. Thus, we propose that MPH1 is involved in a branch of homologous recombination that is specifically dedicated to error-free bypass.  相似文献   

5.
DNA damage that eludes cellular repair pathways can arrest the replication machinery and stall the cell cycle. However, this damage can be bypassed by the Y-family DNA polymerases. Here, Dpo4, an archetypal Y-family member from the thermophilic Sulfolobus solfataricus, was used to extend our kinetic studies of the bypass of an abasic site, one of the most mutagenic and ubiquitous cellular lesions. A short oligonucleotide sequencing assay is developed to directly sequence DNA bypass products synthesized by Dpo4. Our results show that incorporation upstream of the abasic lesion is replicated error-free; yet dramatically, once Dpo4 encounters the lesion, synthesis became sloppy, with bypass products containing a myriad of mutagenic events. Incorporation of dAMP (29%) and dCMP (53%) opposite the abasic lesion at 37 degrees C correlates exceptionally well with our kinetic results and demonstrates two dominant bypass pathways via the A-rule and the lesion loop-out mechanism. Interestingly, the percentage of overall frameshift mutations increased from 71 (37 degrees C) to 87% (75 degrees C). Further analysis indicates that lesion bypass via the A-rule is strongly preferred over the lesion loop-out mechanism at higher temperatures and concomitantly reduces the occurrence of "-1 deletion" mutations observed opposite the lesion at lower temperatures. The bypass percentage via the latter pathway is confirmed by an enzymatic digestion assay, verifying the reliability of our sequencing assay. Our results demonstrate that an abasic lesion causes Dpo4 and possibly all Y-family members to switch from a normal to a very mutagenic mode of replication.  相似文献   

6.
E Glick  K L Vigna  L A Loeb 《The EMBO journal》2001,20(24):7303-7312
Human DNA polymerase eta (hPol eta) is one of the newly identified Y-family of DNA polymerases. These polymerases synthesize past template lesions that are postulated to block replication fork progression. hPol eta accurately bypasses UV-associated cis-syn cyclobutane thymine dimers in vitro and contributes to normal resistance to sunlight-induced skin cancer. We describe here mutational analysis of motif II, a highly conserved sequence, recently reported to reside in the fingers domain and to form part of the active site in Y-family DNA polymerases. We used a yeast-based complementation system to isolate biologically active mutants created by random sequence mutagenesis, synthesized the mutant proteins in vitro and assessed their ability to bypass thymine dimers. The mutability of motif II in 210 active mutants has parallels with natural evolution and identifies Tyr52 and Ala54 as prime candidates for involvement in catalytic activity or bypass. We describe the ability of hPol eta S62G, a mutant polymerase with enhanced activity, to bypass five other site-specific lesions. Our results may serve as a prototype for studying other members of the Y-family DNA polymerases.  相似文献   

7.
DNA damage that escapes repair and blocks replicative DNA polymerases is tolerated by bypass mechanisms that fall into two general categories: error-free template switching and error-prone translesion synthesis. Prior studies of DNA damage responses in Saccharomyces cerevisiae have demonstrated that repair mechanisms are critical for survival when a single, high dose of DNA damage is delivered, while bypass/tolerance mechanisms are more important for survival when the damage level is low and continuous (acute and chronic damage, respectively). In the current study, epistatic interactions between DNA-damage tolerance genes were examined and compared when haploid yeast cells were exposed to either chronic ultraviolet light or chronic methyl methanesulfonate. Results demonstrate that genes assigned to error-free and error-prone bypass pathways similarly promote survival in the presence of each type of chronic damage. In addition to using defined sources of chronic damage, rates of spontaneous mutations generated by the Pol ζ translesion synthesis DNA polymerase (complex insertions in a frameshift-reversion assay) were used to infer epistatic interactions between the same genes. Similar epistatic interactions were observed in analyses of spontaneous mutation rates, suggesting that chronic DNA-damage responses accurately reflect those used to tolerate spontaneous lesions. These results have important implications when considering what constitutes a safe and acceptable level of exogenous DNA damage.  相似文献   

