首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATPase and peptide-binding activity of recombinant human heat shock proteins HSP70A1B and HSC70 and two hybrid proteins derived from them was investigated. UV-spectral recorded data were used to characterize conformational rearrangements induced by domain replacement or HSP70-peptide interaction. It was shown that the N-terminal domain dramatically affects the substrate specificity of the C-terminal peptide-binding domain, which puts forward a new hypothesis for HSP70 chaperone machinery. On the other hand, the peptide-binding domain affected the ATPase activity of the recombinant proteins. There was a linear relationship between the ATPase activity and the peptide complex percentage. This connection can be used for quantification of HSP70 complexes with unlabeled peptides.  相似文献   

2.
To elucidate the induction mechanism of HSP70 by geranylgeranylacetone (GGA), we investigated GGA specific binding proteins using a GGA-affinity column. Alteration of chaperone activity of HSP70 and binding affinity of HSP70 to heat shock factor-1 (HSF-1) was evaluated in the presence or absence of GGA. The binding domain of HSP70 to GGA was also analyzed. A 70-kDa protein eluted by 10 mM GGA from the GGA-affinity column was identical to constitutively expressed HSP70 on immunoblotting. GGA-binding domain of HSP70 was C-terminal of the protein as peptide-binding domain (HSP70C). The chaperone activity of HSP70 and recombinant HSP70C was suppressed by GGA. Furthermore, dissociation of the HSP70 from HSF-1 was observed in the presence of GGA. GGA preferentially binds to the C-terminal of HSP70 which binds to HSF-1. After dissociation of HSP70, free HSF-1 could acquire the ability to bind to HSE (the promoter region of HSP70) gene.  相似文献   

3.
The neutral theory predicts that, in comparisons among related genes, the number of amino acid replacements per site in a given gene region should be a linear function of that in another region of the same gene, unless the genes have diverged functionally in one region. Therefore, nonlinearity of this relationship can be used to identify regions of possible functional divergence among members of a multigene family. This method of analysis was applied to members of the heat-shock protein 70 (HSP70) gene family, which encode highly conserved ATP- dependent chaperone proteins found in all organisms. A nonlinear relationship was found between the rate of amino acid replacement in the conserved IA domain of the ATPase portion of the molecule and that in other ATPase domains and the peptide-binding domain. These results suggest that genes in the HSP70 subfamily C (dnaK of bacteria and SSC1 of yeast) may have diverged functionally from other subfamilies in the ATPase domains, especially IIB, whereas SSB1 of yeast has diverged markedly in the peptide-binding domain. Functional divergence within these regions is consistent with what is known about functional differences between the HSP70 subfamilies in yeast.   相似文献   

4.
Heat shock protein 70 (HSP70) is a member of a highly conserved superfamily of intracellular chaperones called stress proteins that can activate innate and adaptive immune responses. We evaluated the effect of a fusion DNA vaccine that encoded mycobacterial HSP70 and MPT51, a major secreted protein of Mycobacterium tuberculosis. Spleen cells from mice immunized with fusion DNA of full-length HSP70 and MPT51 produced a higher amount of interferon-γ (IFN-γ) in response to the CD4+, but not the CD8+ T-cell epitope peptide on MPT51 than those from mice immunized with MPT51 DNA. Furthermore, because HSP70 comprises the N-terminal ATPase domain and the C-terminal peptide-binding domain, we attempted to identify the domain responsible for its enhancing effect. The fusion DNA vaccine that encoded the C-terminal domain of HSP70 and MPT51 induced a higher MPT51-specific IFN-γ production by CD4+ T cells than the vaccine that encoded MPT51 alone, whereas that with the N-terminal domain did not. Similar results were obtained by immunization with the fusion proteins. These results suggest that the DNA vaccine that encodes a chimeric antigen molecule fused with mycobacterial HSP70, especially with its C-terminal domain, can induce a stronger antigen-specific T-helper cell type 1 response than antigen DNA alone.  相似文献   

