首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The calf eye lens homogenate incubated with [1-14C-acetyl] aspirin and separated into HMW, α, βH, βL and γ-crystallins by means of Sepharose 6B and Bio-Gel P2 columns showed radioactivity in all the crystallins. In contrast, no radioactivity was found in the crystallins when the lens homogenate was incubated with [14C-carboxyl] aspirin. These experiments clearly indicated that the eye lens crystallins are acetylated with aspirin. Furthermore, no decrease in the radioactivity in the crystallins after exhaustive dialysis against 0.15M NaCl suggests a covalent type of binding of acetyl moiety of aspirin to the lens crystallins. The significant decrease in the free ε-amino groups of aspirin-treated crystallins further suggests the probable sites of acetylation in the crystallins. It may be concluded that acetylation of free ε-amino groups of lens crystallins by aspirin may confer protection against crystallin aggregation in cataractogenesis.  相似文献   

2.
Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins) and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.  相似文献   

3.
The α-, β-, and γ-crystallins, proteins characteristic for the vertebrate eye lens, have been localized in the developing lens of Notophthalmus viridescens, the eastern spotted newt. Using the immunofluorescence technique, antibodies to the α-, β-, and γ-crystallin classes were applied to tissue sections through the eye region of developing N. viridescens embryos, Harrison (external) Stages 30 to 46+. β-Crystallins were the first of the crystallins to appear in a few cells of the lens vesicle even before the lengthening of the prospective primary fiber cells. γ-Crystallins were first detectable at a slightly more advanced stage in the prospective primary fibers, and α-crystallins in a few cells of the beginning primary fiber area. The external layer/epithelium was negative for β-crystallins until late in lens morphogenesis, and α- and γ-crystallins could not be detected in these cells at any time. This, the first use in amphibia of homologous antibodies specific for the crystallin classes, makes clear that phylogenetic differences exist as to the primacy and relevance of specific crystallins to events during morphogenesis of the eye lens.  相似文献   

4.
The vertebrate lens evolved to collect light and focus it onto the retina. In development, the lens grows through massive elongation of epithelial cells possibly recapitulating the evolutionary origins of the lens. The refractive index of the lens is largely dependent on high concentrations of soluble proteins called crystallins. All vertebrate lenses share a common set of crystallins from two superfamilies (although other lineage specific crystallins exist). The α-crystallins are small heat shock proteins while the β- and γ-crystallins belong to a superfamily that contains structural proteins of uncertain function. The crystallins are expressed at very high levels in lens but are also found at lower levels in other cells, particularly in retina and brain. All these proteins have plausible connections to maintenance of cytoplasmic order and chaperoning of the complex molecular machines involved in the architecture and function of cells, particularly elongated and post-mitotic cells. They may represent a suite of proteins that help maintain homeostasis in such cells that are at risk from stress or from the accumulated insults of aging.  相似文献   

5.
A T Mikha?lov 《Ontogenez》1978,9(5):439-448
Antisera were obtained to the total extract and individual electrophoretic fractions of lens proteins: alpha-, beta-, gamma1- and gamma2-crystallins. The crystallins under study are immunochemically heterogenous: each class of lens proteins contains 2--4 antigens. Using the indirect method of fluorescent antibodies, it was established that the appearance of crystallins during development coincided with the onset of formation of the presumptive lens fibers. No crystallins were found in the lens placode and early lens vesicle. gamma-Crystallins appear later than the other lens proteins and are characteristic, mainly, for the lens fibers; at the advanced stages of organogenesis gamma-crystallins are regularly found in the epithelial cells of the developing lens as well.  相似文献   

