首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
赵超  闻玉梅 《生命科学》2004,16(5):267-270,287
乙肝病毒蛋白结构和功能是当前研究乙肝病毒的热点之一。HBV多聚酶的末端蛋白在病毒复制过程中起重要作用,主要包括前基因组RNA包装和DNA合成的蛋白引发等,并可抑制细胞对干扰素的反应。本文综述了乙肝病毒多聚酶末端蛋白的结构和功能,还比较了乙肝病毒与逆转录病毒多聚酶结构和功能的异同。  相似文献   

2.
Apoptosis signal-regulating kinase 1 (ASK1) plays an essential role in stress and immune response and has been linked to the development of several diseases. Here, we present the structure of the human ASK1 catalytic domain in complex with staurosporine. Analytical ultracentrifugation (AUC) and crystallographic analysis showed that ASK1 forms a tight dimer (K(d) approximately 0.2 microM) interacting in a head-to-tail fashion. We found that the ASK1 phosphorylation motifs differ from known ASK1 phosphorylation sites but correspond well to autophosphorylation sites identified by mass spectrometry. Reporter gene assays showed that all three identified in vitro autophosphorylation sites (Thr813, Thr838, Thr842) regulate ASK1 signaling, but site-directed mutants showed catalytic activities similar to wild-type ASK1, suggesting a regulatory mechanism independent of ASK1 kinase activity. The determined high-resolution structure of ASK1 and identified ATP mimetic inhibitors will provide a first starting point for the further development of selective inhibitors.  相似文献   

3.
MxiG is a single-pass membrane protein that oligomerizes within the inner membrane ring of the Shigella flexneri type III secretion system (T3SS). The MxiG N-terminal domain (MxiG-N) is the predominant cytoplasmic structure; however, its role in T3SS assembly and secretion is largely uncharacterized. We have determined the solution structure of MxiG-N residues 6-112 (MxiG-N(6-112)), representing the first published structure of this T3SS domain. The structure shows strong structural homology to forkhead-associated (FHA) domains. Canonically, these cell-signaling modules bind phosphothreonine (Thr(P)) via highly conserved residues. However, the putative phosphate-binding pocket of MxiG-N(6-112) does not align with other FHA domain structures or interact with Thr(P). Furthermore, mutagenesis of potential phosphate-binding residues has no effect on S. flexneri T3SS assembly and function. Therefore, MxiG-N has a novel function for an FHA domain. Positioning of MxiG-N(6-112) within the EM density of the S. flexneri needle complex gives insight into the ambiguous stoichiometry of the T3SS, supporting models with 24 MxiG subunits in the inner membrane ring.  相似文献   

4.
Mammalian chitinase, a chitinolytic enzyme expressed by macrophages, has been detected in atherosclerotic plaques and is elevated in blood and tissues of guinea pigs infected with Aspergillus. Its normal physiological function is unknown. To understand how the enzyme interacts with its substrate, we have characterized the chitin-binding domain. The C-terminal 49 amino acids make up the minimal sequence required for chitin binding activity. The absence of this domain does not affect the ability of the enzyme to hydrolyze the soluble substrate, triacetylchitotriose, but abolishes hydrolysis of insoluble chitin. Within the minimal chitin-binding domain are six cysteines; mutation of any one of these to serine results in complete loss of chitin binding activity. Analysis of purified recombinant chitin-binding domain revealed the presence of three disulfide linkages. The recombinant domain binds specifically to chitin but does not bind chitosan, cellulose, xylan, beta-1, 3-glucan, beta-1,3-1,4-glucan, or mannan. Fluorescently tagged chitin-binding domain was used to demonstrate chitin-specific binding to Saccharomyces cerevisiae, Candida albicans, Mucor rouxii, and Neurospora crassa. These experiments define structural features of the minimal domain of human chitinase required for both specifically binding to and hydrolyzing insoluble chitin and demonstrate relevant binding within the context of the fungal cell wall.  相似文献   

