首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new genus of sand‐dwelling photosynthetic dinoflagellate, Testudodinium Horiguchi, Tamura, Katsumata et A. Yamaguchi is proposed based on Testudodinium testudo (Herdman) Horiguchi, Tamura, Katsumata, et A. Yamaguchi comb. nov. (Basionym: Amphidinium testudo Herdman) and a new species in this new genus, Testudodinium maedaense Katsumata et Horiguchi sp. nov. is described. Amphidinium corrugatum is also transferred to this genus, making a new combination T. corrugatum (Larsen et Patterson) Horiguchi, Tamura et A. Yamaguchi. These three species are similar to the members of the genus Amphidinium in having an extremely small episome and a dorsoventrally flattened cell body. They are, however, distinguished from the genus Amphidinium seusu stricto by the possession of a distinct longitudinal furrow in the middle of ventral side of the episome. Phylogenetic trees based on small subunit (SSU) rDNA revealed that all three of these Testudodinium species formed a robust clade and, although statistical support is not high, the tree suggests Testudodinium clade is not closely related to Amphidinium seusu stricto clade. The morphological differences together with molecular data support the establishment of a new genus for A. testudo and its related species.  相似文献   

2.
Amphidinium operculatum Claparède et Lachmann, the type species of the dinoflagellate genus Amphidinium, has long had an uncertain identity. It has been considered to be either difficult to distinguish from other similar species or a morphologically variable species itself. This has led to the hypothesis that A. operculatum represents a “species complex.” Recently, the problem of distinguishing A. operculatum from similar species has become particularly acute, because several morphologically similar species have been found to produce bioactive compounds of potential interest to the pharmaceutical industry. In this study, we cultured and examined existing cultures of several species of Amphidinium, most of which have been previously identified as A. operculatum or as species considered by some to be synonyms or varieties of A. operculatum. Thirty strains were examined using comparative LM, SEM, and partial large subunit (LSU) rDNA sequence data. Through morphological and molecular phylogenetic analyses, six distinct species were identified, including Amphidinium trulla sp. nov. and Amphidinium gibbosum comb. nov. Amphidinium operculatum was redescribed based on four cultures. Genetic variability within the examined Amphidinium species varied greatly. There was little difference among strains in partial LSU rDNA for most species, but strains of A. carterae and A. massartii Biencheler differed by as much as 4%. In both A. carterae and A. massartii, three distinct genotypes based on partial LSU rDNA were found, but no morphological differences among strains could be observed using LM or SEM. In the case of A. carterae, no biogeographically related molecular differences were found.  相似文献   

3.
4.
A new species of the dinoflagellate genus Gymnodinium Stein, previously considered a member of Katodinium Fott, is characterized from two marine benthic habitats in tropical northern Australia. Gymnodinium dorsalisulcum comb. nov. was found to be very abundant at times, and in culture produced large quantities of mucus. We analyzed two regions of ribosomal DNA from this species (partial large subunit and complete small subunit sequences), using Bayesian analysis and phylogenetic models appropriate to alignments of ribosomal RNA genes. We compared it to eight species of the ‘true’Gymnodinium clade and to other dinoflagellates. The results show that it is a member of the Gymnodinium clade, and is closely related to Gymnodinium impudicum and G. chlorophorum. Katodinium was originally defined as having cells with an epitheca that is much larger than the hypotheca. However, this character is clearly inadequate, and the genus requires a re‐investigation to determine the apomorphies of the type species.  相似文献   