6.
Keenan J  Manning G  Elia G  Dunn MJ  Orr DF  Pierscionek BK 《Proteomics》2012,12(11):1830-1843
The eye lens remains transparent because of soluble lens proteins known as crystallins. For years γ-crystallins have been known as the main lens proteins in lower vertebrates such as fish and amphibians. The unique growth features of the lens render it an ideal structure to study ageing; few studies have examined such changes in anuran lenses. This study aimed to investigate protein distribution patterns in Litoria infrafrenata and Phyllomedusa sauvagei species. Lenses were fractionated into concentric layers by controlled dissolution. Water-soluble proteins were separated into high (HMW), middle (MMW) and low molecular weight (LMW) fractions by size-exclusion HPLC and constituents of each protein class revealed by 1DE and 2DE. Spots were selected from 2DE gels on the basis of known ranges of subunit molecular weights and pH ranges and were identified by MALDI-TOF/TOF MS following trypsin digestion. Comparable lens distribution patterns were found for each species studied. Common crystallins were detected in both species; the most prominent of these was γ-crystallin. Towards the lens centre, there was a decrease in α- and β-crystallin proportions and an increase in γ-crystallins. Subunits representing taxon-specific crystallins demonstrating strong sequence homology with ζ-crystallin/quinone oxidoreductase were found in both L. infrafrenata and P. sauvagei lenses. Further work is needed to determine which amphibians have taxon-specific crystallins, their evolutionary origins, and their function.  相似文献   

7.
The optical properties of the lens are dependent upon the integrity of proteins within the fiber cells. During aging, crystallins, the major intra-cellular structural proteins of the lens, aggregate and become water-insoluble. Modifications to crystallins and the lens intermediate filaments have been implicated in this phenomenon. In this study, we examined changes to, and interactions between, human lens crystallins and intermediate filament proteins in lenses from a variety of age groups (0-86years). Among the lens-specific intermediate filament proteins, filensin was extensively cleaved in all postnatal lenses, with truncated products of various sizes being found in both the lens cortical and nuclear extracts. Phakinin was also truncated and was not detected in the lens nucleus. The third major intermediate filament protein, vimentin, remained intact in lens cortical fiber cells across the age range except for an 86year lens, where a single ~49kDa breakdown product was observed. An αB-crystallin fusion protein (maltose-binding protein-αB-crystallin) was found to readily exchange subunits with endogenous α-crystallin, and following mild heat stress, to bind to filensin, phakinin and vimentin and to several of their truncated products. Tryptic digestion of a truncated form of filensin suggested that the binding site for α-crystallin may be in the N-terminal region. The presence of significant amounts of small peptides derived from γS- and βB1-crystallins in the water-insoluble fraction of the lens indicates that these interact tightly with cytoskeletal or membrane components. Interestingly, water-soluble complexes (~40kDa) contained predominantly γS- and βB1-crystallins, suggesting that cross-linking is an alternative pathway for modified β- and γ-crystallins in the lens.  相似文献   

8.
A crystallin was isolated from the homogenate of the Squid (Loligo pealii) lens by gel filtration on a Sepharose CL-6B (2.5 X 170 cm) column. Biochemical characterization showed it is a dimeric protein with a molecular weight of (5.1 +/- 0.4) X 10(4) and a Stokes' radius of 26A. Electrophoresis on a cellulose acetate membrane indicated it is a basic protein with an isoelectric point higher than 8.6. High resolution two-dimensional gel in 8 M urea/2% NP-40 resolved this crystallin into 6 charge isomers, each with a major subunit of molecular weight 29,000 daltons and a minor subunit of 27,000 daltons in a molar ratio of 3:1. The extreme susceptibility of the protein to denaturation and precipitation even at low temperature hampered further characterization of this crystallin under nondenaturing conditions. Amino acid analysis indicated it contains an unusually high content of methionine (12.8 mol%) which may have some bearing on the instability of this crystallin in vitro. Biochemical comparison of the squid crystallin with mammalian lens crystallins shows that it is a crystallin distinguishable from all reported vertebrate lens crystallins. A detailed study of this protein may shed light on the evolution of lens crystallins in general.  相似文献   