5.
Structural and functional studies of cross-linked Go protein subunits   总被引:3,自引:0,他引:3  
The guanine nucleotide binding proteins (G proteins) that couple hormone and other receptors to a variety of intracellular effector enzymes and ion channels are heterotrimers of alpha, beta, and gamma subunits. One way to study the interfaces between subunits is to analyze the consequences of chemically cross-linking them. We have used 1,6-bismaleimidohexane (BMH), a homobifunctional cross-linking reagent that reacts with sulfhydryl groups, to cross-link alpha to beta subunits of Go and Gi-1. Two cross-linked products are formed from each G protein with apparent molecular masses of 140 and 122 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both bands formed from Go reacted with anti-alpha o and anti-beta antibody. The mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is anomalous since the undenatured, cross-linked proteins have the same Stokes radius as the native, uncross-linked alpha beta gamma heterotrimer. Therefore, each cross-linked product contains one alpha and one beta subunit. Activation of Go by guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) does not prevent cross-linking of alpha to beta gamma, consistent with an equilibrium between associated and dissociated subunits even in the presence of GTP gamma S. The same cross-linked products of Go are formed in brain membranes reacted with BMH as are formed in solution, indicating that the residues cross-linked by BMH in the pure protein are accessible when Go is membrane bound. Analysis of tryptic peptides formed from the cross-linked products indicates that the alpha subunit is cross-linked to the 26-kDa carboxyl-terminal portion of the beta subunit. The cross-linked G protein is functional, and its alpha subunit can change conformation upon binding GTP gamma S. GTP gamma S stabilizes alpha o to digestion by trypsin (Winslow, J.W., Van Amsterdam, J.R., and Neer, E.J. (1986) J. Biol. Chem. 261, 7571-7579) and also stabilizes the alpha subunit in the cross-linked product. Cross-linked G o can be ADP-ribosylated by pertussis toxin. This ADP-ribosylation is inhibited by GTP gamma S with a concentration dependence that is indistinguishable from that of the control, uncross-linked G o. These two kinds of experiments indicate that alpha o is able to change its conformation even though it cannot separate completely from beta gamma. Thus, although dissociation of the subunits accompanies activation of G o in solution, it is not obligatory for a conformational change to occur in the alpha subunit.  相似文献   

6.
Fstl1 is a TGF‐β superfamily binding protein which involved in many pathological processes. The function of Fstl1 has been widely elucidated, but its structural characterization has not been explored. Here we solved the high‐resolution crystal structure of FK domain of murine Fstl1, analyzed its unique characteristics, and investigated its contribution to the function of full‐length Fstl1. We found that Fstl1‐FK forms a stable dimer in both solution and crystal, which suggest that this protein may function as a dimer during its interaction with TGF‐β, a molecule known to form dimer during activation process. We also found this FK domain is indispensable for the proper function of Fstl1 during the transduction of TGF‐β signaling. These observations provide important insights into the understanding of Fstl1 and may facilitate the exploration of this molecule in clinical study.  相似文献   

7.
Ataxin-3 belongs to the family of polyglutamine proteins, which are associated with nine different neurodegenerative disorders. Relatively little is known about the structural and functional properties of ataxin-3, and only recently have these aspects of the protein begun to be explored. We have performed a preliminary investigation into the conserved N-terminal domain of ataxin-3, termed Josephin. We show that Josephin is a monomeric domain which folds into a globular conformation and possesses ubiquitin protease activity. In addition, we demonstrate that the presence of the polyglutamine region of the protein does not alter the structure of the protein. However, its presence destabilizes the Josephin domain. The implications of these data in the pathogenesis of polyglutamine repeat proteins are discussed.  相似文献   