8.
The involvement of DNA polymerases alpha, beta, and gamma in DNA repair synthesis was investigated in subcellular preparations of cultured hamster and human cells. A variety of DNA damaging agents, including bleomycin, neocarzinostatin, UV irradiation, and alkylating agents, were utilized to induce DNA repair. The sensitivity of repair synthesis, as well as replicative synthesis and purified DNA polymerase beta activity, to inhibition by the DNA polymerase inhibitors dideoxythymidine triphosphate, aphidicolin, cytosine arabinoside triphosphate, and N-ethylmaleimide was determined. No evidence was obtained for a major role of polymerase gamma in any type of repair synthesis. In both hamster and human cells, the sensitivity of bleomycin- and neocarzinostatin-induced repair synthesis to ddTTP inhibition was essentially identical with that observed for purified polymerase beta, indicating these repair processes proceeded through a mechanism utilizing polymerase beta. Repair synthesis induced by UV irradiation and alkylating agents was not sensitive to ddTTP, indicating repair of these lesions occurred through a pathway primarily utilizing a different DNA polymerase; presumably polymerase alpha. However, replicative synthesis was much more sensitive to polymerase alpha inhibitors than was repair synthesis induced by UV irradiation or alkylating agents. Neither the amount of DNA damage nor the amount of induced repair synthesis influenced the degree to which the different DNA polymerases were involved in repair synthesis. The possibility that "patch size" or the actual type of DNA damage determines the extent to which different polymerases participate in DNA repair synthesis is discussed.  相似文献   

9.
Deranged oxidative metabolism is a property of many tumour cells. Oxidation of the deoxynucleotide triphosphate (dNTP) pool, as well as DNA, is a major cause of genome instability. Here, we report that two Y-family DNA polymerases of the archaeon Sulfolobus solfataricus strains P1 and P2 incorporate oxidized dNTPs into nascent DNA in an erroneous manner: the polymerases exclusively incorporate 8-OH-dGTP opposite adenine in the template, and incorporate 2-OH-dATP opposite guanine more efficiently than opposite thymine. The rate of extension of the nascent DNA chain following on from these incorporated analogues is only slightly reduced. These DNA polymerases have been shown to bypass a variety of DNA lesions. Thus, our results suggest that the Y-family DNA polymerases promote mutagenesis through the erroneous incorporation of oxidized dNTPs during DNA synthesis, in addition to facilitating translesion DNA synthesis. We also report that human DNA polymerase η, a human Y-family DNA polymerase, incorporates the oxidized dNTPs in a similar erroneous manner.  相似文献   

10.
As a widely used anticancer drug, cis-diamminedichloroplatinum(II) (cisplatin) reacts with adjacent purine bases in DNA to form predominantly cis-[Pt(NH(3))(2){d(GpG)-N7(1),-N7(2)}] intrastrand cross-links. Drug resistance, one of the major limitations of cisplatin therapy, is partially due to the inherent ability of human Y-family DNA polymerases to perform translesion synthesis in the presence of DNA-distorting damage such as cisplatin-DNA adducts. To better understand the mechanistic basis of translesion synthesis contributing to cisplatin resistance, this study investigated the bypass of a single, site-specifically placed cisplatin-d(GpG) adduct by a model Y-family DNA polymerase, Sulfolobus solfataricus DNA polymerase IV (Dpo4). Dpo4 was able to bypass this double-base lesion, although, the incorporation efficiency of dCTP opposite the first and second cross-linked guanine bases was decreased by 72- and 860-fold, respectively. Moreover, the fidelity at the lesion decreased up to two orders of magnitude. The cisplatin-d(GpG) adduct affected six downstream nucleotide incorporations, but interestingly the fidelity was essentially unaltered. Biphasic kinetic analysis supported a universal kinetic mechanism for the bypass of DNA lesions catalyzed by various translesion DNA polymerases. In conclusion, if human Y-family DNA polymerases adhere to this bypass mechanism, then translesion synthesis by these error-prone enzymes is likely accountable for cisplatin resistance observed in cancer patients.  相似文献   

11.
Most organisms contain several members of a recently discovered class of DNA polymerases (umuC/dinB superfamily) potentially involved in replication of damaged DNA. In Escherichia coli, only Pol V (umuDC) was known to be essential for base substitution mutagenesis induced by UV light or abasic sites. Here we show that, depending upon the nature of the DNA damage and its sequence context, the two additional SOS-inducible DNA polymerases, Pol II (polB) and Pol IV (dinB), are also involved in error-free and mutagenic translesion synthesis (TLS). For example, bypass of N:-2-acetylaminofluorene (AAF) guanine adducts located within the NAR:I mutation hot spot requires Pol II for -2 frameshifts but Pol V for error-free TLS. On the other hand, error-free and -1 frameshift TLS at a benzo(a)pyrene adduct requires both Pol IV and Pol V. Therefore, in response to the vast diversity of existing DNA damage, the cell uses a pool of 'translesional' DNA polymerases in order to bypass the various DNA lesions.  相似文献   