9.
Crystallins are the major proteins in the lens of the eye and function to maintain transparency of the lens. Of the human crystallins, α, β, and γ, the β-crystallins remain the most elusive in their structural significance due to their greater number of subunits and possible oligomer formations. The β-crystallins are also heavily modified during aging. This review focuses on the functional significance of deamidation and the related modifications of racemization and isomerization, the major modifications in β-crystallins of the aged human lens. Elucidating the role of these modifications in cataract formation has been slow, because they are analytically among the most difficult post-translational modifications to study. Recent results suggest that many amides deamidate to similar extent in normal aged and cataractous lenses, while others may undergo greater deamidation in cataract. Mimicking deamidation at critical structural regions induces structural changes that disrupt the stability of the β-crystallins and lead to their aggregation in vitro. Deamidations at the surface disrupt interactions with other crystallins. Additionally, the α-crystallin chaperone is unable to completely prevent deamidated β-crystallins from insolubilization. Therefore, deamidation of β-crystallins may enhance their precipitation and light scattering in vivo contributing to cataract formation.  相似文献   

10.
1. The four crystallins of the gray squirrel lens have been characterized using gel filtration chromatography, polyacrylamide gel electrophoresis, and immunoblotting. Alpha, beta-heavy, beta-light, and gamma crystallins of squirrel lenses have been identified immunologically, and they cross-react strongly with rabbit polyclonal antibodies. The gamma-24 crystallin of the squirrel lens also reacts strongly with monoclonal anti-human lens gamma-24, as shown by its inhibition of the ELISA reaction by 85%. 2. The water-insoluble urea soluble proteins represent non-covalently associated species of soluble crystallins and the lens cytoskeletal proteins. The membrane intrinsic protein in the urea insoluble pellet has a mol. wt of 27,000 but other lower and higher mol. wt components are also present, which were removed by washing with 0.1 NaOH. The N-terminal 30 amino acid of squirrel lens gamma crystallin was found to be identical to that of the bovine (and human) lens. 3. Measurements of the distribution and state of SH and SS compounds in the squirrel lens have shown greater similarities to those of primates than those of rodents. The findings show that on the basis of both protein and sulfur chemistry the squirrel lens is a representative model for studies of oxidative lens changes in diurnal animals, including man.  相似文献   

11.
Age-related cataract is a result of crystallins, the predominant lens proteins, forming light-scattering aggregates. In the low protein turnover environment of the eye lens, the crystallins are susceptible to modifications that can reduce stability, increasing the probability of unfolding and aggregation events occurring. It is hypothesized that the alpha-crystallin molecular chaperone system recognizes and binds these proteins before they can form the light-scattering centres that result in cataract, thus maintaining the long-term transparency of the lens. In the present study, we investigated the unfolding and aggregation of (wild-type) human and calf betaB2-crystallins and the formation of a complex between alpha-crystallin and betaB2-crystallins under destabilizing conditions. Human and calf betaB2-crystallin unfold through a structurally similar pathway, but the increased stability of the C-terminal domain of human betaB2-crystallin relative to calf betaB2-crystallin results in the increased population of a partially folded intermediate during unfolding. This intermediate is aggregation-prone and prevents constructive refolding of human betaB2-crystallin, while calf betaB2-crystallin can refold with high efficiency. alpha-Crystallin can effectively chaperone both human and calf betaB2-crystallins from thermal aggregation, although chaperone-bound betaB2-crystallins are unable to refold once returned to native conditions. Ordered secondary structure is seen to increase in alpha-crystallin with elevated temperatures up to 60 degrees C; structure is rapidly lost at temperatures of 70 degrees C and above. Our experimental results combined with previously reported observations of alpha-crystallin quaternary structure have led us to propose a structural model of how activated alpha-crystallin chaperones unfolded betaB2-crystallin.  相似文献   

12.
We previously reported that the ocular lenses of the pontellid copepod Anomalocera ornata possess vertebrate-like β- and γ-crystallins. We cannot repeat our earlier data suggesting that the copepod lens crystallins belong to the β- and γ-crystallin family of proteins. Our new data are consistent with the copepod crystallins being novel proteins.  相似文献   

13.