5.
Recent molecular analyses of Dictyosphaerium strains revealed a polyphyletic origin of this morphotype within the Chlorellaceae. The type species Dictyosphaerium ehrenbergianum Nägeli formed an independent lineage within the Parachlorella clade, assigning the genus to this clade. Our study focused on three different Dictyosphaerium species to resolve the phylogenetic position of remaining species. We used combined analyses of morphology; molecular data based on SSU and internally transcribed spacer region (ITS) rRNA sequences; and the comparison of the secondary structure of the SSU, ITS‐1, and ITS‐2 for species and generic delineation. The phylogenetic analyses revealed two lineages without generic assignment and two distinct clades of Dictyosphaerium‐like strains within the Parachlorella clade. One clade comprises the lineages with the epitype strain of D. ehrenbergianum Nägeli and two additional lineages that are described as new species (Dictyosphaerium libertatis sp. nov. and Dictyosphaerium lacustre sp. nov.). An emendation of the genus Dictyosphaerium is proposed. The second clade comprises the species Dictyosphaerium sphagnale Hindák and Dictyosphaerium pulchellum H. C. Wood. On the basis of phylogenetic analyses, complementary base changes, and morphology, we describe Mucidosphaerium gen. nov with the four species Mucidosphaerium sphagnale comb. nov., Mucidosphaerium pulchellum comb. nov., Mucidosphaerium palustre sp. nov., and Mucidosphaerium planctonicum sp. nov.  相似文献   

6.
The phylogenetic position of microfilamentous marine green algae assigned to the species Phaeophila dendroides, Entocladia tenuis (Phaeophila tenuis, and Ochlochaete hystrix was examined through phylogenetic analyses of nuclear‐encoded small subunit rDNA and chloroplast‐encoded tufA gene sequences. These analyses placed the P. dendroides strains within the Ulvophyceae, at the base of a clade that contains representatives of the families Ulvaceae, Ulvellaceae, and the species Bolbocoleon piliferum, supporting an earlier hypothesis that P. dendroides constitutes a distinct lineage. Substantial divergence in both nuclear and plastid DNA sequences exists among strains of P. dendroides from different geographic localities, but these isolated strains are morphologically indistinguishable. The lineage may have an accelerated rate of gene sequence evolution relative to other microfilamentous marine green algae. Entocladia tenuis and O. hystrix are placed neither in the P. dendroides clade nor in the Ulvellaceae as previous taxonomic schemes predicted but instead form a new clade or clades at the base of the Ulvaceae. Ruthnielsenia gen. nov. is proposed to accommodate Kylin's species, which cannot be placed in Entocladia (=Acrochaete), Phaeophila, or Ochlochaete. Ruthnielsenia tenuis (Kylin) comb. nov., previously known only from Atlantic coasts, is reported for the first time from the Pacific coast of North America (San Juan Island, WA, USA). Isolates of R. tenuis from the Atlantic and Pacific coasts of North America have identical small subunit rDNA and tufA gene sequences.  相似文献   

7.
Cellular morphology and the phylogenetic position of a new unarmored photosynthetic dinoflagellate Cochlodinium fulvescens Iwataki, Kawami et Matsuoka sp. nov. were examined by light microscopy and molecular phylogenetic analyses based on partial large subunit ribosomal DNA (LSU rDNA) and small subunit ribosomal DNA (SSU rDNA) sequences. The cells of C. fulvescens closely resemble C. polykrikoides, one of the most harmful red tide forming dinoflagellates, due to it possessing a cingulum encircling the cell approximately twice, a spherical nucleus positioned in the anterior part of the cell and an eyespot‐like orange pigmented body located in the dorsal side of the epicone, as well as formation of cell‐chains. However, this species is clearly distinguished from C. polykrikoides based on several morphological characteristics, namely, cell size, shape of chloroplasts and the position of narrow sulcus situated in the cell surface. The sulcus of C. fulvescens is located at the intermediate position of the cingulum in the dorsal side, whereas that of C. polykrikoides is situated immediately beneath the cingulum. LSU rDNA phylogenies indicated that C. fulvescens is clearly distinct from, but closely related to C. polykrikoides among dinoflagellates.  相似文献   

