首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Characteristic pathological changes in the glomeruli in diabetic nephropathy include expansion of the mesangial matrix and thickening of the glomerular basement membrane (GBM). Using an acellular digestion technique combined with scanning electron microscopy, the three-dimensional ultrastructural changes in glomerular extracellular matrices were studied in rats with diabetic glomerulopathy. Diabetes was induced by the intravenous injection of streptozotocin and morphological analyses were performed 3, 6 and 11 months after the injection. Expansion of mesangial area and GBM thickening became evident with time. After treatment with the series of detergents, all cellular components were completely removed leaving the extracellular matrices intact. In normal controls, the mesangial matrix appeared as fenestrated septa with oval or round stomata between the glomerular capillaries. In diabetic glomerulopathy, expansion of mesangial matrix and narrowing of the mesangial fenestrae were observed. These changes in the mesangial matrices seem to play a vital role in the progression of glomerulosclerosis in rat diabetes. A subendothelial thin layer of the GBM was continuous with the mesangial matrix. One cause of GBM thickening in streptozotocin diabetes may be expansion of the mesangial matrix into the peripheral GBM.  相似文献   

2.
We propose here the use of freeze-fracture to gain access and to label in vitro glomerular components and locate WGA receptors and anionic sites. Tissues are frozen, fractured under liquid nitrogen, and thawed. Freeze-fracture rendered all glomerular structures directly accessible to the reagents. This made possible study of the nature and topology of cationized ferritin and WGA binding sites. WGA-gold complexes were observed over plasma membranes of podocytes and of endothelial and mesangial cells. Labeling of podocytes and endothelial cells was similar in the mesangial area and in the peripheral part of the capillary loop. Cross-fractures of extracellular matrices showed that WGA bound uniformly to the glomerular basement membrane (GBM) as well as to mesangial matrix. In fractured specimens treated with neuraminidase, WGA was no longer observed over podocytes but it consistently labeled the surface of endothelial and mesangial cells. Whereas in GBM cross-sections WGA binding was greatly reduced or even abolished, it remained unmodified in the mesangium. This shows that only NeuNAc (sialic acid) might account for the binding of WGA to podocytes, whereas GlcNAcs appear to be the main WGA binding sites on endothelial and mesangial cells and in the mesangial matrix. Both NeuNAc and GLcNAc residues are probably associated in GBM. With cationized ferritin (pI 8.3) at pH 7.4, intense, continuous labeling was seen all over the different plasma membranes, denser in podocytes than in endothelial cells. CF was also observed in cross-fractured profiles of extracellular matrices and never appeared agglutinated in discrete sites.  相似文献   

3.
Treatment with a neutralizing anti-transforming growth factor-beta (TGF-beta) antibody can prevent the development of diabetic nephropathy in the db/db mouse, a model of type 2 diabetes. However, it is unknown whether anti-TGF-beta therapy can reverse the histological lesions of diabetic glomerulopathy once they are established. Diabetic db/db mice and their non-diabetic db/m littermates were allowed to grow until 16 weeks of age, by which time the db/db mice had developed glomerular basement membrane (GBM) thickening and mesangial matrix expansion. The mice were then treated with an irrelevant control IgG or a panselective, neutralizing anti-TGF-beta antibody for eight more weeks. Compared with control db/m mice, the db/db mice treated with IgG had developed increased GBM width (16.64+/-0.80 nm vs. 21.55+/-0.78 nm, P<0.05) and increased mesangial matrix fraction (4.01+/-0.81% of total glomerular area vs. 9.55+/-1.04%, P<0.05). However, the db/db mice treated with anti-TGF-beta antibody showed amelioration of GBM thickening (18.40+/-0.72 nm, P<0.05 vs. db/db-IgG) and mesangial matrix accumulation (6.32+/-1.79%, P<0.05 vs. db/db-IgG). Our results demonstrate that inhibiting renal TGF-beta activity can partially reverse the GBM thickening and mesangial matrix expansion in this mouse model of type 2 diabetes. Anti-TGF-beta regimens would be useful in the treatment of diabetic nephropathy.  相似文献   