Background

The cortex and nucleus of eye lenses are differentiated by both crystallin protein concentration and relative distribution of three major crystallins (α, β, and γ). Here, we explore the effects of composition and concentration of crystallins on the microstructure of the intact bovine lens (37 °C) along with several lenses from Antarctic fish (− 2 °C) and subtropical bigeye tuna (18 °C).

Methods

Our studies are based on small-angle X-ray scattering (SAXS) investigations of the intact lens slices where we study the effect of crystallin composition and concentration on microstructure.

Results

We are able to distinguish the nuclear and cortical regions by the development of a characteristic peak in the intensity of scattered X-rays. For both the bovine and fish lenses, the peak corresponds to that expected for dense suspensions of α-crystallins.

Conclusions

The absence of the scattering peak in the nucleus indicates that there is no characteristic wavelength for density fluctuations in the nucleus although there is liquid-like order in the packing of the different crystallins. The loss in peak is due to increased polydispersity in the sizes of the crystallins and due to the packing of the smaller γ-crystallins in the void space of α-crystallins.

General significance

Our results provide an understanding for the low turbidity of the eye lens that is a mixture of different proteins. This will inform design of optically transparent suspensions that can be used in a number of applications (e.g., artificial liquid lenses) or to better understand human diseases pathologies such as cataract.  相似文献   

14.
Crystallins are present in the lens at extremely high concentrations in order to provide transparency and generate a high refractive power of the lens. The crystallin families prevalent in the highest density lens tissues are γ-crystallins in vertebrates and S-crystallins in cephalopods. As shown elsewhere, in parallel evolution, both have evolved molecular refractive index increments 5-10% above those of most proteins. Although this is a small increase, it is statistically very significant and can be achieved only by very unusual amino acid compositions. In contrast, such a molecular adaptation to aid in the refractive function of the lens did not occur in crystallins that are preferentially located in lower density lens tissues, such as vertebrate α-crystallin and taxon-specific crystallins. In the current work, we apply a model of non-interacting hard spheres to examine the thermodynamic contributions of volume exclusion at lenticular protein concentrations. We show that the small concentration decrease afforded by the higher molecular refractive index increment of crystallins can amplify nonlinearly to produce order of magnitude differences in chemical activities, and lead to reduced osmotic pressure and the reduced propensity for protein aggregation. Quantitatively, this amplification sets in only at protein concentrations as high as those found in hard lenses or the nucleus of soft lenses, in good correspondence to the observed crystallin properties in different tissues and different species. This suggests that volume exclusion effects provide the evolutionary driving force for the unusual refractive properties and the unusual amino acid compositions of γ-crystallins and S-crystallins.  相似文献   

15.
Total soluble and insoluble proteins of the lens were similar in normal and hereditary cataractous mice up to 1 week of age. Thereafter, the normal mouse lens showed a continued increase in weight and protein content until 500 days of age. In cataractous mice, while the total protein content increased up to 60 days and reached a plateau, the soluble protein content declined dramatically from day 22 to day 60, and then the rate of decrease remained constant up to 500 days.At different ages, the soluble proteins were separated by gel filtration into the high molecular weight proteins, α-, β- and γ-crystallin fractions. All of these showed an age-related increase in the normal lens, and the relative values of α- and β-crystallins increased for a 410-day period. On the other hand, in the cataractous process, the high molecular weight protein increased, and α-, β- and γ-crystallins decreased: the degree was especially marked in γ-crystallin.Immunochemical studies indicated that the aggregation of β-crystaUin occurred much earlier in the cataractous lens than in the normal. Analysis of the amino acid composition and ultraviolet absorption spectre revealed no significant chemical differences between the crystallins of the normal and the cataractous lens.  相似文献   

