首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protease nexin released by activated platelets forms stable complexes with alpha-thrombin. Active-site-blocked thrombin does not form the stable complex, but it inhibits formation of the stable complex by active alpha-thrombin. gamma-Thrombin, which has a damaged substrate recognition site (the anion-binding exosite), did not form the complex and did not inhibit formation of the stable complex by alpha-thrombin. Complex formation was inhibited by the C-terminal dodecapeptide of hirudin, which has been shown to bind to the anion-binding exosite. A monoclonal antibody that blocks reactions of thrombin that involve the anion-binding exosite also inhibited formation of a stable complex of alpha-thrombin and the platelet-derived protease nexin. It is concluded that the anion-binding exosite of thrombin, a site that confers a high degree of specificity for substrates with a complementary site, binds to the platelet nexin prior to reaction of the catalytic site with the serpin.  相似文献   

2.
Thrombospondin (Tsp), a protein secreted by activated platelets, forms disulfide-linked complexes with thrombin [K. J. Danishefsky, R. J. Alexander and T. C. Detwiler (1984) Biochemistry 23, 4984]. Thiols and disulfide bonds of Tsp were analyzed, and a search was made for other Tsp covalent complexes. Platelets in 1 mM EDTA were activated with ionophore A23187, and the secreted proteins were analyzed by gel electrophoresis in sodium dodecyl sulfate. One millimolar dithioerythritol (DTE) decreased the electrophoretic mobility of Tsp, indicating reduction of an intrachain disulfide bond; Ca2+ prevented this effect. Electrophoresis of single-chain Tsp prepared with 50 mM DTE in either EDTA or Ca2+ also revealed a Ca2+-stabilized intrachain disulfide bond. Ca2+ prevented the retention of Tsp on an activated thiol-Sepharose column, indicating protection of a thiol by Ca2+. Incubation at 37 degrees C for 60 min resulted in complexes with apparent mass much greater than 500 kDa. Formation of complexes was prevented by N-ethylmaleimide, by a temperature less than 25 degrees C, and by Ca2+ or Mg2+. From pH 6 to 9, complexes formed better at lower pH. Two-dimensional (nonreduced/reduced) electrophoresis revealed Tsp but no other constituents of the complexes. With 10 nM thrombin, complexes formed faster and included thrombin; Ca2+ only partially inhibited. The complex was very susceptible to dissociation by low concentrations (2.5 mM) of DTE. It is concluded that Tsp has a reactive thiol and an intrachain disulfide bond that are protected by Ca2+. When these groups are unprotected, there is intermolecular thiol-disulfide exchange.  相似文献   

3.
Binding of 125I-thrombin to endothelial cells derived from human umbilical vein was studied in tissue culture. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography revealed covalent binding of thrombin in a 72-kDa complex. This binding is specific and requires the catalytically active site of the enzyme. Formation of the complex could be detected as early as 3 min after addition of thrombin or with a thrombin concentration as low as 0.5 nM. This irreversible binding exhibits thrombin dose-dependence and reaches maximum levels at a concentration of 50 nM (10 fmol/10(5) cells). Some characteristics of the 72-kDa complex were compared to those of the complexes formed between thrombin and protease nexin originating from fibroblasts or platelets: (i) its electrophoretic mobility on SDS-PAGE is identical to that of the thrombin-platelet protease nexin complex, (ii) heparin prevents the appearance of the complex on the cell surface, (iii) plasmin in a 100-fold molar excess prevents the covalent linkage of thrombin, suggesting that the protease specificity of the endothelial component involved in the complex might not be restricted to thrombin. Yet no release, nor any secretion of the endothelial protein, could be detected. These results indicate that active thrombin binds covalently to a specific endothelial protein that is in several respects similar to fibroblast or platelet protease nexin and provides a thrombin binding site distinct from thrombomodulin and glycosaminoglycans.  相似文献   