4.
Kidney glomerular basement membranes (GMBs) originate in development from fusion of a dual basement membrane between endothelial cells and primitive epithelial podocytes. After fusion, segments of newly synthesized matrix, derived primarily from podocytes, appear as subepithelial outpockets and are spliced into GBMs during glomerular capillary loop expansion. To investigate GBM assembly further, we examined newborn mouse kidneys with monoclonal rat anti-mouse laminin IgGs (MAb) conjugated to horseradish peroxidase (HRP). In adults, these MAb strongly label glomerular mesangial matrices but bind only weakly or not at all to mature GBMs. In contrast, anti-laminin MAb intensely bound newborn mouse GBMs undergoing initial assembly. After intraperitoneal injection of MAb-HRP into neonates, dense binding occurred across both subendothelial and subepithelial pre-fusion GMBs as well as forming mesangial matrices. Considerably less MAb binding was seen, however, in post-fusion GBMs from more mature glomeruli in the same section, although mesangial matrices remained positive. In addition, new subepithelial segments in areas of splicing were negative. These results conflict with those obtained previously with injections of polyclonal anti-laminin IgGs into newborns or adults, which result in complete labeling of all GBMs. Although epitope masking cannot be completely excluded, we believe that decreased MAb binding to developing GBM reflects actual epitope loss. This loss could occur by laminin isoform substitution, conformational change, and/or proteolytic processing during GBM assembly.  相似文献   

5.
Sulfated glycosaminoglycans and sialoglycoproteins are thought to play a pivotal role in the glomerular capillary wall barrier to filtration since these anionic charged elements are important in the maintenance of capillary wall integrity and constitute a charge-selective filter. The development of proteinuria in puromycin aminonucleoside (PAN) nephrosis is associated with polyanion loss from the glomerular capillary wall structures. Since in PAN nephrosis the permeability of the mesangial area to plasma proteins and tracer substances has also been shown to be increased, the purpose of this study was to analyse the localization and distribution of anionic charges in the glomerular mesangium in this experimental model. Glycosaminoglycans were labeled by perfusion of the kidneys with ruthenium red solution (RR). Electron microscopic examination revealed the presence of distinct small RR granules ("anionic sites") in the mesangial intercellular matrix substance and in the laminae rarae of the glomerular basement membrane (GBM). The center-to-center spacing of the granules was measured and a frequency distribution of intervals in different interval classes was constructed. In normal glomeruli the anionic sites in the mesangial matrix showed a distribution pattern identical to the GBM with a maximal interval incidence at the 31-40 nm class. In nephrotic rats anionic site distributions in matrix and GBM did not change significantly. Sialoglycoproteins were labeled with colloidal iron (CI). In PAN nephrosis a decrease of CI binding was observed at the epithelial-basement membrane junction of the glomerular capillary wall. However, CI labeling of the mesangial matrix and mesangial cell membranes did not differ from that of normal glomeruli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The relative distribution of heparan sulfate-glycosaminoglycan (HS-GAG) and chondroitin sulfate-glycosaminoglycans (CS-GAG) of the mesangial matrix (MM) and the glomerular basement membrane (GBM), which represent the two glomerular extracellular matrices, was determined by a combination of enzymatic treatments and autoradiographic methods. The kidneys were digested in situ either with heparinase (degrades HS and CS-GAG) or chondroitinase-ABC (degrades CS-GAG). Subsequently, the sulfated GAGs were labeled with a radioiodinated analog of cationic ferritin (CF, pI approximately 7.5). The tissues were then processed for light and electron microscopic autoradiography. The autoradiographic analysis showed that sulfated GAGs are distributed both in the GBM and mesangial matrix. The predominant GAG present in both the matrices is HS-GAG and the CS-GAG is exclusively present in the mesangial matrix. These data indicate that the GBM and mesangial matrix are compositionally different. These differences may be of importance in the establishment of normal glomerular function and organization and in the alteration of that function and organization as a result of various disease processes, especially of those that are immune-complex mediated.  相似文献   

7.
Summary Congenital nephrosis of the Finnish type (CNF) is a hereditary renal disease of unknown aetiology manifested by massive proteinuria of the newborn and unresponsive to any treatment. In this study kidney samples and cultured glomerular mesangial cells from five patients with CNF were studied by indirect immunofluorescence microscopy for the presence and location of major basement membrane matrix (GBM) components. Histological changes of glomeruli ranging from mild thickening of basement membranes to total obliteration and sclerosis were seen. Notably, thickening of the subepithelial layer of Bowman's capsules was regularly seen along with hypercellularity at the juxtaglomerular areas. The matrix components studied (laminin, plasma- and cellular fibronectin, type IV collagen, including the NC-1, alpha-1 and alpha-3 chains, heparan sulphate proteoglycan (HSPG) core protein, thrombospondin) were characteristically seen within the glomeruli. Local thickenings alternating with total loss of epitopes along the GBM were seen, especially with anti-type IV collagen and anti-HSPG antibodies. Sera from CNF patients after transplantation failed to show antibodies against GBM structures in immunofluorescence microscopy, suggesting that no missing epitopes of GBM are introduced with the transplant kidney. Cultured mesangial cells of CNF glomeruli also showed continued in vitro production of the matrix components and their incorporation into the matrix underneath the cell layer.  相似文献   