5.
HSP70分子伴侣系统研究进展   总被引:15,自引:0,他引:15  
综述了HSP70分子伴侣系统的晶体结构、功能及作用机理方面的研究进展.HSP70分子伴侣能够帮助细胞内新生蛋白的折叠和跨膜运输、蛋白质多聚体结构的装配和解装配,并能在胁迫下维持蛋白质的特殊构象,防止未折叠的蛋白质变性和使聚集的蛋白质溶解复性.所有这些活性均依赖于ATP调节的HSP70与底物蛋白中的疏水片段的相互作用.  相似文献   

6.
Heat shock-binding protein HspBP1 is a member of the Hsp70 co-chaperone family. The interaction between HspBP1 and the ATPase domain of the major heat shock protein Hsp70 up-regulates nucleotide exchange and reduces the affinity between Hsp70 and the peptide in its peptide-binding site. Previously we have shown that Tag7 (also known as peptidoglycan recognition protein PGRP-S), an innate immunity protein, interacts with Hsp70 to form a stable Tag7-Hsp70 complex with cytotoxic activity against some tumor cell lines. This complex can be produced in cytotoxic lymphocytes and released during interaction with tumor cells. Here the effect of HspBP1 on the cytotoxic activity of the Tag7-Hsp70 complex was examined. HspBP1 could bind not only to Hsp70, but also to Tag7. This interaction eliminated the cytotoxic activity of Tag7-Hsp70 complex and decreased the ATP concentration required to dissociate Tag7 from the peptide-binding site of Hsp70. Moreover, HspBP1 inhibited the cytotoxic activity of the Tag7-Hsp70 complex secreted by lymphocytes. HspBP1 was detected in cytotoxic CD8+ lymphocytes. This protein was released simultaneously with Tag7-Hsp70 during interaction of these lymphocytes with tumor cells. The simultaneous secretion of the cytotoxic complex with its inhibitor could be a mechanism protecting normal cells from the cytotoxic effect of this complex.  相似文献   

7.
Wang XY  Chen X  Oh HJ  Repasky E  Kazim L  Subjeck J 《FEBS letters》2000,465(2-3):98-102
The 110 kDa heat shock protein (HSP) (hsp110) has been shown to be a diverged subgroup of the hsp70 family and is one of the major HSPs in mammalian cells [1,2]. In examining the native interactions of hsp110, we observed that it is found to reside in a large molecular complex. Immunoblot analysis and co-immunoprecipitation studies identified two other HSPs as components of this complex, hsc70 and hsp25. When examined in vitro, purified hsp25, hsp70 and hsp110 were observed to spontaneously form a large complex and to directly interact with one another. When luciferase was added to this in vitro system, it was observed to migrate into this chaperone complex following heat shock. Examination of two deletion mutants of hsp110 demonstrated that its peptide-binding domain is required for interaction with hsp25, but not with hsc70. The potential function of the hsp110-hsc70-hsp25 complex is discussed.  相似文献   

8.
Heat shock protein 70 (HSP70) has been shown to act as an inhibitor of apoptosis. We have also observed an inhibitory effect of HSP70 on apoptotic cell death both in preheated U937 and stably transfected HSP70-overexpressing U937 (U937/HSP70) cells. However, the molecular mechanism whereby HSP70 prevents apoptosis still remains to be solved. To address this issue, we investigated the effect of HSP70 on apoptotic processes in an in vitro system. Caspase-3 cleavage and DNA fragmentation were detected in cytosolic fractions from normal cells upon addition of dATP, but not from preheated U937 or U937/hsp70 cells. Moreover, the addition of purified recombinant HSP70 to normal cytosolic fractions prevented caspase-3 cleavage and DNA fragmentation, suggesting that HSP70 prevents apoptosis upstream of caspase-3 processing. Because cytochrome c was still released from mitochondria into the cytosol by lethal heat shock despite prevention of caspase-3 activation and cell death in both preheated U937 and U937/hsp70 cells, it was evident that HSP70 acts downstream of cytochrome c release. Results obtained in vitro with purified deletion mutants of HSP70 showed that the carboxyl one-third region (from amino acids 438 to 641) including the peptide-binding domain and the carboxyl-terminal EEVD sequence was essential to prevent caspase-3 processing. From these results, we conclude that HSP70 acts as a strong suppressor of apoptosis acting downstream of cytochrome c release and upstream of caspase-3 activation.  相似文献   