4.
Thrombin interaction with platelets. Influence of a platelet protease nexin   总被引:3,自引:0,他引:3  
A fraction of the 125I-thrombin that binds to human platelets is taken into a sodium dodecyl sulfate-resistant 77 kDa complex with a platelet factor (Bennett, W. F., and Glenn, K. C. (1980) Cell 22, 621-627). Here we show that this platelet factor is in several respects similar to protease nexin I (PNI), a fibroblast thrombin inhibitor. The complexes are of the appropriate size, bind to Sepharose that has been derivatized with anti-PNI antibody, do not form when the thrombin active site has been blocked with diisopropylphosphofluoridate, and do not appear on platelets when heparin is present. However, the platelet factor does not bind urokinase, indicating that this "platelet PN" may be distinct from PNI. Following brief incubation with 125I-thrombin, platelet PN X 125I X thrombin complexes are found both associated with the platelets and free in the binding medium. 125I-Thrombin has a higher affinity for platelet PN than for platelet receptors. In 30-s binding incubations carried out with thrombin at concentrations below 0.3 nM, formation of the 77-kDa complex accounts for most of the platelet specific binding of 125I-thrombin. Subtracting this large contribution to 125I-thrombin-specific binding reveals that the reversible binding of 125I-thrombin to platelet receptors exhibits sigmoidal thrombin dose-dependence. Thrombin stimulation of platelet [14C]serotonin release exhibits similar thrombin dose dependence. These results indicate that platelets may possess a mechanism for suppressing their interaction with active thrombin at thrombin doses below 0.3 nM. It is possible that platelet PN carries out this function by capturing thrombin before thrombin binds to its signal-transmitting receptors.  相似文献   

5.
We previously showed that fibroblast-like cells release protease nexin into their growth medium. Protease nexin links to thrombin and mediates the cellular binding of thrombin via the protease nexin part of the complex to a site different from that for unlinked thrombin (1,2). To determine the effect that cell-released protease nexin had on the measurement of total cell-bound thrombin, we separately measured the cellular binding of both 125I-thrombin and 125I-thrombin-protease nexin complexes. Scatchard analysis of our binding data indicates that the cellular binding affinity of linked 125I-thrombin is about 19-fold higher than that of unlinked 125I-thrombin. We show that protease nexin acts to increase the apparent affinity of 125I-thrombin for cellular binding sites.  相似文献   

6.
Thrombin forms sodium dodecyl sulfate stable complexes of 77 and greater than 450 kDa with proteins secreted by activated platelets. The kinetics of formation of these complexes were investigated by addition of 125I-thrombin to the supernatant solution of A23187-activated platelets. Complexes were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis either with or without reduction of disulfide bonds. When analyzed on nonreduced gels, the 77-kDa complex reached a maximum at about 3 min and then declined as the greater than 450-kDa complex increased. On reduced gels (on which there was no greater than 450-kDa complex) the 77-kDa complex approached the level of the greater than 450-kDa complex on nonreduced gels. The half-time of formation was less than 1 min for the 77-kDa complex and about 15 min for the greater than 450-kDa complex. These time courses suggested that the 77-kDa complex was incorporated into the greater than 450-kDa complex as an essential precursor. Formation of complexes was inhibited by a competitive inhibitor or a noncompetitive inhibitor of thrombin, and the pH dependence of formation of both complexes was similar to the pH dependence for catalytic activity of thrombin. Ca2+ inhibited formation of the greater than 450-kDa complex but not of the 77-kDa complex. A model is presented in which thrombin and a secreted protein form a 77-kDa complex by a process that involves the active site of thrombin. The 77-kDa complex is then incorporated into a greater than 450-kDa complex by thiol-disulfide exchange with thrombospondin, a process that is inhibited by Ca2+. Thrombin in the greater than 450-kDa complex had no catalytic activity.  相似文献   

7.
8.
When 125I-labeled thrombin was incubated with washed human platelets or with the supernatant solution of activated platelets, it formed a NaDodSO4-stable complex of apparent mass greater than 450 000 daltons. Formation of the complex was temperature dependent; with 20 nM thrombin incubated with the supernatant solution of ionophore-activated platelets, the initial rate of formation of the stable complex was 1 nM thrombin/min at 37 degrees C, 50 times the rate at 22 degrees C. Thrombin with all free amino groups methylated was still reactive. Active-site-blocked thrombin formed the complex only slowly. The complex that formed with active thrombin was not dissociated by hydroxylamine in urea. Reduction with 2-mercaptoethanol dissociated the complex, and its formation was blocked by the sulfhydryl-blocking agents iodoacetamide and 4,4'-dithiodipyridine. The complex was thus unlike those of thrombin and alpha 2-macroglobulin or antithrombin III, but it had characteristics of a disulfide-linked complex. Of the secreted proteins, albumin and glycoprotein G adhered to an activated thiol-Sepharose column, indicating that they contained free thiol groups. Purified glycoprotein G and thrombin formed a complex similar to the complex formed when thrombin was incubated with the supernatant solution of activated platelets. The purified glycoprotein bound 2.6 mol of radioactive N-ethylmaleimide/mol of protein, indicating three sulfhydryl groups per mole. After reacting with purified glycoprotein G, thrombin developed a new sulfhydryl group. It is concluded that glycoprotein G (thrombin-sensitive protein, thrombospondin) and thrombin form a dissociable complex that leads to a covalent complex by thiol-disulfide exchange of a thiol group on glycoprotein G and a disulfide on thrombin.  相似文献   

