首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Irreversible oxidation of reduced nicotinamide nucleotides by neutrophil-derived halogen oxidants (HOCl, chloramines, HOBr, etc.) is likely to be a highly lethal process, because of the essential role of NAD(P)H in important cell functions such as mitochondrial electron transport, and control of the cellular thiol redox state by NADPH-dependent glutathione reductase. Chloramines (chloramine-T, NH(2)Cl, etc.) and N-chloramides (N-chlorinated cyclopeptides) react with NADH to generate the same products as HOCl, i.e., pyridine chlorohydrins, as judged from characteristic changes in the NADH absorption spectrum. Compared with the fast oxidation of NADH by HOCl, k approximately 3 x 10(5) M(-1) s(-1) at pH 7.2, the oxidation by chloramines is about five orders of magnitude slower; that by chloramides is about four orders of magnitude slower. Apparent rate constants for oxidation of NADH by chloramines increase with increasing proton or buffer concentration, consistent with general acid catalysis, but oxidation by chloramides proceeds with pH-independent kinetics. In presence of iodide the oxidation of NADH by chloramines or chloramides is faster by at least two orders of magnitude; this is due to reaction of iodide with the N-halogen to give HOI/I(2), the most reactive and selective oxidant for NADH among HOX species. Quinuclidine derivatives (QN) like 3-chloroquinuclidine and quinine are capable of catalyzing the irreversible degradation of NADH by HOCl and by chloramines; QN(+)Cl, the chain carrier of the catalytic cycle, is even more reactive toward NADH than HOCl/ClO(-) at physiological pH. Oxidation of NADH by NH(2)Br proceeds by fast, but complex, biphasic kinetics. A compilation of rate constants for interactions of reactive halogen species with various substrates is presented and the concept of selective reactivity of N-halogens is discussed.  相似文献   

10.
11.
12.
13.
14.
Evolution by natural selection is the most ubiquitous and well understood process of evolution. We say distribution instead of the distribution of the density of populations of phenotypes across the values of their adaptive traits. A phenotype refers to an organism that exhibits a set of values of adaptive traits. An adaptive trait is a trait that a phenotype exhibits where the trait is subject to natural selection. Natural selection is a process by which populations of different phenotypes decline at different rates. An evolutionary distribution (ED) encapsulates the dynamics of evolution by natural selection. The main results are: (i) ED are derived by way of PDE of reaction-diffusion type and by way of integro-differential equations. The latter capture mutations through convolution of a kernel with the rate of growth of a population. The kernel controls the size and rate of mutations. (ii) The numerical solution of a logistic-like ED driven by competition corresponds to a bounded traveling wave solution of population models based on the logistic. (iii) Competition leads to increase in diversity of phenotypes on a single ED. Diversity refers to change in the number of local maxima (minima) within the bounds of values of adaptive traits. (iv) The principle of competitive exclusion in the context of evolution depends, smoothly, on the size and rate of mutations. (v) We identify the sensitivity—with respect to survival—of phenotypes to changes in values of adaptive traits to be an important parameter: increase in the value of this parameter results in decrease in evolutionary-based diversity. (vi) Stable ED corresponds to Evolutionary Stable Strategy; the latter refers to the outcome of a game of evolution.  相似文献   

15.
16.
For particulate suspensions and for solutions that scatter light measurably the total absorbance A generally contains contributions due to specific absorption (Aa) and scattering of light (As). The quantity As is closely related to the turbidity tau. In general, spectrophotometry of such systems requires proper modification of the spectrophotometer used in order to permit accurate determination of the absorbance A and of the derived quantities Aa and As. Apparent deviation from Beer's law in such systems is often due to inappropriate experimental technique. After a discussion of the parameters that determine the intensity of light scattered by solutes, an account is given of the experimental precautions to be taken for determination of the absorbance of light scattering suspensions and solutions and of techniques for correcting absorbance spectra for scattering of light. Measurement of the turbidity is briefly confronted with determination of the scattering ratio i90 degrees/Io and the impact of erroneous turbidity measurements on derived molecular parameters is discussed.  相似文献   

17.
18.
19.
Time-dependent regulations of cells and organisms can be analysed at different levels. One of these levels is the periodicity of cell functions such as cell division, metabolic processes (generation of ATP by glycolysis or oxidative mitochondrial processes) and the biosynthesis of cell constituents. Studies carried out on unicellular eukaryotes revealed the periodic, oscillatory nature of most of these processes. Time constants of these reactions vary from nanoseconds to hours-days, necessitating coupling mechanisms. Comparative studies revealed the coupling of the rapid processes (mitochondrial ATP generation) to the slower rhythms of the biosynthetic processes of macromolecules. Adenine nucleotides are involved in the coupling mechanisms between rapid and slow processes ("the slow dance of life to the music of time"). The mechanisms underlying these rhythmic processes involve either key allosteric regulatory enzymes (PFK for glycolysis) or "desensitization" of receptors by phosphorylation-dephosphorylation. At the organismic level the study of rhythmic processes is illustrated by the periodicity of heart beats, shown to exhibit multifractality, following apparently the formalism of deterministic chaos. Another example is the rhythmic oscillatory discharges of neuronal networks. The existence of subrhythmes mostly of epigenetic nature, facilitated probably the progressive adjustment of cells during evolution to the slow increase of day time since the separation of the moon from the earth. We analysed the mechanisms underlying the decline of these processes during aging. Loss of receptors or/and their uncoupling from their transmission pathway appear to be involved in most of these processes of decline. One conclusion of this review is the importance of epigenetic mechanisms both in the genesis and in the decline of these rythmic processes involved in time keeping by the cell.  相似文献   

20.
We present results contrasting food webs constructed using the same model where the source of species was either evolution or immigration from a previously evolved species pool. The overall structure of the webs are remarkably similar, although we find some important differences which mainly relate to the percentage of basal and top species. Food webs assembled from evolved webs also show distinct plateaux in the number of tropic levels as the resources available to system increase, in contrast to evolved webs. By equating the resources available to basal species to area, we are able to examine the species–area curve created by each process separately. They are found to correspond to different regimes of the tri-phasic species–area curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号