8.
9.
Rad51D, one of five Rad51 paralogs, is required for homologous recombination and disruption of Holliday junctions with bloom syndrome protein (BLM) in vertebrates. The N-terminal domain of Rad51D is highly conserved in eukaryotic Rad51D orthologs and is essential for protein-protein interaction with XRCC2, but nothing is known about its individual structure or function. In this study, we determined the solution structure of the human Rad51D N-terminal domain (residues 1-83), which consists of four short helices flanked by long N- and C-terminal tails. Interestingly, the position of the N-terminal tail (residues 1-13) is fixed within the domain structure via several hydrophobic interactions between Leu4 and Thr27, Leu4 and Val28, and Val6 and Ile17. We show that the domain preferentially binds to ssDNA versus dsDNA and does not bind to a mobile Holliday junction by electrophoretic mobility shift assay. NMR titration and dynamics studies showed that human Rad51D-N interacts with ssDNA by positively charged and hydrophobic residues on its surface. The results suggest that the N-terminal domain of Rad51D is required for the ssDNA-specific binding function of human Rad51D and that the conserved N-terminal domains of other Rad51 paralogs may have distinguishable functions from each other in homologous recombination.  相似文献   

10.
Structural immunoanalysis of human interferon (IFN)-alpha 2c revealed antigenic and functional heterogeneity in its N-terminal receptor-binding domain (loop AB). Monoclonal antibodies (mAbs) mapped to the region 30-53 of IFN-alpha 2 defined three partially overlapping antigenic sites designated here as 'a', 'b' and 'c'. For the high-affinity binding of IFN-alpha 2c to the cellular receptor, site b located in segment 34-41 and site c (residues 43-53) appeared to be most important. Only the part of site a (amino acids 30-33) seemed to be involved in the interaction with receptor. The segment of residues 30-46 forms a relatively straight structure on the protein surface, according to the three-dimensional model of human IFN-alpha 2.  相似文献   

11.
Structural and functional studies on different human FABP types   总被引:6,自引:0,他引:6  
Interaction of various ligands with recombinant proteins of 5 human FABP types was studied by radiochemical and fluorescence procedures. Liver, heart, intestinal and myelin FABP showed a higher affinity for oleic acid than adipocyte FABP. Intestinal and adipocyte FABP had a relatively high Kd value for arachidonic acid. Liver and intestinal FABP showed high affinity for DAUDA in contrast to the other FABP types. ANS was only well bound by liver and adipocyte FABP. Retinol was not bound by any FABP type, retinoic acid only by adipocyte FABP. Data indicate the importance of both electrostatic and hydrophobic interaction for the ligand-FABP binding. The immunological crossreactivity between six human FABP types including epidermal FABP and their respective antibodies raised in rabbit, chicken and mouse appeared to be low and may suggest heterogeneity of protein surface.  相似文献   

12.
Activation of ADP-ribosylation factors (ARFs) is mediated by guanine nucleotide-exchange proteins, which accelerate conversion of inactive ARF-GDP to active ARF-GTP. ARF domain protein (ARD1), a 64-kDa GTPase with a C-terminal ADP-ribosylation factor domain, is localized to lysosomes and the Golgi apparatus. When ARD1 was used as bait to screen a human liver cDNA library using the yeast two-hybrid system, a cDNA for cytohesin-1, a approximately 50-kDa protein with ARF guanine nucleotide-exchange protein activity, was isolated. In this system, ARD1-GDP interacted well with cytohesin-1 but very poorly with cytohesin-2. In agreement, cytohesin-1, but not cytohesin-2, markedly accelerated [(35)S]guanosine 5'-3-O-(thio)triphosphate binding to ARD1. The effector region of the ARF domain of ARD1 appeared to be critical for the specific interaction with cytohesin-1. Replacement of single amino acids in the Sec7 domains of cytohesin-1 and -2 showed that residue 30 is critical for specificity. In transfected COS-7 cells, overexpressed ARD1 and cytohesin-1 were partially colocalized, as determined by confocal fluorescence microscopy. It was concluded that cytohesin-1 is likely to be involved in ARD1 activation, consistent with a role for ARD1 in the regulation of vesicular trafficking.  相似文献   

