共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The mechanisms of carbon catabolite repression in bacteria 总被引:4,自引:0,他引:4
Deutscher J 《Current opinion in microbiology》2008,11(2):87-93
Carbon catabolite repression (CCR) is the paradigm of cellular regulation. CCR happens when bacteria are exposed to two or more carbon sources and one of them is preferentially utilised (frequently glucose). CCR is often mediated by several mechanisms, which can either affect the synthesis of catabolic enzymes via global or specific regulators or inhibit the uptake of a carbon source and thus the formation of the corresponding inducer. The major CCR mechanisms operative in Enterobacteriaceae and Firmicutes are quite different, but in both types of organisms components of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) and protein phosphorylation play a major role. PTS-independent CCR mechanisms are operative in several other bacteria. 相似文献
5.
van den Berg MA Albang R Albermann K Badger JH Daran JM Driessen AJ Garcia-Estrada C Fedorova ND Harris DM Heijne WH Joardar V Kiel JA Kovalchuk A Martín JF Nierman WC Nijland JG Pronk JT Roubos JA van der Klei IJ van Peij NN Veenhuis M von Döhren H Wagner C Wortman J Bovenberg RA 《Nature biotechnology》2008,26(10):1161-1168
6.
Production and catabolite repression of Penicillium italicum beta-glucanases. 总被引:5,自引:3,他引:2 下载免费PDF全文
The filamentous fungus Penicillium italicum, grown in a defined liquid medium, produced beta-1,3-glucanase, which remained essentially bound to the cells, and beta-1,6-glucanase, an essentially extracellular enzyme. When glucose was depleted from the medium, when a limited concentration of glucose (0.2%) was maintained, or when the carbon source was galactose (3%) or lactose (3%), a significant increase in the specific activity of beta-1,3-glucanase, in cell extracts, took place. This was paralleled by a very slow rate of growth, and under glucose limitation, the appearance of beta-1,3-glucanase in the medium was also observed. On the other hand, when an excess of glucose, fructose, or sucrose was present, the specific activity remained constant and active growth was promoted. Laminarin, cellobiose, gentiobiose, and isolated Penicillium italicum walls were not capable of significantly inducing beta-1,3-glucanase synthesis to a level beyond that attained by glucose limitation. A similar behavior was observed for beta-1,6-glucanase. beta-1,3-Glucanase and beta-1,6-glucanase are therefore constitutive enzymes subjected to catabolite repression. The results are discussed in the context of the possible functions that have been suggested for glucanases and related enzymes. 相似文献
7.
CcpA-dependent carbon catabolite repression in bacteria. 总被引:2,自引:0,他引:2
8.
Summary The role of mitochondria in carbon catabolite repression in Saccharomyces cerevisiae was investigated by comparing normal, respiratory competent (RHO) strains with their mitochondrially inherited, respiratory deficient mutant derivatives (rho). Formation of maltase and invertase was used as an indicator system for the effect of carbon catabolite repression on carbon catabolic reactions. Fermentation rates for glucose, maltose and sucrose were the same in RHO and rho strains. Specific activities of maltase and invertase were usually higher in the rho-mutants. A very pronounced difference in invertase levels was observed when cells were grown on maltose; rho-mutants had around 30 times more invertase than their RHO parent strains.The fact that rho-mutants were much less sensitive to carbon catabolite repression of invertase synthesis than their RHO parents was used to search for the mitochondrial factor(s) or function(s) involved in carbon catabolite repression. A possible metabolic influence of mitochondria on this system of regulation was tested after growth of RHO strains under anaerobic conditions (no respiration nor oxidative phosphorylation), in the presence of KCN (respiration inhibited), dinitrophenol (uncoupling of oxidative phosphorylation) and of both inhibitors anaerobic conditions and dinitrophenol had no effect on the extent of invertase repression. KCN reduced the degree of repression but not to the level found in rho-mutants. A combination of both inhibitors gave the same results as with KCN alone. Erythromycin and chloramphenicol were used as specific inhibitors of mitochondrial protein synthesis. Erythromycin prevented the formation of mitochondrial respiratory systems but did not induce rho-mutants under the conditions used. However, repression of invertase was as strong as in the absence of the inhibitor. Chloramphenicol led only to a slight reduction of the respiratory systems and did not affect invertase levels. A combination of both antibiotics had about the same effect as growth in the presence of KCN.The results showed that mitochondria are involved in carbon catabolite repression and they cause an increase in the degree of repression. These effects cannot be due to mere metabolic activities nor to factors made on the mitochondrial protein synthesizing machinery. This regulatory role of mitochondria is observed as long as an intact mitochondrial genome is maintained. 相似文献
9.
Dahl MK 《Journal of molecular microbiology and biotechnology》2002,4(3):315-321
The past decade has witnessed an exiting unveiling of numerous molecular mechanisms that characterize signal transduction by protein-protein interaction. The recent findings encouraged an increasing effort to understand the sequential metabolism of different sugars available as energy sources at the same time. It seems probable that at least three principle mechanisms which act together or separately, mediate carbon catabolite repression (CCR) depending on the system which is under metabolic control: i) by the main signal transducing chain via the ATP-dependent HPr-kinase, HPr(Ser46-P) or alternatively Crh via the central component CcpA and its interaction with cre, ii) by signals sensed from the specific regulators directly or via phosphorylation by HPr, iii) by inducer exclusion based on the concurrence of the enzyme IIA(Glc) domain of the glucose permease, and other PTS-dependent permeases composed only of the B and C domains and lacking the enzyme IIA domain. 相似文献
10.