8.
Euglena viridis (subgenus Euglena) serves as the type species for the genus Euglena. In this study, molecular phylogenetic analyses using a small subunit (SSU) and a combined SSU–partial large subunit rDNA data set for members of the genus Euglena showed that strains identified as E. viridis on the basis of morphology are distributed between two separate nonsister clades. Although all the E. viridis strains examined were morphologically indistinguishable and possessed spherical mucocysts and stellate chloroplasts with one paramylon center, there was a high degree of sequence divergence between the E. viridis strains in different clades, making this a cryptic species. Like E. viridis, all taxa from the subgenus Euglena are characterized by having one or more stellate chloroplasts with paramylon grains clustered around the center of the chloroplast. These additional taxa were divided into four clades in all the molecular analyses. Strains of Euglena stellata formed two nonsister clades whose members had a single aggregate chloroplast with paramylon center and spindle‐shaped mucocysts. A geniculata clade included species with one or two stellate chloroplasts with paramylon centers and spherical mucocysts, and the cantabrica clade had members with one stellate chloroplast with paramylon center and spherical mucocysts often arranged in spiral rows. Interspersed among these were three additional clades bearing taxa from the subgenus Calliglena that contains members with discoid plastids and pyrenoids that may or may not be capped with paramylon. These taxa formed a laciniata clade, mutabilis clade, and gracilis clade. This study demonstrates that E. viridis and E. stellata are cryptic species that can only be distinguished at the molecular level. Because E. viridis is the designated type species for the genus Euglena, we designated an epitype for E. viridis.  相似文献   

9.
10.
Three new species of Candida and a new combination in the genus Hyphopichia are proposed from phylogenetic analysis of nucleotide divergence in domains D1/D2 of the large subunit (26S) rDNA. The new taxa and their type strains are the following: Candida bentonensis sp. nov. (NRRL YB-2364, CBS 9994), Candida hispaniensis sp. nov. (NRRL Y-5580, CBS 9996), Candida pseudorhagii sp. nov. (NRRL YB-2076, CBS 9998) and Hyphopichia heimii comb. nov. (NRRL Y-7502, CBS 6139), basionym Pichia heimii Pignal. Phylogenetic analysis placed C. pseudorhagii and H. heimii in the Hyphopichia clade whereas C. bentonensis and C. hispaniensis are members of the Yarrowia clade.  相似文献   

11.
In a previous study, 50 of 132 soil samples collected throughout Japan were found to be Leptospira‐positive. In the present study, three strains identified in the collected specimens, three, E8, E18 and YH101, were found to be divergent from previously described Leptospira species according to 16S ribosomal RNA gene sequence analysis. These three strains have a helical shape similar to that of typical Leptospira and were not re‐isolated from experimental mice inoculated with the cultured strains. Upon 16S ribosomal RNA gene sequence analysis, E8 was found to belong to the intermediate Leptospira species clade and E18 and YH101 to belong to the saprophytic Leptospira species clade. Based on analyses of genome‐to‐genome distances and average nucleotide identity in silico using whole genome sequences and DNA–DNA hybridization in vitro, these isolates were found to be distinct from previously described Leptospira species. Therefore, these three isolates represent novel species of the genus Leptospira for which the names Leptospira johnsonii sp. nov., (type strain E8 T, = JCM 32515 T = CIP111620 T), Leptospira ellinghausenii sp. nov., (type strain E18 T, = JCM 32516 T = CIP111618 T) and Leptospira ryugenii sp. nov., (type strain YH101 T, = JCM 32518 T = CIP111617 T) are proposed.  相似文献   

12.
The classical athecate dinoflagellate genera (Amphidinium, Gymnodinium, Gyrodinium) have long been recognized to be polyphyletic. Amphidinium sensu lato is the most diverse of all marine benthic dinoflagellate genera; however, following the redefinition of this genus ~100 species remain now of uncertain or unknown generic affiliation. In an effort to improve our taxonomic and phylogenetic understanding of one of these species, namely Amphidinium semilunatum, we re‐investigated organisms from several distant sites around the world using light and scanning electron microscopy and molecular phylogenetic methods. Our results enabled us to describe this species within a new heterotrophic genus, Ankistrodinium. Cells of A. semilunatum were strongly laterally flattened, rounded‐quadrangular to oval in lateral view, and possessed a small asymmetrical epicone. The sulcus was wide and characteristically deeply incised on the hypocone running around the antapex and reaching the dorsal side. The straight acrobase with hook‐shaped end started at the sulcal extension and continued onto the epicone. The molecular phylogenetic results clearly showed that A. semilunatum is a distinct taxon and is only distantly related to species within the genus Amphidinium sensu stricto. The nearest sister group to Ankistrodinium could not be reliably determined.  相似文献   