12.
Smirnova M  Klein HL 《Mutation research》2003,532(1-2):117-135
The postreplication repair pathway (PRR) is composed of error-free and error-prone sub-pathways that allow bypass of DNA damage-induced replication-blocking lesions. The error-free sub-pathway is also used for bypass of spontaneous DNA damage and functions in cooperation with recombination pathways. In diploid yeast cells, error-free PRR is needed to prevent genomic instability, which is manifest as loss of heterozygosity (LOH) events of increased chromosome loss and recombination. Homologous recombination acts synergistically with the error-free damage avoidance branch of PRR to prevent chromosome loss. The DNA damage checkpoint gene MEC1 acts synergistically with the PRR pathway in maintaining genomic stability. Integration of the PRR pathway with other cellular pathways for preventing genomic instability is discussed. In diploid strains, the most dramatic increase is in the abnormality of chromosome loss when a repair or damage detection pathway is defective.  相似文献   

13.
N-(Deoxyguanosin-8-yl)-1-aminopyrene (dG(AP)) is the predominant nitro polyaromatic hydrocarbon product generated from the air pollutant 1-nitropyrene reacting with DNA. Previous studies have shown that dG(AP) induces genetic mutations in bacterial and mammalian cells. One potential source of these mutations is the error-prone bypass of dG(AP) lesions catalyzed by the low-fidelity Y-family DNA polymerases. To provide a comparative analysis of the mutagenic potential of the translesion DNA synthesis (TLS) of dG(AP), we employed short oligonucleotide sequencing assays (SOSAs) with the model Y-family DNA polymerase from Sulfolobus solfataricus, DNA Polymerase IV (Dpo4), and the human Y-family DNA polymerases eta (hPolη), kappa (hPolκ), and iota (hPolι). Relative to undamaged DNA, all four enzymes generated far more mutations (base deletions, insertions, and substitutions) with a DNA template containing a site-specifically placed dG(AP). Opposite dG(AP) and at an immediate downstream template position, the most frequent mutations made by the three human enzymes were base deletions and the most frequent base substitutions were dAs for all enzymes. Based on the SOSA data, Dpo4 was the least error-prone Y-family DNA polymerase among the four enzymes during the TLS of dG(AP). Among the three human Y-family enzymes, hPolκ made the fewest mutations at all template positions except opposite the lesion site. hPolκ was significantly less error-prone than hPolι and hPolη during the extension of dG(AP) bypass products. Interestingly, the most frequent mutations created by hPolι at all template positions were base deletions. Although hRev1, the fourth human Y-family enzyme, could not extend dG(AP) bypass products in our standing start assays, it preferentially incorporated dCTP opposite the bulky lesion. Collectively, these mutagenic profiles suggest that hPolk and hRev1 are the most suitable human Y-family DNA polymerases to perform TLS of dG(AP) in humans.  相似文献   

14.
Bulky adducts are DNA lesions generated in response to environmental agents including benzo[a]pyrene (a combustion product) and solar ultraviolet radiation. Error-prone replication of adducted DNA can cause mutations, which may result in cancer. To minimize the detrimental effects of bulky adducts and other DNA lesions, S-phase checkpoint mechanisms sense DNA damage and integrate DNA repair with ongoing DNA replication. The essential protein kinase Chk1 mediates the S-phase checkpoint, inhibiting initiation of new DNA synthesis and promoting stabilization and recovery of stalled replication forks. Here we review the mechanisms by which Chk1 is activated in response to bulky adducts and potential mechanisms by which Chk1 signaling inhibits the initiation stage of DNA synthesis. Additionally, we discuss mechanisms by which Chk1 signaling facilitates bypass of bulky lesions by specialized Y-family DNA polymerases, thereby attenuating checkpoint signaling and allowing resumption of normal cell cycle progression.  相似文献   

15.
Ulrich HD 《FEBS letters》2011,585(18):2861-2867
During its duplication, DNA, the carrier of our genetic information, is particularly vulnerable to decay, and the capacity of cells to deal with replication stress has been recognised as a major factor protecting us from genome instability and cancer. One of the major pathways controlling the bypass of DNA lesions during replication is activated by ubiquitylation of the sliding clamp, PCNA. Whereas monoubiquitylation of PCNA allows mutagenic translesion synthesis by damage-tolerant DNA polymerases, polyubiquitylation is required mainly for an error-free pathway that likely involves template switching. This review is focussed on our understanding of the timing of damage bypass during the cell cycle and the question of how it is coordinated with the progression of replication forks.  相似文献   