9.
Structural and functional properties of alpha-protease nexin I (alpha-PNI) expressed in Chinese hamster ovary cells were studied. All three cysteines were in the reduced form, showing that the potential disulfide bridge between residues Cys117 and Cys131 was not formed. Heparin association rate enhancements were from ka = 8.3 x 10(5) to 0.7-1.6 x 10(9) M-1 s-1 for the interaction of PNI with thrombin, from ka = 5.1 x 10(3) to 3.5 x 10(5) M-1 s-1 for interaction with Factor Xa, and from ka = 2.2 x 10(6) to 1.0 x 10(7) M-1 s-1 for interaction with trypsin; there was no rate enhancement of the plasmin interaction (ka = 1.0 x 10(5) M-1 s-1). The minimal heparin pentasaccharide had no effect on these interactions. Cleavage of the reactive center loop of PNI by three different proteases gave the typical stressed to relaxed change in thermal stability, but unlike with antithrombin III, there was no loss of heparin affinity. A similar difference from antithrombin was that PNI-thrombin complexes retained normal heparin affinity. These results are compatible with a role for protease nexin I as a cell-associated thrombin inhibitor that remains bound to the cell surface even after complexing with the protease, as compared with the role of antithrombin III as a circulating inhibitor of thrombin that becomes activated on binding to the microvasculature and is released on complex formation.  相似文献   

10.
In this study, purified preparations of platelet protein disulfide isomerase (PDI), vitronectin, alpha-thrombin, and antithrombin (AT) were used to demonstrate that PDI catalyzes formation of vitronectin-thrombin-AT complexes. Complex formation requires reduced glutathione (GSH) and can be prevented by N-ethymaleimide, and the formed complex is dissociated by reducing agents such as mercaptoethanol. No vitronectin-thrombin complex formed in the absence of AT, indicating that the thrombin-AT complex is an obligate intermediate in the reaction. Under optimal conditions, the majority of the thrombin-AT is incorporated into the complex in 60 min. Thrombospondin-1, known to form disulfide-linked complexes with thrombin-AT [Milev, Y., and Essex, D. W. (1999) Arch. Biochem. Biophys. 361, 120-126], competes with vitronectin for thrombin-AT in the low-Ca(2+) environment that favors the active form of thrombospondin. The results presented here may also explain previous studies showing that vitronectin-thrombin-AT complexes form better in plasma (which contains PDI) than with purified proteins (where PDI was not used). We were able to purify a PDI from plasma that was immunologically identical to the platelet enzyme. We used the scrambled RNase assay to show that added purified PDI can function in a plasma environment. Complex formation in plasma was inhibited by inhibitors of PDI. PDI was released from the platelet surface in a soluble form at high pH (around the physiologic range), suggesting a source of the plasma PDI. In summary, these studies indicate that PDI functions to form disulfide-linked complexes of vitronectin with thrombin-AT.  相似文献   

11.
It has been shown [Touqui, Jacquemin & Vargaftig (1983) Thromb. Haemostasis 50, 163; Touqui, Jacquemin & Vargaftig (1983) Biochem. Biophys. Res. Commun. 110, 890-893; Alam, Smith & Melvin (1983) Lipids 18, 534-538; Pieroni & Hanahan (1983) Arch. Biochem. Biophys. 224, 485-493] that rabbit platelets inactivate exogenous PAF (platelet-activating factor, PAF-acether) by a deacetylation-reacylation mechanism. The deacetylation step is catalysed by an acetyl hydrolase sensitive to the serine-hydrolase inhibitor PMSF (phenylmethanesulphonyl fluoride) [Touqui, Jacquemin, Dumarey & Vargaftig (1985) Biochim. Biophys. Acta 833, 111-118]. We report here that human platelets can produce PAF on thrombin stimulation. This production is marginal and transient, reaching a maximum at 10 min and decreasing thereafter. In contrast, 10-12 times more PAF is produced when platelets are treated with PMSF and stimulated with thrombin. Under these conditions, the maximum formation is observed at 30 min and no decline occurs for up to 60 min after stimulation. In addition, these platelets (treated with PMSF and stimulated with thrombin) incorporate exogenous labelled acetate in the 2-position of PAF, probably by an acetyltransferase-dependent mechanism. Production of PAF by human platelets during physiological stimulation can be demonstrated when PAF degradation is suppressed by the acetyl-hydrolase inhibitor PMSF.  相似文献   