13.
Histone deacetylases (HDACs) regulate chromatin status and gene expression, and their inhibition is of significant therapeutic interest. To date, no biological substrate for class IIa HDACs has been identified, and only low activity on acetylated lysines has been demonstrated. Here, we describe inhibitor-bound and inhibitor-free structures of the histone deacetylase-4 catalytic domain (HDAC4cd) and of an HDAC4cd active site mutant with enhanced enzymatic activity toward acetylated lysines. The structures presented, coupled with activity data, provide the molecular basis for the intrinsically low enzymatic activity of class IIa HDACs toward acetylated lysines and reveal active site features that may guide the design of class-specific inhibitors. In addition, these structures reveal a conformationally flexible structural zinc-binding domain conserved in all class IIa enzymes. Importantly, either the mutation of residues coordinating the structural zinc ion or the binding of a class IIa selective inhibitor prevented the association of HDAC4 with the N-CoR.HDAC3 repressor complex. Together, these data suggest a key role of the structural zinc-binding domain in the regulation of class IIa HDAC functions.  相似文献   

14.
Structural and functional studies in C1q deficiency   总被引:2,自引:0,他引:2  
The sera of two brothers were found totally lacking hemolytic C activity. One of them, a 16-yr-old male, presented a severe lupus-like syndrome, whereas the other was apparently healthy. Immunochemical quantitation of C components in both sera showed depressed levels of C1q, whereas the levels of C1r, C1s, and C1 inhibitor were elevated. C4, C3, C5, factor B, and beta 1H levels were in the normal range. Hemolytic C1 activity was totally lacking. C4 titers were elevated (150% of normal). C2 hemolytic activity was about one-third of normal, and the titers of the terminal components C3-C9 were also reduced in the two siblings. Double immunodiffusion against anti-C1q antiserum showed a partial loss of C1q antigenic determinants in the two siblings. Furthermore, the C1q of both siblings was unable to interact with immunoglobulins or to associate with C1r and C1s. Addition of purified human C1q to the sera restored their total C and C1 hemolytic activity. The dose response to the C1q addition was linear, indicating that the functional deficiency was not due to the presence of a serum inhibitor. Although antigenically deficient in comparison with normal C1q, the abnormal C1q appeared to have a larger m.w., as determined by gel chromatography. Investigation of other members of this family suggests a genetically linked disorder, because four out of six siblings had the same dysfunctional C1q in their serum.  相似文献   

15.
16.
A comparative study of the structural and functional properties of recombinant Yersinia pestis Caf1 and human IL-1beta was performed. According to Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) data, IL-1beta and Caf1 are typical beta-structural proteins. Neither protein interacts with the hydrophobic probe ANS (8-anilino-1-naphthalenesulfonate) under physiological conditions. Specific binding of Caf1 [K(d) = (5.4 +/- 0.1) x 10(-10) M] to interleukin-1 receptors (IL-1Rs) on the surface of finite mouse fibroblasts (line NIH 3T3) was observed. Caf1 is able to inhibit high-affinity binding of (125)I-labeled IL-1beta to NIH 3T3 cells, and in the presence of Caf1, the binding of [(125)I]IL-1beta is characterized by a K(d) of (2.0 +/- 0.3) x 10(-9) M. Caf1 binding to IL-1R could reflect adhesive properties of the capsular subunits responsible for the contact of bacteria with the host immunocompetent cells. In its turn, this may represent a signal for the initiation of the expression and secretion of the proteins of Y. pestis Yop virulon. Thus, these results help to explain the importance of Caf1 in the interaction of Y. pestis with the host immune system.  相似文献   

