首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Cyclic AMP response element-binding protein (CREB) is a 43-kDa polypeptide that binds a cAMP response element located at the 5 promoter region of cAMP regulatory genes. The spatial and temporal distribution of CREB in the post-natal development of the rat submandibular gland was investigated using immunohistochemistry with a specific antibody. At birth, cells of the terminal tubules and ducts in the submandibular gland showed a nuclear CREB immunoreactivity of moderate intensity. At 1–2 weeks after birth, an intense CREB immunoreactivity was localized primarily to acinar cells. When the r352;-adrenergic agonist isoproterenol was administered to 2-week-old rats, a twofold transient increase in the number of immunoreactive acinar cells was induced. Beginning 3 weeks after birth, CREB immunoreactivity shifted from acini to the duct system and showed a clear localization in the cells of the intercalated ducts and distal portions of striated ducts, where the granular convoluted tubule develops after 4 weeks. Immunopositive materials were localized exclusively in the nuclei of both acinar and ductal immunoreactive cells. After the development of the granular convoluted tubules, CREB immunoreactivity was absent in the tubule cells and was gradually reduced in intensity over the entire gland. In order to examine a hypothesis that CREB is involved in the initial differentiation of the granular convoluted tubular cells, testosterone was administered to hypophysectomized adult rats. Whereas the tubular cells of hypophysectomized rats showed a complete regression, and no CREB immunoreactivity was found in any acinar or duct cells, administration of testosterone for a few days induced an intense CREB immunoreactivity in the nuclei of duct cells, followed by their differentiation into the granular convoluted tubular cells. These results suggested that CREB is involved not only in the growth and differentiation of acinar ce lls that are regulated by r352;-adrenergic nerves but also in those of the duct system, and especially in the androgen-regulated differentiation of the granular convoluted tubular cells, during the post-natal development of the rat submandibular gland.  相似文献   

2.
The prenatal development of the human submandibular gland has been investigated in 26 fetuses from the 10th week of gestation to full term. At 10-12 weeks, the glandular elements (primitive ducts and acini) were immature and surrounded by a loose mesenchyme. The acinar cell population increased gradually till the age of 32 weeks, and the rate of increase was diminished thereafter. At 16 weeks, intercalated and striated ducts were distinguished and their number increased till the age of 32 weeks when their number seemed to be stabilized. The development of the granular convoluted tubule cells from the proximal segments of striated ducts occupied the later stages of development. They appeared around the age of 20 weeks and proceeded till full term. At birth, the gland appeared devoid of mucous acini and fat cells and the secretory end-pieces were of the serous type. During the second trimester, periodic acid-Schiff- and alcian blue-positive secretory materials appeared in the epithelial cells of both ducts and acini, and in their lumina. This secretory activity was transitory and disappeared around the age of 28 weeks. The possible function of these secretory products is discussed.  相似文献   

3.
Kallikrein has been localized in rodent kidney and salivary glands by means of an immunoglobulin-enzyme bridge technique. In sections of kidney, anti-kallikrein antibodies bound to the apical region of certain distal tubule segments in the cortex, to reabsorption droplets of proximal convoluted tubules, and to certain duct segments in the papilla. In salivary glands of both male and female rats and mice, and apical rim of most striated duct cells of submandibular, parotid and sublingual glands and granular tubules of submandibular glands exhibited immunoreactivity. Granular intercalated duct cells in female submandibular glands also displayed immunostaining for kallikrein. Phenylephrine administration resulted in loss of immunoreactive granules from the granular convoluted tubule cells of male mouse submandibular gland. This response was paralleled by a biochemically demonstrable decrease in kallikrein-like tosylarginine methyl ester (TAME) esterase activity.  相似文献   

4.
Summary Morphological changes in submandibular glands of female mice following ovariectomy were studied morphometrically by light microscopy and ultrastructurally by electron microscopy. The X zone of the adrenal gland was examined in order to assess possible changes that might be expected to occur after ovariectomy.In submandibular glands, 1 to 4 weeks after ovariectomy, no changes were observed in percentages of the acinar, intercalated duct, and granular convoluted tubular areas occupying photomicrographs. However, an increase in the granular content of both intercalated duct and granular convoluted tubular cells was recognized. By contrast, the glandular picture 4 months after ovariectomy changed remarkably, resembling that of the male mouse both morphometrically and in terms of fine structure. In the adrenal cortex of control female mice, the X zone became thinner with aging. As compared with this, the X zone of ovariectomized mice at any time after the operation was thicker than that of controls.These observations suggest that the absence of ovarian hormones in the ovariectomized mouse may lead to prolonged functioning of X zone cells, which in turn may cause masculinization of the submandibular gland.  相似文献   