The strain Penicillium purpurogenum P-26 was subjected to UV irradiation and N-methyl-N′-nitro-N-nitrosoguanidine treatment and mutants were isolated capable of synthesizing cellulase under the conditions of a high concentration
of glucose. Initially mutants resistant to catabolite repression by 2-deoxy-D-glucose were isolated on Walseth’s cellulose/agar plates containing 15–45 mM 2-deoxy-D-glucose. These mutants were again screened for resistance to catabolite repression by glycerol or glucose on Walseth’s cellulose/agar
plates containing 50 g/l glycerol or 50 g/l glucose respectively. Four mutants with different sizes of clearing zone on Walseth’s
cellulose/agar plates containing 50 g/l glucose were selected for flask culture. Among them, the mutant NTUV-45-4 showed better
carboxymethylcellulase activity in flask culture containing 1% Avicel plus 3% glucose than did the parental strain.
Received: 9 October 1995/Received revision: 27 November 1995/Accepted: 8 January 1996 相似文献
11.
12.
The mechanism of induction of secreted beta-galactosidase was studied in the filamentous fungus Penicillium canescens. L-Arabinose and its metabolite L-arabitol induce the synthesis of the enzyme. Apart from beta-galactosidase, L-arabinose induces the synthesis of other extracellular carbohydrolases including alpha-L-arabinofuranosidase. Increasing L-arabinose concentration above 1 mM or addition of other carbon sources results in carbon catabolite repression of the synthesis of the secreted enzymes. The data suggest that arabinofuranosidase can regulate the synthesis of secreted enzymes in P. canescens, thus controlling the level of free L-arabinose. 相似文献
13.
大肠杆菌分解代谢产物阻遏效应研究进展 总被引:1,自引:1,他引:1
细菌在多种碳源共存的环境中优先利用一种(通常是葡萄糖)的现象被称为分解代谢产物阻遏效应。国内现有分子生物学及相关课程教材普遍对该效应的机理解释不清甚至给出错误的解释。大肠杆菌葡萄糖-乳糖分解代谢产物阻遏效应产生的根本原因不是胞内葡萄糖的存在, 而是葡萄糖经PTS(Phosphoenolpyruvate: carbohydrate phosphotransferase system)系统向胞内运输同时藕联磷酸化的过程。磷酸向葡萄糖的传递导致PTS关键组分EⅡAGlc去磷酸化形式的积累。该形式的EⅡAGlc可以与质膜上本底表达的乳糖透性酶LacY结合, 阻止诱导物乳糖的吸收。cAMP的影响也是通过激活参与PTS系统的关键基因而加强了诱导物排斥作用。此外, 去磷酸化形式的EⅡBGlc和YeeⅠ对全局性转录阻遏蛋白Mlc活性的抑制也保证了PTS系统关键组分蛋白的基因表达。文章综述了近年来有关大肠杆菌分解代谢产物阻遏效应机理的最新研究进展, 并对相关教材有关这一内容的阐述提出了修改建议。 相似文献
14.
Vavilova EA Antonova SV Barsukov ED Vinetskiĭ IuP 《Prikladnaia biokhimiia i mikrobiologiia》2003,39(3):284-292
The fungus Penicillium canescens strain F178 (VKPM) and its niaD- mutant exhibited an increased capability of synthesizing extracellular enzymes beta-galactosidase (70-80 U/ml) and xylanase (100 U/ml). The synthesis was induced by arabinose and its catabolite, arabitol. A deficiency in arabitol dehydrogenase, leading to arabitol accumulation in the cell, was detected in the chain of reactions of arabinose catabolism. The increased synthesis of beta-galactosidase and xylanase in P. canescens is accounted for by (1) cellular accumulation of the inducer (arabitol) at low concentrations of arabinose in the medium and (2) prevalence of induction over repression. 相似文献
15.
16.
17.
Carbon catabolite repression in Bacillus subtilis is mediated by phosphorylation of the phosphoenolpyruvate:carbohydrate phosphotransferase system intermediate HPr at a serine residue catalyzed by HPr kinase. The orthologous protein Crh functions in a similar way, but, unlike HPr, it is not functional in carbohydrate uptake. A specific function for Crh is not known. The role of HPr and Crh in repressing the citM gene encoding the Mg(2+)-citrate transporter was investigated during growth of B. subtilis on different carbon sources. In glucose minimal medium, full repression was supported by both HPr and Crh. Strains deficient in Crh or the regulatory function of HPr revealed the same repression as the wild-type strain. In contrast, in a medium containing succinate and glutamate, repression was specifically mediated via Crh. Repression was relieved in the Crh-deficient strain, but still present in the HPr mutant strain. The data are the first demonstration of a Crh-specific function in B. subtilis and suggest a role for Crh in regulation of expression during growth on substrates other than carbohydrates. 相似文献
18.
19.
20.
Summary Mutants with defective carbon catabolite repression have been isolated in the yeast Saccharomyces cerevisiae using a selective procedure. This was based on the fact that invertase is a glucose repressible cell wall enzyme which slowly hydrolyses raffinose to yield fructose and that the inhibitory effects of 2-deoxyglucose can be counteracted by fructose. Repressed cells were plated on a raffinose-2-deoxyglucose medium and the resistant cells growing up into colonies were tested for glucose non-repressible invertase and maltase. The yield of regulatory mutants was very high. All were equally derepressed for invertase and maltase, no mutants were obtained with only non-repressible invertase synthesis which was the selected function. A total of 61 mutants isolated in different strains were allele tested and could be attributed to three genes. They were all recessive. Mutants in one gene had reduced hexokinase activities, the other class, located in a centromere linked gene, had elevated hexokinase levels and was inhibited by maltose. Mutants in a third gene were isolated on a 2-deoxyglucose galactose medium and had normal hexokinase levels. A partial derepression was observed for malate dehydrogenase in all mutants. Isocitrate lyase, however, was still fully repressible. 相似文献