9.
The J-domain co-chaperones work together with the heat shock protein 70 (HSP70) chaperone to regulate many cellular events, but the mechanism underlying the J-domain-mediated HSP70 function remains elusive. We studied the interaction between human-inducible HSP70 and Homo sapiens J-domain protein (HSJ1a), a J domain and UIM motif-containing co-chaperone. The J domain of HSJ1a shares a conserved structure with other J domains from both eukaryotic and prokaryotic species, and it mediates the interaction with and the ATPase cycle of HSP70. Our in vitro study corroborates that the N terminus of HSP70 including the ATPase domain and the substrate-binding β-subdomain is not sufficient to bind with the J domain of HSJ1a. The C-terminal helical α-subdomain of HSP70, which was considered to function as a lid of the substrate-binding domain, is crucial for binding with the J domain of HSJ1a and stimulating the ATPase activity of HSP70. These fluctuating helices are likely to contribute to a proper conformation of HSP70 for J-domain binding other than directly bind with the J domain. Our findings provide an alternative mechanism of allosteric activation for functional regulation of HSP70 by its J-domain co-chaperones.  相似文献   

10.
黄琼  胡杰  孙灵  王勤 《昆虫学报》2013,56(5):475-485
为给黄粉虫Tenebrio molitor抗逆机理研究提供理论依据, 本研究采用PCR和RACE法从黄粉虫幼虫中克隆出一个热休克蛋白70基因Tmhsp70, 并运用半定量RT-PCR法检测其在黄粉虫不同发育阶段的mRNA表达水平。结果表明: 克隆出的Tmhsp70 序列全长2 282 bp, 具有一个富含A的115 bp 5′ 非翻译区和一个1 935 bp的开放阅读框及一个富含A、 T的232 bp 3′-非翻译区。5′-非翻译区含有7个热休克元件nGAAn, 3′-非翻译区末端有长22 bp的Poly(A)尾。Tmhsp70编码的黄粉虫热休克蛋白(TmHSP70)具有3个典型的HSP70特征基序(IDLGTTYS, IFDLGGGTFDVSIL和IVLVGGSTRIPKIQQ)和1个胞质HSP70末端特征基序(EEVD), 无信号肽和跨膜区域, 包含2个主要的结构域, 即: N-端42 kDa的高度保守ATPase功能域和C-端18 kDa的保守多肽结合功能域。ATPase功能域的三级结构由2个大球形亚功能域组成, 具有1个核苷酸结合中心; 多肽结合功能域形成1个双层4股β-折叠片样的三明治结构和2个α-螺旋, 内含1个多肽结合通道。此外, 黄粉虫Tmhsp70 mRNA的表达具有热激诱导和发育调控的特征。半定量RT-PCR分析表明, 42℃热激1 h的黄粉虫各发育阶段Tmhsp70 mRNA的表达量上升了1.4~26.9倍。25℃下1日龄黄粉虫蛹中的Tmhsp70 mRNA 表达量要高于其余各发育阶段的累积表达量; 42℃热激1 h 后90日龄幼虫中的Tmhsp70 mRNA 表达量最丰富, 既高于30日龄和60日龄幼虫中的累积表达量, 也高于15日龄和30日龄成虫中的累积表达量。这些结果为进一步研究黄粉虫热休克蛋白的结构、 功能和表达调控及其与抗逆性的关系奠定了基础。  相似文献   