12.
13.
The interaction of thrombin and platelets was studied with a heterobifunctional photoactivable crosslinking agent. Radiolabeled thrombin that was modified with ethyl-N-5-azido-2-nitrobenzoylaminoacetimidate formed two types of complex with platelet proteins: platelet-associated complexes and supernatant complexes. The platelet-associated complexes formed within 20 s. Autoradiography after electrophoresis with sodium dodecyl sulfate indicated that these complexes had apparent masses of 210, 185, 155 and 125 kDa. Formation of the complexes was blocked by hirudin; this is consistent with crosslinking that was a direct consequence of the binding of thrombin to a specific receptor, since hirudin blocks thrombin-induced platelet activation and the saturable binding of thrombin to platelets. The labeled supernatant complex had an apparent mass of about 490 kDa. It also formed in the supernatant solution of platelets after activation with a divalent cation ionophore, suggesting a complex of thrombin with a secreted protein. The supernatant complex did not involve fibrinogen or alpha 2-macroglobulin, but a similar complex was formed with partially purified secreted glycoprotein G (thrombin-sensitive protein, thrombospondin). Formation of the complex was blocked by hirudin. A similar complex was formed after prolonged (1 h) incubation without photoactivation. It is concluded that thrombin forms high-affinity, hirudin-sensitive complexes with secreted glycoprotein G, as well as with platelet surface proteins.  相似文献   

14.
Protease nexin I is a proteinase inhibitor that is secreted by human fibroblasts and forms stable complexes with certain serine proteinases; the complexes then bind to the fibroblasts and are rapidly internalized and degraded. In this report, we show that this inhibitor, which is present in very low concentrations in plasma, has functional and structural similarities to C1 inhibitor, an abundant proteinase inhibitor in plasma. Both inhibitors complex and inactivate certain proteinases that previously were known to rapidly react only with C1 inhibitor. Kinetic inhibition studies show that protease nexin I inhibits Factor XIIa and plasma kallikrein with second-order rate constants of 2.3 x 10(3) and 2.5 x 10(5) M-1 s-1, respectively, which are similar to the rate constants for inhibition of these proteinases by C1 inhibitor. Protease nexin I inhibits C1s about one-tenth as rapidly as does C1 inhibitor. Alignment of the amino acid sequences of protease nexin I and C1 inhibitor shows that these proteins have similarity at their reactive centers (from sites P7 to P1). The remaining regions of the two proteins share much less similarity. In contrast to protease nexin I, C1 inhibitor is not secreted by human fibroblasts. Although 125I-C1s-protease nexin I complexes readily bind to human fibroblasts, binding of 125I-C1s-C1 inhibitor complexes or other 125I-proteinase-C1-inhibitor complexes to these cells is not detectable. Thus, protease nexin I and C1 inhibitor may control some common regulatory proteinases in the extravascular and vascular compartments, respectively.  相似文献   

15.
The interaction of thrombin and platelets was studied with a heterobifunctional photoactivable crosslinking agent. Radiolabeled thrombin that was modified with ethyl-N-5-azido-2-nitrobenzoylaminoacetimidate formed two types of complex with platelet proteins; platelet-associated complexes and supernatant complexes. The platelet-associated complexes formed within 20 s. Autoradiography after electrophoresis with sodium dodecyl sulfate indicated that these complexes had apparent masses of 210, 185, 155 and 125 kDa. Formation of the complexes was blocked by hirudin; this is consistent with crosslinking that was a direct consequences of the binding of thrombin to a specific receptor, since hirudin blocks thrombin-induced platelet activation and the saturable binding of thrombin to platelets. The labeled supernatant complex had an apparent mass of about 490 kDa. It also formed in the supernatant solution of platelets after activation with a divalent cation ionophore, suggesting a complex of thrombin with a secreted protein. The supernatant complex did not involve fibrinogen or α2-macroglobulin, but a similar complex was formed with partially purified secreted glycoprotein G (thrombin-sensitive protein, thrombospondin). Formation of the complex was blocked by hirudin. A similar complex was formed after prolonged (1 h) incubation without photoactivation. It is concluded that thrombin forms high-affinity, hirudin-sensitive complexes with secreted glycoprotein G, as well as with platelet surface proteins.  相似文献   