16.
γ-Crystallins constitute the major protein component in the nucleus of the vertebrate eye lens. Present at very high concentrations, they exhibit extreme solubility and thermodynamic stability to prevent scattering of light and formation of cataracts. However, functions beyond this structural role have remained mostly unclear. Here, we calculate molecular refractive index increments of crystallins. We show that all lens γ-crystallins have evolved a significantly elevated molecular refractive index increment, which is far above those of most proteins, including nonlens members of the βγ-crystallin family from different species. The same trait has evolved in parallel in crystallins of different phyla, including S-crystallins of cephalopods. A high refractive index increment can lower the crystallin concentration required to achieve a suitable refractive power of the lens and thereby reduce their propensity to aggregate and form cataracts. To produce a significant increase in the refractive index increment, a substantial global shift in amino acid composition is required, which can naturally explain the highly unusual amino acid composition of γ-crystallins and their functional homologues. This function provides a new perspective for interpreting their molecular structure.  相似文献   

17.
The appearance of the crystallins during lens development in the periodic albinism (ap/ap) mutant of Xenopus laevis has been studied. Using antibodies specific for total crystallins, α+β crystallins, and γ crystallins in the immunofluorescence technique, the first positive reaction for all could be demonstrated in the Nieuwkoop-Faber Stage 31 lens rudiment. The antibody to α+β crystallins exhibited differences in intensity from cell to cell in the early rudiment, while the reaction to the other antibodies was uniform throughout the rudiment. As lens differentiation progressed, immunofluorescence was restricted in all cases to the lens fiber area, up to and including Nieuwkoop-Faber Stage 45. The lens epithelium of the one-year-old adult ap/ap was positive, however, for total lens crystallins.
These results are at variance with earlier studies on lens development and the crystallins in wild-type (+/+) X. laevis , where a positive reaction for y and total crystallins could be detected earlier, and in the lens epithelium of Nieuwkoop-Faber Stage 41 embryos for total lens crystallins. That this divergence in the mutant is due to a pleiotropic effect or directly to the inductive failure of the endomesoderm to initiate melanogenesis, is discussed.  相似文献   

18.
Summary Variations in size and charge of calf lens proteins, particularly gamma crystallins, were studied by polyacrylamide gel electrophoresis. Exposure of gamma crystallins to near-UV light in the presence of L-tryptophan produces species of higher electrophoretic mobility and higher retardation. Treatment with urea and sulfonation also produced changes in the retardation co-efficient. The increase of retardation co-efficient of gamma crystallin is interpreted to be a result of conformational changes. Gamma crystallins are particularly sensitive to photo-modification, and this process may be associated with age-related changes in the lens.Supported by research grants from the U.S.P.H.S. EY #00459, a FIGHT-FOR-SIGHT Postdoctoral Research Fellowship (FIGHT-FOR-SIGHT, INC., N.Y.C.) and The Rochester Eye and Human Parts Bank, Inc.  相似文献   

19.
A review of literature on tissue-specific proteins of the vertebrate eye lens and genes coding for these proteins is presented. Particular attention is paid to the most heterogeneous family of crystallins: - and -crystallins, their nomenclature, and the structure of their genes. It is pointed out that mutations in gene coding for ubiquitous crystallins may be related to some forms of cataracts.  相似文献   

20.
The TVI cell line, derived from dorsal iris cells of adult newts ( Notophthalmus viridescens ), was investigated for the presence of crystallins. Since there is reason to believe that iris epithelial cells are the main sources of this cell line and since iris epithelial cells are known to convert into lens cells in primary cultures, it is possible that TVI cells also possess the capacity to synthesize crystallins, those proteins characteristic of lens cells. It is also possible, however, that the large number of passages gone through by TVI cells in the past has eliminated such differentiated synthetic capacity expressed in earlier generations. Our immunoelectrophoresis studies reveal the presence of small amounts of α and β crystallins, and the absence of γ crystallins in TVI cells. Furthermore, immunofluorescence observations demonstrate that a small number of cells comparable to lens epithelial cells in crystallin composition and morphology are present in TVI cultures. In view of the fact that in the amphibian lens, epithelial cells which retain proliferative activity accumulate α and β crystallins but not γ crystallins, while fiber cells which are devoid of proliferative activity accumulate all three classes of crystallins, the present results suggest that the TVI cell line has lost the capacity to maintain lens fiber cells, which are known to be present in primary culture of iris epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号