8.
Cationic antigens have been observed to bind with the negatively charged glomerular basement membrane (GBM). Using the cationic reagent polyethyleneimine (PEI), the distribution of glomerular anionic sites was evaluated ultrastructurally in the early stage (2 h-day 7) of cationic antigen mediated in-situ immune complex formation type glomerulonephritis (GN) in the rat. Renal perfusion via the renal artery with 100 micrograms of cationized human IgG(pI greater than 9.5), followed by the i.v. injection of specific antibodies, led to an initial increase in urinary albumin excretion, subsequent massive globulinuria and the formation of numerous subepithelial deposits on day 7. The most striking alteration in glomerular anionic sites was observed on the epithelial cell surface coat; the PEI deposition on the epithelial cell surface was almost identical to that in control glomeruli at 2 and 4 h after the induction of GN; thereafter, on day 7, a broad loss of anionic sites was observed on flattened epithelial foot processes. In contrast, fixed anionic sites of the laminae rarae of the GBM showed no apparent alterations in the distribution and number from 2 h to day 7 and did not disappear even in the lamina rara externa adjacent to subepithelial deposits. These findings not only show that fixed anionic sites of the GBM, in contrast to the rapid decrease in those of the epithelial cell surface, are not completely neutralized or destroyed even in GN, in which cationic antigen participates in the in-situ formation of GBM-deposits.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Using highly cationic polyethleneimine, alteration of glomerular anionic sites were evaluated ultrastructurally in two types of rat glomerulonephritis (GN); chronic serum sickness GN and heterologous (passive) or autologous (active) Heymann's GN. Daily i.v. injections of egg white lysozyme in physiologic saline into presensitized rats led to the formation of numerous mesangial and subepithelial deposits. In the non-proteinuric period in which immune deposits were localized predominantly in the mesangium, anionic sites of the laminae rarae and the epithelial cell coat were clearly observed. In the subsequent proteinuric period in which numerous subepithelial deposits were superimposed, a broad loss of anionic sites in the epithelial cell coat was seen. Splitting and focal loss of anionic sites on the lamina rara externa adjacent to the subepithelial deposits were commonly observed both in passive and active Heymann's GN and in lysozyme GN. These findings indicate that the subepithelial deposits are closely involved in the development of proteinuria by injuring the anionic sites, especially those on lamina rare externa of the glomerular basement membrane.  相似文献   

10.
11.
Age-related nephropathy in laboratory rats   总被引:8,自引:0,他引:8  
Chronic progressive nephropathy is a spontaneous disease common among aging laboratory rats, often making it difficult to distinguish age-related from drug-related effects in chronic toxicity studies. Morphological changes of the kidney that occur with age include thickening of glomerular and proximal tubular basement membranes, mesangial proliferation, fusion of foot processes, and, ultimately, glomerular sclerosis. Proteinuria (specifically, albuminuria) is the most striking characteristic change in renal function of aging rats and, generally, correlates well with the severity of age-related glomerular pathology. Changes in tubular functions also may occur with aging but have not been investigated sufficiently. The pathogenesis of chronic progressive nephropathy is not known; however, hemodynamic adaptations after ad libitum consumption of protein-rich diets may be a contributing factor. High-protein diets increase glomerular pressures and flows, perhaps facilitating excretion of metabolic end products. These hemodynamic adaptations may impair the permselective properties of the glomerulus, leading to: enhanced accumulation of macromolecules in the mesangium, progressive mesangial expansion, and, ultimately, glomerular sclerosis. Indeed, decreasing total food or protein intake retards or prevents the progression of age-related nephropathy. Inasmuch as chronic toxicity studies are complicated by a high incidence of spontaneous nephropathy, implementation of a restricted dietary regimen may improve detection of drug-induced toxicity.  相似文献   

12.
In this work, we analysed histochemical, biochemical and functional modifications of the glomerular basement membrane (GBM), occurring for aging, in the Rat. The results suggest an increase of collagenous components and a decrease of sulfated glucosaminoglycans as a function of age. In other respects, fixed anionic sites of the GBM, disclosed by colloidal iron, are almost exclusively restricted to the laminae rarae in one month-old rats, whereas the marker appears randomly scattered among the lamina densa in 12 month-old animals. These changes could be the cause of increased permeability of the GBM during aging.  相似文献   