11.
We describe the development of a novel series of N-aryl-benzimidazolone HSP90 inhibitors (9) targeting the N-terminal ATP-ase site. SAR development was influenced by structure-based design based around X-ray structures of ligand bound HSP90 complexes. Lead compounds exhibited high binding affinities, ATP-ase inhibition and cellular client protein degradation.  相似文献   

12.
The peptide binding C-terminal portion of heat shock protein (HSP)70 (aa 359-610) stimulates human monocytes to produce IL-12, TNF-alpha, NO, and C-C chemokines. The N-terminal, ATPase portion (HSP70(1-358)) failed to stimulate any of these cytokines or chemokines. Both native and the truncated HSP70(359-610) stimulation of chemokine production is mediated by the CD40 costimulatory molecule. Maturation of dendritic cells was induced by stimulation with native HSP70, was not seen with the N-terminal HSP70(1-358), but was enhanced with HSP70(359-610), as demonstrated by up-regulation of CD83, CCR7, CD86, CD80, and HLA class II. In vivo studies in macaques showed that immunization with HSP70(359-610) enhances the production of IL-12 and RANTES. Immunization with peptide-bound HSP70(359-610) in mice induced higher serum IgG2a and IgG3 Abs than the native HSP70-bound peptide. This study suggests that the C-terminal, peptide-binding portion of HSP70 is responsible for stimulating Th1-polarizing cytokines, C-C chemokines, and an adjuvant function.  相似文献   

13.
Inducible heat shock protein70 (HSP70) is one of the most important HSPs for maintenance of cell integrity during normal cellular growth as well as pathophysiological conditions. Apoptosis signal-regulating kinase (ASK) 1, a mammalian MAPKKK, activates the JNK and p38 pathways. Here we report a novel function of HSP70 in regulating TNF-α-induced cell apoptosis. Our study demonstrated that HSP70 physically interacted with ASK1 and promoted the ubiquitin-dependent proteasomal degradation of ASK1. CHIP (carboxyl terminus of the HSC70-interacting protein) which acted as a co-chaperone of HSP70 cooperated with HSP70 in regulating ASK1. We also found that TNF-α stimulated HSP70/CHIP/ASK1 association and through cooperating with CHIP, HSP70 inhibits TNF-α-induced cell apoptosis both in over-expression and RNAi conditions. Structural analysis indicated that C-terminal domain of HSP70 was necessary for ASK1 degradation, and N- terminal domain of ASK1 was essential for its binding to HSP70. All these findings indicated that HSP70 and CHIP association is important for HSP70 in interacting with ASK1. Through forming the complex of HSP70/CHIP/ASK1, HSP70 promotes ASK1 proteasomal degradation and prevents TNF-α-induced cell apoptosis.  相似文献   

14.
Animals vaccinated with heat shock protein (HSP)--peptide complexes develop specific protective immunity against cancers from which the HSPs were originally isolated. This autologous specific immunity has been demonstrated using a number of HSP--peptide antigen complexes. A prototypical HSP-based cancer vaccine is the gp96--peptide antigen complex, which is currently undergoing human clinical trials. Here, we analyzed the structure of a recombinant wild-type and a mutant gp96 protein and their peptide complexes using a number of biophysical techniques. Gel filtration chromatography, dynamic light scattering, and equilibrium analytical ultracentrifugation demonstrated that both a wild-type gp96 and a gp96 mutant lacking a dimerization domain formed higher order structures. More detailed analysis using scanning transmission electron microscopy indicated that both the wild-type and dimerization deletion mutant gp96 protein were organized, unexpectedly, into large aggregates. Size distributions ranged from dimers to octamers and higher. Circular dichroism and intrinsic Trp fluorescence suggested that the gp96 dimerization domain deletion mutant protein was more compact than the wild-type gp96. A fluorescent peptide antigen was synthesized, and the peptide-binding properties of wild-type and the dimerization domain deletion mutant gp96 were studied. Fluorescence lifetime and anisotropy decay showed that the bound antigenic peptide was located in a hydrophobic pocket, with considerable free space for the rotation of the probe. Deletion of the dimerization domain affected the peptide-binding microenvironment, although peptide-binding affinity was reduced by only a small extent. Peptide--gp96 complexes were extremely stable, persisting for many days in the cold. The extraordinary stability of peptide--gp96 complexes and the plasticity of the peptide-binding pocket support the proposed relay of diverse peptides to MHC and/or other molecules via molecular recognition.  相似文献   