16.
We have recently reported the primary structures of the three unique peptide inhibitors (SPAI-1, -2, and -3) against Na+, K(+)-ATPase which contained four disulfide bridges in common (Biochem. Biophys. Res. Commun. 164, 496 (1989)). The disulfide connectivities of SPAI were determined by the combination of amino acid analyses with the direct application to a gas-phase sequencer of its proteolytic fragments. The disulfide bond was identified by detection of phenylthiohydantoin derivatives of cystine and its decomposed product dehydroalanine. The four cysteine pairs were disclosed to be Cys20 to Cys49, Cys27 to Cys53, Cys36 to Cys48, and Cys42 to Cys57, all linked by disulfide bridge formation. The allocation pattern of these disulfide bonds was the same as that recently reported for human mucous proteinase inhibitor (EMBO J. 7, 345 (1988], though SPAI showed no proteinase inhibitory activity at all.  相似文献   

17.
18.
A 77-kDa complex of thrombin and a protein secreted by activated platelets had little if any thrombin amidolytic activity, indicating that the secreted protein is an inhibitor. The molecular weight of the inhibitor before reaction with thrombin was approximately 50,000. The apparent second-order rate constant for complex formation was estimated to be 1.3 x 10(6) M-1 s-1 (mean of four measurements); it was not affected by heparin or heparinase. These properties distinguish this inhibitor from other protease inhibitors secreted by platelets. The inhibitor reacted with trypsin and possibly with urokinase but not with factor Xa.  相似文献   

19.
S S Yu  H J Li  T Y Shih 《Biochemistry》1976,15(10):2027-2034
Physical properties of histone-DNA complexes very often depend upon the method of complex formation. In an attempt to make the studies of histone-DNA interactions more relevant to biological systems, results from thermal denaturation of native chromatin were used as references for determining how closely a given histone-DNA complex approaches its native state in chromatin. In the case of arginine-rich histones H3 (III or f3) and H4 (IV or f2a1), four methods were used for making complexes with calf thymus DNA: (A) NaCl gradient dialysis with urea; (B) NaCl gradient dialysis without urea; (C) direct mixing in 2.5 x 10(-4) EDTA, pH 8.0; and (D) direct mixing in 0.01 M sodium phosphate, pH 7.0. It was observed that a complex made by direct mixing in phosphate (method D) is closer to the native than is one made by direct mixing in EDTA (method C) than the one made by gradient dialysis with urea (method A) or without urea (method B). Regardless of the method used for complex formation, no substantial differences were observed between complexes with histone H3 dimer with disulfide bond(s) and a reduced H3 without disulfide bond, implying that perhaps a dimer with or without disulfide bond is a natural fundamental subunit in our experimental conditions. When the method of direct mixing in EDTA is used, the melting properties of the complexes vary only slightly with any one of the following H3 histones: from calf thymus, H3 without disulfide bond, H3 dimer, and H3 oligomer with disulfide bonds, also, from duck erythrocyte, H3 monomer and dimer. The complexes formed between DNA and a mixture of H3 and H4 by method D have melting properties similar to those of native chromatin. Since an equimolar mixture of histone H3 and H4 in 0.01 M phosphate, pH 7.0, was shown to form a tetramer (D'Anna, J.A., and Isenberg, I. (1974), Biochem. Biophys. Res. Commun. 61, 343), our results suggest that, a tetramer of H3 and H4, likely to be (H3)2(H4)2, formed from one H3 dimer and one H4 dimer, can bind DNA in a manner similar to that in native chromatin.  相似文献   

20.
Incubation of HTC rat hepatoma cells with the synthetic glucocorticoid dexamethasone rapidly inhibits plasminogen activator (PA) activity secondary to the induction of a specific acid-stable inhibitor of plasminogen activation (Cwikel, B. J., Barouski-Miller, P.A., Coleman, P.L., and Gelehrter, T.D. (1984) J. Biol. Chem. 259, 6847-6851). We have further characterized this inhibitor with respect to its interaction with both urokinase and tissue plasminogen activator, and its protease specificity. The HTC PA inhibitor rapidly inhibits urokinase and tissue plasminogen activator with an apparent second-order rate constant of 3-5 x 10(7) M-1 X s-1. The inhibitor forms stable covalent complexes with both urokinase and tissue plasminogen activator, with which plasmin, trypsin, and factor Xa apparently do not compete. Complex formation is saturable and requires the active site of the PA. The mass of the inhibitor-PA complex is 50,000 daltons greater than that of PA alone, consistent with an Mr for the PA inhibitor of 50,000 as demonstrated directly by reverse fibrin autography. The HTC PA inhibitor does not inhibit thrombin and differs in its kinetic and biochemical properties from protease nexin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号