13.
Small subunit (SSU) and large subunit (LSU) rDNA sequences have been commonly used to delineate the taxonomy and biogeography of the planktonic diatom genus Skeletonema, but the genes occur as multiple copies and are therefore not suitable for barcoding purposes. Here, we analyzed phylogenetic relationships of Skeletonema using the mitochondrial‐encoded cytochrome c oxidase I gene (cox1), as well as partial LSU rDNA (D1–D3) and SSU rDNA, to identify the factors that define species and to evaluate the utility of these three markers for this taxon. Twelve Skeletonema species were divided into six clades, I–VI, each of which comprised the same species by the three markers: clades I (S. japonicum, S. grethae, S. pseudocostatum, and S. tropicum), II (S. menzelii), III (S. dohrnii and S. marinoi), IV (S. costatum, S. potamos, and S. subsalsum), V (S. grevillei), and VI (S. ardens). However, the branching order among these clades was incongruent among the markers. In clade III, six S. marinoi strains had identical cox1 sequences. These S. marinoi strains branched along with S. dohrnii, except for strains from the Gulf of Naples, with high support in cox1. Species delimitation between S. dohrnii and S. marinoi was therefore not supported. In clade IV, S. costatum and S. subsalsum were robustly clustered, with S. potamos as a sister clade in the cox1 tree, not in the LSU and SSU trees. In clade II, cox1 also confirmed that S. menzelii includes three subclades potentially distinguishable from each other by morphological features. Cox1 proved to be the most useful marker for the identification of Skeletonema species because it gave a tree with highly supported clades, has sufficient variation within and among species, encodes a protein in a single copy, and requires relatively few primers.  相似文献   

14.
The genus Xiphinema constitutes a large group of about 260 species of plant‐ectoparasitic nematodes. The group is polyphagous and distributed almost worldwide. Some of the species of this genus damage agricultural crops by direct feeding on root cells as well as by transmitting nepoviruses. Species discrimination in Xiphinema is complicated by phenotypic plasticity leading to potential misidentification. We conducted nematode surveys in cultivated and natural environments in Spain from 2009 to 2012, from which we identified 20 populations of Xiphinema species morphologically close to the virus‐vector nematode species Xiphinema diversicaudatum, three apomictic populations tentatively identified as species from the complex Xiphinema aceri‐pyrenaicum group, and one population morphologically different from all others that is characterized by a female tail elongate to conical and absence of uterine differentiation. We developed comparative multivariate analyses for these related species by using morphological and morphometrical features together with molecular data from nuclear ribosomal DNA genes [D2‐D3 expansion segments of large ribosomal subunit 28S, internal transcribed spacer 1 (ITS1), and partial small ribosomal subunit (18S)]. The results of multivariate, molecular, and phylogenetic analysis confirmed the morphological hypotheses and allowed the delimitation and discrimination of two new species in the genus described herein as Xiphinema baetica sp. nov. and Xiphinema turdetanensis sp. nov. , and ten known species: Xiphinema adenohystherum, Xiphinema belmontense, Xiphinema cohni, Xiphinema coxi europaeum, Xiphinema gersoni, Xiphinema hispidum, Xiphinema italiae, Xiphinema lupini, Xiphinema nuragicum, and Xiphinema turcicum. Multivariate analyses based on quantitative and qualitative characters and phylogenetic relationships of Xiphinema spp. based on the three molecular ribosomal markers resulted in a partial consensus of these species grouping as nematode populations were maintained for the majority of morphospecies groups (e.g. morphospecies groups 5 and 6), but not in some others (e.g. position of Xiphinema granatum), demonstrating the usefulness of these analyses for helping in the diagnosis and identification of Xiphinema spp. The clade topology of phylogenetic trees of D2‐D3 and partial 18S regions in this study were congruent in supporting the polyphyletic status of some characters, such as the female tail shape and the degree of development of the genital system in species with both genital branches equally developed. This is the most complete phylogenetic study for Xiphinema non‐americanum‐group species. Agreement between phylogenetic trees and some morphological characters (uterine spines, pseudo‐Z organ, and tail shape) was tested by reconstruction of their histories on rDNA‐based trees using parsimony and Bayesian approaches. Thus, integrative taxonomy, based on the combination of multivariate, molecular analyses with morphology, constitutes a new insight into the identification of Xiphinema species. © 2013 The Linnean Society of London  相似文献   