13.
Summary Cationized ferritin was injected into the circulatory system of teleosts, the sea raven and Atlantic eelpout, and into elasmobranchs, the spiny dogfish and the skate, to determine if the glomerular basement membranes (GBM) from these different groups of fishes possess anionic binding sites similar to those present in the GBM of mammals. The distribution of cationized ferritin was the same in all fishes listed. Cationized ferritin was localized only in the GBM and the mesangial matrix. The regular distribution of cationized ferritin within the laminae rarae (60 nm intervals) was taken as evidence of the presence of anionic binding sites. Cationized ferritin did not bind to the glomerular capillary endothelium, nor was any of it localized at the base of the slit diaphragms of the foot processes of the podocytes. The distribution of binding sites in the GBM of these fishes is similar to that in another teleost, the winter flounder, and in a cyclostome, the hagfish.  相似文献   

14.
We detected glomerular anionic sites in fixed, LR Gold-embedded ultra-thin tissue sections using cationic colloidal gold. Manual and computer-assisted quantitation were compared, and the influence of pH and glycosaminoglycan-degrading enzymes on site expression was examined. Both quantitation methods produced similar results. Alteration of pH within a narrow range (pH 2.5-3.0) markedly affected the staining pattern. At pH 2.5, epithelial and endothelial glycocalyx and regular sites restricted to the lamina rara externa were stained. At pH 3.0 and above, glycocalyx was unstained but intracellular and nuclear staining was present; glomerular basement membrane (GBM) and mesangial matrix sites were abundant. After chondroitinase ABC or hyaluronidase digestion, GBM staining was eliminated at pH 2.0 and reduced at pH 7.0 (p less than 0.001), suggesting that degraded sites are associated with chondroitin sulfate or hyaluronic acid. By contrast, prolonged heparitinase I digestion was ineffective at either pH. Digestion of purified substrates revealed crossreactivity of heparitinase towards chondroitin sulfate and of chondroitinase towards hyaluronic acid. Since tissue sites were reduced by chondroitinase but not heparitinase, we suggest that degradation is due to hyaluronidase activity of chondroitinase and the anionic sites are associated with hyaluronic acid. However, the influence of pH indicates that lamina rara externa sites are structurally distinct from other GBM anionic sites.  相似文献   

15.
The distribution of basement membrane glycoproteins (type IV collagen, laminin, fibronectin, and proteoglycans) was studied in foetal rat kidney by immunohistochemical techniques using polyclonal antibodies. From the first stages of nephron differentiation, all these glycoproteins were detectable by immunofluorescence in the tubular and glomerular basement membranes and in the mesangial matrix. As differentiation proceeded, labelling of glycoproteins progressively intensified, except for that of fibronectin, which gradually decreased in the glomerular basement membrane (GBM) and was barely observable at full differentiation. With immunoperoxidase staining in electron microscopy, all glycoproteins were seen to be widely dispersed in the spaces between the epithelial and endothelial glomerular cells so long as the GBM remained a loose structure. However, after it became a compact, 3-layered formation, type IV collagen and laminin were distributed throughout the GBM, whereas proteoglycans and anionic sites appeared as 2 rows of granules confined to the laminae rarae.  相似文献   

16.
The sequence of antigen localization and the interaction of immune deposits with the anionic sites of the glomerular basement membrane (GBM) were investigated in an active model of in situ immune complex glomerulonephritis using a cationized ferritin. Three weeks after immunization with native horse spleen ferritin, the left kidneys of rats were perfused with 500 micrograms of cationized ferritin through the left renal artery. One h after renal perfusion, most of ferritin particles localized subendothelially, corresponding to the anionic sites of the lamina rara interna. In the glomerular capillary loops, infiltrating polymorphonuclear leukocytes and monocytes were seen. Some of these monocytes were in direct contact with immune complexes containing ferritin aggregates associated with anionic sites of the lamina rara interna. At 24 h, numerous ferritin aggregates were present subepithelially, preferentially beneath the slit membrane. The subepithelial location of ferritin did not always correspond to the anionic sites of the lamina rara externa. From days 3 to 7, there was remarkable endocapillary cell proliferation in some loops and pronounced effacement of epithelial foot processes. Focal detachment of epithelium from the GBM was observed occasionally. From days 14 to 28, most of ferritin aggregates were located intramembranously and subepithelially. Membranous transformation has already begun around the subepithelial deposits. This morphological study provides insight into the fate of immune deposits and injury to the GBM in the glomerulonephritis.  相似文献   