15.
The heat shock cognate protein hsc70 has been implicated as a postattachment cell receptor for rotaviruses. Here we show that hsc70 interacts specifically with rotaviruses through its peptide-binding domain, since a recombinant full-length hsc70 protein and its peptide-binding domain, but not its ATPase domain, bound triple-layered particles in a solid-phase assay, and known ligands of hsc70 competed this binding. The peptide ligands of hsc70 were also shown to block rotavirus infectivity when added to cells before virus infection, suggesting that hsc70 on the surface of MA104 cells also interacts with the virus through its peptide-binding domain and that this interaction is important for virus entry. When purified infectious virus was incubated with soluble hsc70 in the presence of the cochaperone hsp40 and ATP and then pelleted through a sucrose cushion, the recovered virus had lost 60% of its infectivity, even though hsc70 was not detected in the pellet fraction. The hsc70-treated virus showed slightly different reactivities with monoclonal antibodies and was more susceptible to heat and basic pHs than the untreated virus, suggesting that hsc70 induces a subtle conformational change in the virus that results in a reduction of its infectivity. The relevance of the ATPase activity of hsc70 for reducing virus infectivity was demonstrated by the finding that in the presence of a nonhydrolyzable analogue of ATP, virus infectivity was not affected, and a mutant protein lacking ATPase activity failed to reduce virus infection. Altogether, these results suggest that during cell infection, the interaction of the virus with hsc70 on the surface of MA104 cells results in a conformational change of virus particles that facilitates their entry into the cell cytoplasm.  相似文献   

16.
Strub A  Röttgers K  Voos W 《The EMBO journal》2002,21(11):2626-2635
Ssc1, a molecular chaperone of the Hsp70 family, drives preprotein import into the mitochondrial matrix by a specific interaction with the translocase component Tim44. Two other mitochondrial Hsp70s, Ssc3 (Ecm10) and Ssq1, show high sequence homology to Ssc1 but fail to replace Ssc1 in vivo, possibly due to their inability to interact with Tim44. We analyzed the structural basis of the Tim44 interaction by the construction of chimeric Hsp70 proteins. The ATPase domains of all three mitochondrial Hsp70s were shown to bind to Tim44, supporting the active motor model for the Hsp70 mechanism during preprotein translocation. The peptide-binding domain of Ssc1 sustained binding of Tim44, while the peptide-binding domains of Ssc3 and Ssq1 exerted a negative effect on the interaction of the ATPase domains with Tim44. A mutation in the peptide-binding domain of Ssc1 resulted in a similar negative effect not only on the ATPase domain of Ssc1, but also of Ssq1 and Ssc3. Hence, the determination of a crucial Hsp70 function via the peptide-binding domain suggests a new regulatory principle for Hsp70 domain cooperation.  相似文献   