15.
We describe three new species of the genus Gromia from bathyal and abyssal depths in the Weddell Sea. The new species are characterized by a combination of morphological and molecular criteria. All three species possess a distinct oral capsule and a layer of ‘honeycomb membranes’, which form the inner part of the organic test wall. Both these features are typical of gromiids. Their identification as gromiids is confirmed by analyses of partial small subunit ribosomal DNA (SSU rDNA) gene sequences. Gromia marmorea sp. nov. is a rounded species with a prominent oral capsule and a characteristically mottled appearance. In Gromia melinus sp. nov. , the test surface exhibits a polygonal pattern of ridges, with a layer of clay particles coating the surface between the ridges. Gromia winnetoui sp. nov. represents an elongate morphotype in which the organic test is enclosed within an agglutinated case, a feature previously unknown in gromiids. Phylogenetic analysis using the maximum‐likelihood method revealed that all three species form distinct clades, reflecting the morphological differences among Weddell Sea species, as well as between deep‐water Southern Ocean Gromia and previously described gromiids. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 157 , 451–469.  相似文献   

16.
The toxic dinoflagellate Alexandrium minutum Halim is one of three species that comprise the “minutum” species complex. This complex is notable due to its role in the etiology of paralytic shellfish poisoning (PSP). Recent increases in PSP incidence and the geographic expansion of toxin‐producing Alexandrium dinoflagellates have prompted the intensive examination of genetic relationships among globally distributed strains to address questions regarding their present distribution and reasons for their apparent increase. The biogeography of A. minutum was studied using large subunit ribosomal DNA gene (LSU rRNA) and internal transcribed spacer (ITS) sequences and genotypic data from 12 microsatellite loci. rRNA gene and ITS sequencing data distinguished between two clades, herein termed the “Global” and the “Pacific”; however, little to no resolution was seen within each clade. Genotypic data from 12 microsatellite loci provided additional information regarding genetic relationships within the Global clade, but it was not possible to amplify DNA from the Pacific clade using these markers. With the exception of isolates from Italy and Spain, strains generally clustered according to origin, revealing geographic structuring within the Global clade. Additionally, no evidence supported the separation of A. lusitanicum and A. minutum as different species. With the use of microsatellites, it is now possible to initiate studies on the origin, history, and genetic heterogeneity of A. minutum that were not previously possible using only rRNA gene sequence data. This study demonstrates the power of combining a marker with intermediate resolution (rRNA sequences) with finer‐scale markers (microsatellites) to examine intraspecies variability among globally distributed isolates and represents the first effort to employ this technique in A. minutum.  相似文献   