17.
The cytoplasmic domain of LRP1 contains two NPXY motifs that have been shown to interact with signaling proteins. In previous work, we showed that Tyr(4507) in the distal NPXY motif is phosphorylated by v-Src, whereas denaturation of the protein was required for phosphorylation of Tyr(4473) in the membraneproximal NPXY motif. Amide H/D exchange studies reveal that the distal NPXY motif is fully solvent-exposed, whereas the proximal one is not. Phosphopeptide mapping combined with in vitro and in vivo kinase experiments show that Tyr(4473) can be phosphorylated, but only if Tyr(4507) is phosphorylated or substituted with glutamic acid. Amide H/D exchange experiments indicate that solvent accessibility increases across the entire LRP1 cytoplasmic region upon phosphorylation at Tyr(4507); in particular the NPXY(4473) motif becomes much more exposed. This differential phosphorylation is functionally relevant: binding of Snx17, which is known to bind at the proximal NPXY motif, is inhibited by phosphorylation at Tyr(4473). Conversely, Shp2 binds most strongly when both of the NPXY motifs in LRP1 are phosphorylated.  相似文献   

18.
The reduced expression of human selenium binding protein-1 (SELENBP1) has been reported for some human cancers. In this work we have estimated a reduced SELENBP1 expression by immunohistochemistry for the first time also in liver tissues of patients with hepatocarcinoma (HCC). Since the structure-function relationships of SELENBP1 are unknown, we have performed computational and experimental studies to have insight on the structural features of this protein focusing our attention on the properties of cysteines to assess their ability to interact with selenium. We have performed CD studies on the purified protein, modeled its three-dimensional structure, studied the energetic stability of the protein by molecular dynamics simulations, and titrated the cysteines by DTNB (5,5'-dithiobis (2-nitrobenzoic acid). The secondary structure content evaluated by CD has been found similar to that of 3D model. Our studies demonstrate that (i) SELENBP1 is an alpha-beta protein with some loop regions characterized by the presence of intrinsically unordered segments, (ii) only one cysteine (Cys57) is enough exposed to solvent, located on a loop and surrounded by charged and hydrophobic residues, and can be the cysteine able to bind the selenium. Furthermore, during the molecular dynamics simulation at neutral pH the loop containing Cys57 opens and exposes this residue to solvent, confirming that it is the best candidate to bind the selenium. Experimentally we found that only one cysteine is titratable by DTNB. This supports the hypothesis that Cys57 is a residue functionally important and this may open new pharmacological perspectives.  相似文献   

19.
Casein kinase I (CKI) is a protein serine/threonine kinase that is highly conserved from plants to animals. It performs various functions in both the cytoplasm and nucleus, such as DNA repair, cell cycle, cytokinesis, vesicular trafficking, morphogenesis and circadian rhythm. CKI proteins contain a highly conserved kinase domain responsible for catalytic activity at the N-terminus and a highly diverse regulatory domain responsible for determining substrate specificity at the C-terminus. CKI-like protein has been identified in plants, including in rice, but its function and structure have not been reported. Here, we report the 2.0 ? crystal structure of the kinase domain of CKI-like protein from rice. Although the structure adopts the typical bi-lobal kinase architecture, the length and orientation of the glycine-rich ATP-binding motif are dynamic within the CKI family. A loop between α5 and α6 (the α5-α6 loop), which was previously not detected in the CKI family because of flexibility, was clearly detected in our structure. In addition, we identified a lipase as a substrate of CKI-like protein from rice. Phosphorylation of the lipase dramatically reduced its catalytic activity, suggesting that CKI may play a role in the regulation of lipase activity.  相似文献   

20.
The binding and cofactor activities of C4b-binding protein were examined before and after limited proteolysis by pepsin, trypsin and chymotrypsin. The major fragments generated were characterized by amino acid sequencing, thus establishing the precise points of limited proteolysis. These studies allow a tentative assignment of the cofactor activity site to the residues 177-322 of the 549 amino acid long chain of C4b-binding protein but indicated that residues in the region 332-395 are important in the binding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号