5.
Osteopontin is a multifunctional protein secreted by epithelial cells of various tissues. Its expression in the adult rat major salivary glands has not yet been studied. We examined osteopontin expression by immunohistochemistry using a well characterized monoclonal antibody. Submandibular glands of young adult male rats (70–100 days old) showed specific expression in secretion granules of granular duct cells but also in cells of the striated ducts and excretory duct. In the major sublingual as well as the parotid gland expression was found solely in the duct system. In addition, a few interstitial-like cells exhibiting very strong immunostaining for osteopontin could be found in either organ. Expression could neither be seen in acinar cells nor in cells of the intercalated ducts. Moreover, in submandibular glands of more aged rats (6- to 7-month old) which show well developed granular convoluted tubules, there was almost exclusive expression of osteopontin in granular duct cells as well as in some interstitial-like cells, but barely in the striated/excretory duct system. Western blot analysis of the submandibular gland showed a specific band migrating at approximately 74 kDa, detectable at both age stages. Osteopontin secreted fom granular duct cells may influence the compostion of the saliva, e.g. thereby modulating pathways affecting sialolithiasis. Its expression in striated duct cells may also hint to roles such as cell–cell attachment or cell differentiation. The cell-specific expression detected in the rat major salivary glands differs in part from that reported in mice, human and monkey.Nicholas Obermüller and Nikolaus Gassler contributed equally to this work.  相似文献   

6.
利用生物显微技术观察和研究了四川短尾鼩(Anourosorex squamipes)唾液腺的组织结构。结果表明,腮腺属纯浆液腺,有闰管和分泌管,无颗粒曲管;颌下腺属混合腺,以混合性腺泡为主,有少量浆液性腺泡和黏液性腺泡,有闰管、颗粒曲管和分泌管;舌下腺属纯黏液腺,有闰管和分泌管,无颗粒曲管,但在分泌管上存在有颗粒曲管细胞。  相似文献   

7.
We employed immunocytochemical and in situ hybridization techniques to study the expression of transforming growth factor beta 1 (TGF-beta 1) in rat submandibular gland. Immunoreactivity for TGF-beta 1 was observed in the cells of granular convoluted tubules (GCTs), striated ducts, and excretory ducts, whereas it was absent in the intercalated ducts and secretory acini in both male and female rats. Immunoelectron microscopy revealed the ultrastructural localization of TGF-beta 1 in the secretory granules of GCT cells. On the other hand, signals for rat TGF-beta 1 mRNA were abundant in the GCT and striated duct cells but were lacking in the excretory duct cells. These results provided evidence for the production of TGF-beta 1 in the GCTs and striated ducts of rat submandibular gland.  相似文献   

8.
9.
 S100 proteins are calcium-binding proteins of the EF-hand superfamily and are involved in the regulation of a number of cellular processes. The present study deals with the immunohistochemical expression of S100A1 and S100A6 in the rat submandibular and sublingual glands during postnatal development from day 0 to 12 weeks. Expression of S100A1 was particularly concentrated in pillar and transition cells in the granular convoluted tubule (GCT) and in striated duct cells of the submandibular gland age 4 weeks to maturity. None or only weak staining for S100A1 was observed in the duct segment at 0–5 days. On the contrary, immunostaining of S100A6 was present in proacinar cells in undifferentiated submandibular gland at age 3 days to 2 weeks. S100A6 immunoreactivity in rat submandibular gland coexisted with chromogranin reactivity. It is possible that S100A6 regulates secretion of chromogranin in proacinar cells. Secretion of growth factors and biologically active peptides in the GCT are regulated by calcium signals, and S100A1 may be involved in the secretory mechanism of granular cells. S100A1 and S100A6 are potentially of great importance in secretory functions of granular cells and proacinar cells, as well as in rat salivary glands. Accepted: 14 July 1998  相似文献   

10.
Summary A light microscopic histochemical investigation of endogenous peroxidase activity in specimens of the submandibular salivary glands of man, hamster, rabbit, dog and guinea pig was carried out. A modification of the original Graham and Karnovsky diaminobenzidine (DAB)-hydrogen peroxide method was employed at different pH's.At all pH's (6.0, 7.6, and 9.0) a positive DAB reaction was found: in serous acinar cells in four of seven human submandibular glands, in convoluted tubule cells of the hamster, in acinar tissue, in secretory granular tubule cells and in the saliva of the guinea pig. This staining pattern was not markedly affected by KCN or 2,4-dichlorophenol (DCP). Furthermore, small cytoplasmic granules in collecting ducts of the dog displayed positive, KCN- and DCP-resistant DAB staining at all pH's tested. No reaction was observed in the acinar cells of the dog and rabbit glands.Mitochondrial oxidation of DAB in the striated duct cells occurred in all of the glands examined. Optimal staining of these cells was obtained at pH 6.0, but there was also strong positive staining at pH 7.6. At pH 9.0, however, the staining of the striated duct cells was very faint. The positive reaction in the striated duct cells was completely abolished by KCN.  相似文献   