17.
Interaction of Hsp70 with natural and artificial acidic glycans is demonstrated based on the native PAGE analysis. Hsp70 interacts with acidic glycopolymers that contain clustered sulfated and di-sialylated glycan moieties on a polyacrylamide backbone, but not with neutral or mono-sialylated glycopolymers. Hsp70 also interacts and forms a large complex with heparin, heparan sulfate, and dermatan sulfate that commonly contain 2-O-sulfated iduronic acid residues, but not with other types of glycosaminoglycans (GAGs). Hsp70 consists of the N-terminal ATPase domain and the C-terminal peptide-binding domain. The interaction analyses using the recombinant N- and C-terminal half domains show that the ATPase domain mediates the direct interaction with acidic glycans, while the peptide-binding domain stabilizes the large complexes with particular GAGs. To our knowledge, this is the first demonstration of direct binding of Hsp70 to the particular GAGs. This property may be involved in the physiological functions of Hsp70 at the plasma membrane and extracellular environments.  相似文献   

18.
The 70-kDa microbial heat shock protein (mHSP70) has a profound effect on the immune system, interacting with the CD40 receptor on DC and monocytes to produce cytokines and chemokines. The mHSP70 also induces maturation of dendritic cells (DC) and thus acts as an alternative ligand to CD40L on T cells. In this investigation, we have identified a cytokine-stimulating epitope (peptide 407-426), by activating DC with overlapping synthetic peptides (20-mers) derived from the sequence of mHSP70. This peptide also significantly enhances maturation of DC stimulated by mHSP70 or CD40L. The epitope is located at the base of the peptide-binding groove of HSP70 and has five critical residues. Furthermore, an inhibitory epitope (p457-496) was identified downstream from the peptide-binding groove that inhibits cytokine production and maturation of DC stimulated by HSP70 or CD40L. The p38 MAP kinase phosphorylation is critical in the alternative CD40-HSP70 pathway and is inhibited by p457-496 but enhanced by p407-426.  相似文献   

19.
Stress can have profound effects on the cell. The elicitation of the stress response in the cell is often accompanied by the synthesis of high-molecular-mass complexes, sometimes termed heat shock granules (HSGs). The presence of the complexes has been shown to be important for the survival of cells subjected to stress. We purified these complexes from heat-stressed BY-2 tobacco cells. HSG complexes formed in vivo contain predominantly smHSPs, HSP40 and HSP70 and display chaperone-like activity. Tubulins as well as other proteins may be part of the complex or its substrate. The proteins, except smHSPs and to some extent HSP70, were hypersensitive to proteolysis, suggesting that they were partially denatured and not an integral part of the HSG complexes. When citrate synthase was used as the substrate, in vivo generated HSG complexes exhibited strong nucleotide-dependent in vitro chaperone activity. Measurable ATP-mediated hydrolytic activity was detected. Isolated HSG complexes are stable until ATP is added, which leads to rapid dissociation of the complex into subunits. It is proposed that smHSPs form the core of the complex in association with ATP-dependent HSP70 and HSP40 cochaperones. Implications of these findings are discussed.  相似文献   

20.
In this study, in vitro RNA binding by members of the mammalian 70-kDa heat shock protein (Hsp) family was examined. We show that Hsp/Hsc70 and Hsp110 proteins preferentially bound AU-rich RNA in vitro. Inhibition of RNA binding by ATP suggested the involvement of the N-terminal ATP-binding domain. By using deletion mutants of Hsp110 protein, a diverged Hsp70 family member, RNA binding was localized to the N-terminal ATP-binding domain of the molecule. The C-terminal peptide-binding domain did not bind RNA, but its engagement by a peptide substrate abrogated RNA binding by the N terminus of the protein. Interestingly, removal of the C-terminal alpha-helical structure or the alpha-loop domain unique to Hsp110 immediately downstream of the peptide-binding domain, but not both, resulted in considerably increased RNA binding as compared with the wild type protein. Finally, a 70-kDa activity was immunoprecipitated from RNA-protein complexes formed in vitro between cytoplasmic proteins of human lymphocytes and AU-rich RNA. These findings support the idea that certain heat shock proteins may act as RNA-binding entities in vivo to guide the appropriate folding of RNA substrates for subsequent regulatory processes such as mRNA degradation and/or translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号