17.
Internal transcribed spacer (ITS nuclear rDNA) data have been obtained from 190 terrestrial orchid species, encompassing all genera and the great majority of the widely recognized species of Orchidinae, a heterogeneous selection of species of Habenariinae, and single species of Satyriinae and Disinae (the latter serving as outgroup). The resulting parsimony‐based phylogeny reveals 12 well‐resolved clades within the Orchidinae, based on Anacamptis s.l., Serapias, Ophrys, SteveniellaHimantoglossum s.l. (including ‘Comperia’ and ‘Barlia’, most species being 2n = 36), Neotinea s.l., TraunsteineraChamorchis, Orchis s.s., PseudorchisAmerorchisGalearisNeolindleyaPlatanthera s.l. (most 2n = 42), Dactylorhiza s.l., Gymnadenia s.l. (most 2n = 40, 80), Ponerorchis s.l.Hemipilia s.l.AmitostigmaNeottianthe, and Brachycorythis (most 2n = 42). Relationships are less clearly resolved among these 12 clades, as are those within Habenariinae; the subtribe appears either weakly supported as monophyletic or as paraphyletic under maximum parsimony, and the species‐rich genus Habenaria is clearly highly polyphyletic. The triphyly of Orchis as previously delimited is confirmed, and the improved sampling allows further generic transfers to Anacamptis s.l. and Neotinea s.l. In addition, justifications are given for: (1) establishing Steveniella as the basally divergent member of an appreciably expanded Himantoglossum that incorporates the former genera ‘Barlia’ and ‘Comperia’, (2) reuniting ‘Piperia’ with a broadly defined Platanthera as section Piperia, necessitating ten new combinations, (3) broadening Ponerorchis to include Chusua, and Hemipilia to include single ‘orphan’ species of Ponerorchis and Habenaria, and (4) recognizing ‘Gymnadeniacamtschatica as the monotypic Neolindleya camtschatica within the PseudorchisPlatanthera clade. Few further generic transfers are likely in Orchidinae s.s., but they are anticipated among habenariid genera, on acquisition of additional morphological and molecular evidence; one probable outcome is expansion of Herminium. Species‐level relationships are also satisfactorily resolved within most of the major clades of Orchidinae, with the notable exceptions of Serapias, the derived sections of Ophrys, Himantoglossum s.s., some sections within Dactylorhiza, the former genus ‘Nigritella’ (now tentatively placed within Gymnadenia s.l.), Hemipilia s.l., and possibly Ponerorchis s.s. Relationships among the 12 major clades broadly accord with bona fide records of intergeneric hybridization. Current evidence supports the recently recognized 2n = 36 clade; it also indicates a 2n = 40 clade that is further diagnosed by digitate root‐tubers, and is derived relative to the recently recognized clade of exclusively Asian genera (Ponerorchis s.l.Hemipilia s.l.AmitostigmaNeottianthe). This in turn appears derived relative to the Afro‐Asiatic Brachycorythis group; together, these two clades identify the plesiomorphic chromosome number as 2n = 42. If the African genus Stenogolottis is correctly placed as basally divergent within a monophyletic Habenariinae, the tribe Orchideae and subtribes Orchidinae and Habenariinae could all have originated in Africa, though in contrast the Asiatic focus of the basally divergent members of most major clades of Orchidinae suggests an Asiatic radiation of the subtribe. Morphological characters informally ‘mapped’ across the molecular phylogeny and showing appreciable levels of homoplasy include floral and vegetative pigmentation, flower shape, leaf posture, gynostemium features, and various pollinator attractants. Qualitative comparison of, and reciprocal illumination between, degrees of sequence and morphological divergence suggests a nested set of radiations of progressively decreasing phenotypic magnitude. Brief scenarios, both adaptive and non‐adaptive, are outlined for specific evolutionary transitions. Recommendations are made for further species sampling, concentrating on Asian Orchidinae (together with the Afro‐Asiatic Brachycorythis group) and both Asian and Southern Hemisphere Habenariinae, and adding plastid sequence data. Taxonomic changes listed are: Anacamptis robusta (T.Stephenson) R.M.Bateman, comb. nov. , A. fragrans (Pollini) R.M.Bateman, comb. nov. , A. picta (Loiseleur) R.M.Bateman, comb. nov. , Neotinea commutata (Todari) R.M.Bateman, comb. nov. , N. conica (Willdenow) R.M.Bateman, comb. nov. , Platanthera elegans Lindley ssp. maritima (Rydberg) R.M.Bateman, comb. nov. , P. elegans Lindley ssp. decurtata (R.Morgan & Glicenstein) R.M.Bateman, comb. nov. , P. elongata (Rydberg) R.M.Bateman, comb. nov. , P. michaelii (Greene) R.M.Bateman, comb. nov. , P. leptopetala (Rydberg) R.M.Bateman, comb. nov. , P. transversa (Suksdorf) R.M.Bateman, comb. nov. , P. cooperi (S.Watson) R.M.Bateman, comb. nov. , P. colemanii (R.Morgan & Glicenstein) R.M.Bateman, comb. nov. , P. candida (R.Morgan & Ackerman) R.M.Bateman, comb. nov. and P. yadonii (R.Morgan & Ackerman) R.M.Bateman, comb. nov. © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 142 , 1–40.  相似文献   