11.
 Secreted carbonic anhydrase (isozyme VI; CA VI) was localized by immunohistochemistry in the developing postnatal rat submandibular and parotid glands using a specific monoclonal antibody to the rat enzyme. CA VI immunostaining was not detectable in the glands before birth. In the submandibular gland, granular immunostaining for CA VI was detectable in several terminal tubule cells of 1-day-old rats. At 1 week, the CA VI-positive cells were located at the periphery of the terminal tubules and appeared to be budding off the tubules. These cellular buds gradually increased, and, by 4 weeks, formed acini. CA VI was also detected in the duct lumen from day 1. The immunostaining in the parotid gland was detected sporadically in the acinar cells at 2 or 3 weeks. By 4 weeks, when the gland was almost indistinguishable from the adult one, the number of positive acinar cells had increased. Their number, however, was far smaller than in the adult gland, and the enzyme could not be detected in the duct lumen. CA II was also localized using specific antibodies to the rat isozyme. CA II was detectable in the inter- and intralobular striated ducts at 2 weeks after birth in the submandibular gland and at 3 weeks in the parotid gland. These results suggset that CA VI is secreted into saliva from soon after birth and that CA II appears in parallel with the functional maturation of the ducts. In addition, CA II was transiently expressed by the cellular buds of the submandibular gland at 2 and 3 weeks. Accepted: 7 January 1998  相似文献   

12.
Androgen receptor in rat Harderian and submandibular glands   总被引:2,自引:0,他引:2  
Summary Androgens regulate the development and sexual dimorphism of rodent Harderian and submandibular glands. This effect is believed to be mediated by the androgen receptor. Immunohistochemistry and immunoblotting were carried out to study the receptor in normal, castrated and dihydrotestosterone-supplemented rat Harderian and submandibular glands. Immunohistochemically, the most intense nuclear staining was observed in the acinar cells of the submandibular glands, followed by intercalated duct cells. The granular convoluted tubules showed weak immunostaining and the striated ducts were negative. In the Harderian gland, nuclear staining was seen in both type I and II secretory cells. Castration and treatment had no effect on the expression of the androgen receptor protein in either gland. A 110 K androgen receptor signal was detected by immunoblotting in the Harderian gland but not in the submandibular gland. An experiment was designed to explore the possible effect of proteinases on the receptor protein in the homogenate of submandibular gland. Our results demonstrate the cell-specific location of the receptor in Harderian and submandibular glands, and show that the expression of the receptor protein is androgen-independent.  相似文献   

13.
14.
Summary The fine structure of the submandibular gland of the mouse with testicular feminization (Tfm/Y) was studied by light and electron microscopy. The architecture of the Tfm/Y gland proved to be rather similar to that of the normal female mouse in both tubular ratio and structure. Granular convoluted tubular cells in Tfm/Y mice characteristically had fewer secretory granules and increased cytoplasmic vacuoles than normal littermates, suggesting an altered synthesis of secretory granules in this cell type of the Tfm/Y mouse. Moreover, there were differences in the ultrastructure of submandibular glands between Tfm/Y and normal female mice. In the gland of the Tfm/Y mouse, basal striations of the striated secretory tubular cells were not so developed and granular intercalated duct cells were less than those of normal females. These findings support the evidence that the secretory tubule of the mouse submandibular gland responds to androgens, resulting in accentuated development in the male, while also suggesting the possibility that the mouse submandibular gland is regulated by other factors which lead to the prominent sexual dimorphism observed in this gland.  相似文献   

15.
Summary The submandibular glands of female mice and the sublingual and parotid glands of adult male and female mice have been examined by light microscopical immunocytochemistry for nerve growth factor (NGF). In female submandibular glands, staining for NGF was observed in granular convoluted tubule and striated duct cells. Sublingual glands of the mouse contained relatively few granular cells staining for NGF compared with submandibular glands. However, such granular cells appeared to be more numerous in male sublingual glands than in female glands. The remainder of the intralobular duct cells in both male and female sublingual glands exhibited apical subluminal staining for NGF as well as light basal plasmalemmal staining. Parotid glands in both male and female mice exhibited a similar pattern of staining for NGF in striated duct cells. However, the glands did not contain granular cells nor did they exhibit any pattern of staining which reflected a sexual dimorphism. Immunodot staining of salivary gland extracts confirmed the presence of immunoreactivity for NGF in all three of the major salivary glands.  相似文献   