17.
Summary Serum sickness nephritis was induced in male Fisher 344/JCL rats by injecting egg albumin into the foot pads and peritoneal cavity. The alteration of anionic sites in the glomerular basement membrane (GBM) of the rats with significant proteinuria was studied with a quick-freezing and deep-etching method using polyethyleneimine as a cationic probe. In control rats, anionic sites were located around the fibrils of the lamina rara externa, which radiated perpendicularly from the lamina densa to podocyte cell membranes. In the glomeruli of proteinuric rats, many electron-dense deposits were observed in the subepithelial side of the GBM, where the fibrils of the lamina rara externa were usually obscured and anionic sites around them could not be recognized. However, in some areas, a clear boundary could be observed between deposits and the lamina densa. Electron micrographs of freeze-fractured deposits showed that the fibrils radiated perpendicularly from the lamina densa and that anionic sites around them had been preserved. These results suggest that some of the deposits simply passed through the GBM and masked transiently the fibril structures of the GBM, but others probably destroyed these fibril structures, including anionic sites.  相似文献   

18.
Conflicting results of previous electron microscopy studies and concerns about the validity of immunoperoxidase technique employed in those studies to accurately localize endogenous IgG in rat glomerular basement membrane (GBM) prompted us to use other techniques to answer the following question: Does endogenous IgG permeate the matrix of GBM? Immunofluorescence, radioimmunoassay (RIA), isoelectric focusing, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and immunodetection on Western blots were used to detect endogenous IgG in GBM. Direct immunofluorescence of normal frozen rat kidney sections prepared from in vivo perfused kidney showed endogenous IgG in a linear pattern of staining in the GBM. RIA for rat IgG found the IgG content of collagenase-solubilized GBM to be 0.48% of the dry weight. Immunodetection for rat IgG on Western blots of SDS-PAGE-separated GBM demonstrated endogenous IgG in purified collagenase-solubilized GBM. IgG was detected as an intact molecule with covalently linked light and heavy chains and not as small immunoreactive catabolic fragments. Isoelectric focusing followed by immunodetection on Western blot showed that part of the endogenous IgG in GBM was anionic. The results clearly show that under normal conditions, endogenous IgG can permeate into the collagen matrix of GBM in rat and that some of this IgG is more anionic than the IgG in serum. These findings may assist in understanding the transit of autoantibodies to subepithelial glomerular antigens located beneath the matrix of GBM in membranous glomerulonephropathy.  相似文献   

19.
In patients with progressive podocyte diseases, such as focal segmental glomerulosclerosis and membranous nephropathy, there is enhanced expression of transforming growth factor (TGF-β) in podocytes. Biomechanical strain in these diseases may cause overexpression of TGF-β and angiotensin II (Ang II) by podocytes. Oxidative stress induced by Ang II may activate the latent TGF-β. Increased TGF-β activity by podocytes may induce not only the thickening of the glomerular basement membrane (GBM), but also podocyte apoptosis and/or detachment from the GBM, initiating the development of glomerulosclerosis. Furthermore, mesangial matrix expansion frequently occurs in podocyte diseases in association with the development of glomerulosclerosis. This review examines open questions on the pathogenic role of TGF-β that links podocyte injury to GBM thickening, podocyte loss, mesangial matrix expansion and glomerulosclerosis in podocyte diseases. It also describes paracrine regulatory mechanisms of podocyte TGF-β on mesangial cells leading to increased matrix synthesis.  相似文献   

20.
High glucose and increased oxidative stress levels are the known important mediators of diabetic nephropathy. However, the effects of these mediators on tissue damage basically due to extracellular matrix expansion in mesangial cells have yet to be fully examined within the context of early stage diabetic nephropathy. In this study, we attempted to characterize changes in mesangial cells of streptozotocin-induced diabetic rats with a comparative investigation of kidney tissue by using different microscopy techniques. The serum levels of urea and creatinine of diabetic rats, as biomarkers of kidney degeneration, decreased significantly compared to those of age-matched controls. In diabetic rats, there are increased malondialdehyde and oxidized-glutathione levels as well as reduced-glutathione and glutathione-peroxidase activity levels in renal tissue compared to those of the controls. By using light and electron microscopies, we showed that there were marked thickening in Bowman’s membrane and glomerular capillary wall, increased amount of extracellular matrix often occupying Bowman’s space, degenerations in tubules, an increased number of mesangial cells in the network of glomerular capillary walls, and increased amount of lipid accumulation in proximal tubules in the renal tissue of diabetic rats. Our confocal microscopy data confirmed also the presence of irregularity and widened in glomerular capillaries, their attachment to the Bowman’s capsule, degenerated heterochromatin, thickening in foci of glomerular basement membrane, and marked increase in mesangial cells. These results suggest that a detailed structural investigation of kidney tissue provides further information on the important role of mesangial cells in pathogenesis of diabetic nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号