16.
The newly found Y-family DNA polymerases are characterized by low fidelity replication using an undamaged template and the ability to carry out translesion DNA synthesis. The crystal structures of three Y-family polymerases, alone or complexed with DNA and nucleotide substrate, reveal a conventional right-hand-like catalytic core consisting of finger, thumb and palm domains. The finger and thumb domains are unusually small resulting in an open and spacious active site, which can accommodate mismatched base pairs as well as various DNA lesions. Although devoid of a 3'-->5' exonuclease activity, the Y-family polymerases possess a unique "little finger" domain that facilitates DNA association, catalytic efficiency and interactions with auxiliary factors. Expression of Y-family polymerases is often induced by DNA damage, and their recruitment to the replication fork is mediated by beta-clamp, clamp loader, single-strand-DNA-binding protein and RecA in Escherichia coli, and by ubiquitin-modified proliferating cell nuclear antigen in yeast.  相似文献   

17.
Lehmann AR 《FEBS letters》2011,585(18):2772-2779
The cell uses specialised Y-family DNA polymerases or damage avoidance mechanisms to replicate past damaged sites in DNA. These processes are under complex regulatory systems, which employ different types of post-translational modification. All the Y-family polymerases have ubiquitin binding domains that bind to mono-ubiquitinated PCNA to effect the switching from replicative to Y-family polymerase. Ubiquitination and de-ubiquitination of PCNA are tightly regulated. There is also evidence for another as yet unidentified ubiquitinated protein being involved in recruitment of Y-family polymerases to chromatin. Poly-ubiquitination of PCNA stimulates damage avoidance, and, at least in yeast, PCNA is SUMOylated to prevent unwanted recombination events at the replication fork. The Y-family polymerases themselves can be ubiquitinated and, in the case of DNA polymerase η, this results in the polymerase being excluded from chromatin.  相似文献   

18.
Boudsocq F  Ling H  Yang W  Woodgate R 《DNA Repair》2002,1(5):343-358
Our understanding of the molecular mechanisms of error-prone lesion bypass has changed dramatically in the past few years. The concept that the key participants in the mutagenic process were accessory proteins that somehow modified the ability of the cell's main replicase to facilitate bypass of normally blocking lesions has been replaced with one in which the replicase is displaced by a polymerase specialized in lesion bypass. The participants in this process remain the same, only their function has been reassigned. What was once known as the UmuC/DinB/Rev1/Rad30 superfamily of mutagenesis proteins, is now known as the Y-family of DNA polymerases. Quite remarkably, within the space of 3 years, the field has advanced from the initial discovery of intrinsic polymerase function, to the determination of the tertiary structures of several Y-family DNA polymerases.A key to determining the biochemical properties of each DNA polymerase is through structure-function studies that result in the site-specific substitution of particular amino acids at critical sites within each DNA polymerase. However, we should not forget the power of genetic selection that allows us to identify residues within each polymerase that are generated by "random mutagenesis" and which are important for both a gain or loss of function in vivo. In this review, we discuss the structural ramifications of several missense mutations previously identified in various Y-family DNA polymerase and speculate on how each amino acid substitution might modify the enzymatic activity of the respective polymerase or possibly perturb protein-protein interactions necessary for efficient translesion replication in vivo.  相似文献   

19.
The 4’-thio-β-D-arabinofuranosylcytosine (T-araC) is a newly developed nucleoside analog that has shown promising activity against a broad spectrum of human solid tumors in both cellular and xenograft mice models. TaraC shares similar structure with another anticancer deoxycytidine analog, β-D-arabinofuranosylcytosine (araC, cytarabine), which has been used in clinics for the treatment of acute myelogenous leukemia but has a very limited efficacy against solid tumors. T-araC exerts its anticancer activity mainly by inhibiting replicative DNA polymerases from further extension after its incorporation into DNA. DNA lesion bypass polymerases can manage the DNA lesions introduced by therapeutic agents, such as cisplatin and araC, therefore reduce the activity of these compounds. In this study, the potential relationships between the lesion bypass Y-family DNA polymerases η, ι and κ (pol η, pol ι, and pol κ) and T-araC were examined. Biochemical studies indicated that the triphosphate metabolite of T-araC is a less preferred substrate for the Y-family polymerases. In addition, cell viability study indicated that pol η deficient human fibroblast cells were more sensitive to T-araC when compared with the normal human fibroblast cells. Together, these results suggest that bypass polymerases reduced cell sensitivity to T-araC through helping cells to overcome the DNA damages introduced by T-araC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号