18.
Type material of Navicula kotschyi was studied, and this species was transferred to Dorofeyukea gen. nov. as D. kotschyi comb. nov. Dorofeyukea was described on the basis of DNA sequence and morphological data. Additional species assigned to this genus that were previously included in Navicula include: D. ancisa comb. nov., D. grimmei comb. nov., D. ivatoensis comb. nov., D. orangiana comb. nov., D. rostellata comb. nov. & stat. nov., D. savannahiana comb. nov., D. tenuipunctata comb. nov., and D. texana comb. nov. All Dorofeyukea species share the same morphological features, including having a narrow stauroid fascia surrounded by 1–3 irregularly shortened striae, uniseriate, and weakly radiate striae, circular, or rectangular puncta in the striae that are covered internally by dome‐shaped hymenes, presence of a pseudoseptum at each apex and absence of septa. Partial DNA sequences of SSU and rbcL loci show Dorofeuykae belongs to the clade of stauroneioid diatoms together with Stauroneis, Prestauroneis, Craticula, Karayevia, Madinithidium, Fistulifera, Parlibellus, and, possibly, Schizostauron. A new species from the monoraphid genus Madinithidium, M. vietnamica sp. nov., was described based on valve and chloroplast morphology as well as DNA sequence data.  相似文献   

19.
Research pertaining to the two closely‐related microsporidian genera Nosema and Vairimorpha is hindered by inconsistencies in species differentiation within and between the two clades. One proposal to better delimit these genera is to restructure the Nosema around a “True Nosema” clade, consisting of species that share a characteristic reversed ribosomal DNA operon arrangement and small subunit (SSU) ribosomal DNA sequences similar to that of the Nosema type species, N. bombycis. Using this framework, we assess two distinct microsporidia recovered from the forest insect Bruce spanworm (Operophtera bruceata) by sequencing their SSU and internal transcribed spacer regions. Phylogenetic analyses place one of our isolates within the proposed True Nosema clade close to N. furnacalis and place the other in the broader Nosema/Vairimorpha clade close to N. thomsoni. We found that 25% of Bruce spanworm cadavers collected over the four‐year study period were infected with microsporidia, but no infections were detected in cadavers of the Bruce spanworm's invasive congener, the winter moth (O. brumata), collected over the same period. We comment on these findings as they relate to the population dynamics of the Bruce spanworm‐winter moth system in this region, and more broadly, on the value of ribosomal DNA operon arrangement in Nosema systematics.  相似文献   

20.
The aim of this study was to investigate the phylogenetic relationships of nematodes of the family Acuariidae using partial large subunit nuclear ribosomal DNA (28S) sequences of 15 genera represented by 18 species. The results confirmed the monophyly of the family Acuariidae and supported its close relationship with nematodes of the family Cystidicolidae. Two major clades were revealed within Acuariidae, one represented by nematodes of the subfamily Schistorophinae and another composed of members of the subfamilies Acuariinae and Seuratiinae. The collarette was shown to be a structure that arose several times within the clade Acuariinae–Seuratiinae. As a result, we suggest the suppression of the subfamily Seuratiinae and inclusion of its genera within the subfamily Acuariinae. Morphological characters, host ranges and life cycles of the taxa included in the analyses are discussed as well as the possible relationships of remaining acuariid genera within the revealed subclades. Additionally, we propose an amended generic diagnosis of Syncuaria Gilbert, 1927 to accommodate Syncuaria sagittata (Rudolphi, 1809) n. comb. and Syncuaria longevaginata (Molin, 1860) Skrjabin, Sobolev, & Ivashkin, 1965. New host and geographic records are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号