16.
Mouse submandibular glands show an androgen-dependent sexual dimorphism, reflected in higher concentrations in males than in females of bioactive peptides, such as epidermal growth factor (EGF), nerve growth factor, and renin in the cells of the granular convoluted tubules (GCT). Biochemical studies have demonstrated androgen receptors in submandibular gland and other androgen-responsive organs in mouse. We have determined the cellular localization of these receptors using steroid autoradiography. Fifteen adult gonadectomized male mice were injected intravenously with 0.13 microgram or 0.26 microgram [3H]-dihydrotestosterone (SA 135 Ci/mM); some animals were pre-treated with cyclocytidine to stimulate secretion by GCT cells. Animals were killed 15 min, 1, 2, or 3 hr after isotope injection. Steroid autoradiographs were prepared, and some were stained immunocytochemically for EGF. Of the different cell types of submandibular gland, the acinar cells most frequently and intensely concentrated [3H]-DHT; GCT cells also concentrated the hormone, as did a small number of striated duct cells. In the other major salivary glands, the only cells that concentrated the androgen were interlobular striated duct cells in sublingual gland. In prostate, anterior pituitary, and brain a large number of cells concentrated androgen, as has been previously reported. Androgen binding by the GCT cells was a predictable finding, since androgen-induced alterations in composition and form of these cells are well documented. The intense androgen concentration by the acinar cells was an unexpected finding and suggests a hitherto unknown androgen regulation of these cells. An incidental finding was intense concentration of [3H]-DHT in the nuclei of the endothelial cells of the post-capillary venules of the cervical lymph nodes.  相似文献   

17.
In squirrel monkey (Saimiri sciureus) the position of submandibular glands in the neck, on either side of the trachea, more closely resembles that of rodents than that of other primates. The glands exhibit seromucous acini and mucous tubules with seromucous demilunes. Electron microscopy shows basal cytoplasmic folds and well-developed intercellular tissue spaces and canaliculi only in relation to seromucous cells. Greatly dilated cisternae of the granular endoplasmic reticulum and prominent Golgi membranes are characteristic of the mucous cells. The secretory granules of seromucous and mucous cells are morphologically distinct and indicate chemically different products for the two cell types. Histochemically, the seromucous cell shows the presence of acid mucosubstance as indicated by the PAS and Alcian blue techniques. Preliminary studies showed no appreciable quantity of amylase in submandibular glands. The intercalated duct cell is juxtaposed with the acinar cell or mucous tubule cell. Short luminal microvilli, prominent Golgi complexes and scant apical granules are notable features of intercalated duct cells. Four cell types compose the striated ducts, viz., granular light cells, agranular dark cells, vesiculated dark cells, and basal cells. Peripheral nerves are found in five different locations: in the connective tissue (interstitial), between adjacent myoepithelial and mucous-secreting cells, in the intercellular space between adjacent secretory cells, and between basal plications of striated ducts and between adjacent myoepithelial and intercalated duct cells.  相似文献   

18.
Summary The fine structure of the secretory units of the mouse submandibular gland was studied according to the developmental sequence. The embryonic submandibular gland consists of terminal tubules and ducts. Myoepithelium is associated only with the terminal tubules, and the cells of the primary intercalated ducts show characteristics of the young striated duct cells. The major changes shortly after birth consist of: 1) opening of the secretory lumina, 2) increasing rough ER and its altered configuration, 3) dilatation of Golgi cisternae and 4) changes in the granular structure. These findings suggest that the salivary secretion first occurs after birth, and acinar differentiation or transformation of the secretory cells of the terminal tubules is induced and profoundly affected by the commencement of the secretory activity. In the intercalated ducts this process is somehow inhibited, and the granular cells found in the adult can be considered as the remnants of the secretory cells of the terminal tubules.  相似文献   

19.
The structural and functional development of the striated ducts and convoluted granular tubules (CGT) of the rat submandibular gland (SMG) were studied by electron microscopy and alkaline protease chemistry. Development of the SMG was followed from 14 days of gestation through 30 weeks of age. The specialized morphology of the basal aspect of the striated duct cells arises from cellular extensions which are first seen at 20 days of gestation. These processes elongate and intertwine with similar processes from adjacent cells, and as the cells enlarge the processes are compressed together giving the appearance of "infolding" of the basal plasma membrane. Mitochondria migrate to the basal part of the cell and are seen in close relationship to the cellular extensions throughout the development of these cells. Development of the striated duct is complete by one week after birth. The CGT develop from the proximal portions of intralobular striated ducts. At one week after birth, cells of the proximal striated duct demonstrate apical vacuoles. By two weeks after birth these vacuoles are replaced by distinct zymogen-like granules. There is a progressive accumulation of large numbers of secretory granules in the CGT cells as the animals age. However, rough endoplasmic reticulum is a relatively inconspicuous cellular component throughout development. The accumulation of alkaline protease activity in the gland closely parallels the pattern of granule accumulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号