首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xyloglucans isolated from cell walls of etiolated Glycine maxand Vigna sesquipedalis hypocotyls were subjected to fragmentationanalysis with cellulase for structural comparison with thosederived from Phaseolus aureus hypocotyls. The xyloglucans fromG. max and V. sesquipedalis had glucose, xylose, galactose andfucose in the approximate molar ratio of 10:6:4:1 and 10:7:3:1,respectively. However, the results of cellulase fragmentationanalysis of xyloglucans from the three species suggested thatthe basic structure of the xyloglucans in the cell walls ofthese bean-hypocotyls is almost the same; the structure is basedon two repeating oligosaccharide units, one of which consistsof glucose and xylose and the other of glucose, xylose, galactoseand fucose. 1 Present address: Toppan Printing Co., Ltd., Okaji, Sendai980, Japan. (Received February 3, 1977; )  相似文献   

2.
In order to study the IAA-induced modifications of the cellwall of azuki bean (Vigna angularis Ohwi et Ohashi cv. Takara)epicotyl segments, the xyloglucans were subfractionated intotwo components, i.e., 4K-U and 24K xyloglucans, which were obtainedby extraction with 4% KOH solution containing 8 M urea and 24%KOH solution, respectively. The weight-average molecular weightsof 4K-U and 24K xyloglucans were estimated to be 40 x 104 and106 x 104, respectively. Complete acid hydrolysis of 4K-U and24K xyloglucans gave glucose, xylose, galactose and fucose inmole % 48.3 : 33.5 : 13.8 : 4.4 and 45.3 : 30.9 : 19.6 : 4.3,respectively. Treatment of epicotyl segments with IAA (0.1 mM) caused a decreasein the amount of 24K xyloglucans and an increase in 4K-U xyloglucans,whereas the total amount of the two xyloglucans remained constant.Furthermore, IAA treatment caused a decrease in the molecularweight of 24K xyloglucans from 106 x 104 to 78 x 104 withoutcausing changes in their sugar compositions. With 4K-U xyloglucans,IAA caused an increase in the mole % of xylose and a decreasein the mole % of galactose and fucose. 1 This paper is dedicated to the late Professor Joji Ashida. (Received November 26, 1982; Accepted February 7, 1983)  相似文献   

3.
Hot water-soluble polysaccharides were extracted from field colonies and suspension cultures of Nostoc commune Vaucher, Nostoc flagelliforme Berkeley et Curtis, and Nostoc sphaeroides Kützing. Excreted extracellular polymeric substances (EPS) were isolated from the media in which the suspension cultures were grown. The main monosaccharides of the field colony polysaccharides from the three species were glucose, xylose, and galactose, with an approximate ratio of 2:1:1. Mannose was also present, but the levels varied among the species, and arabinose appeared only in N. flagelliforme. The compositions of the cellular polysaccharides and EPS from suspension cultures were more complicated than those of the field samples and varied among the different species. The polysaccharides from the cultures of N. flagelliforme had a relatively simple composition consisting of mannose, galactose, glucose, and glucuronic acid, but no xylose, as was found in the field colony polysaccharides. The polysaccharides from cultures of N. sphaeroides contained glucose (the major component), rhamnose, fucose, xylose, mannose, and galactose. These same sugars were present in the polysaccharides from cultures of N. commune, with xylose as the major component. Combined nitrogen in the media had no qualitative influence on the compositions of the cellular polysaccharides but affected those of the EPS of N. commune and N. flagelliforme. The EPS of N. sphaeroides had a very low total carbohydrate content and thus was not considered to be polysaccharide in nature. The field colony polysaccharides could be separated by anion exchange chromatography into neutral and acidic fractions having similar sugar compositions. Preliminary linkage analysis showed that 1) xylose, glucose, and galactose were 1→4 linked, 2) mannose, galactose, and xylose occurred as terminal residues, and 3) branch points occurred in glucose as 1→3,4 and 1→3,6 linkages and in xylose as a 1→3,4 linkage. The polymer preparations from field colonies had higher kinematic viscosities than those from correspondingsuspension cultures. The high viscosities of the polymers suggested that they might be suitable for industrial uses.  相似文献   

4.
The non-cellulosic ß-glucan1 in the cell wall of Phaseolusaureus hypocotyb was studied. Evidence that xyloglucan is presentin a hemicellulose fraction was obtained by its isolation fromcell wall preparations. This polysaccharide was homogeneouson zone electrophoresis and ultracentrifugation. On acid hydrolysis,it gave glucose, xylose, galactose, and fucose in the approximatemolar ratio of 10 : 7 : 2.5 : 1. Its solution gave a reddishviolet color with iodine-staining solution. The results of partialacid hydrolysis and cellulase treatment suggest a structurein which xylose, galactose, and fucose attached as side chainsto a sequenceof ß-l,4-linked glucose. The xyloglucanisolated accounted for 13.9% of the total non-cellulosic fractions. (Received May 10, 1976; )  相似文献   

5.
Two auxin-induced endo-1,4-β-glucanases (EC 3.2.1.4) were purified from pea (Pisum sativum L. var. Alaska) epicotyls and used to degrade purified pea xyloglucan. Hydrolysis yielded nonasaccharide (glucose/xylose/galactose/fucose, 4:3:1:1) and heptasaccharide (glucose/xylose, 4:3) as the products. The progress of hydrolysis, as monitored viscometrically (with amyloid xyloglucan) and by determination of residual xyloglucan-iodine complex (pea) confirmed that both pea glucanases acted as endohydrolases versus xyloglucan. Km values for amyloid and pea xyloglucans were approximately the same as those for cellulose derivatives, but Vmax values were lower for the xyloglucans. Auxin treatment of epicotyls in vivo resulted in increases in net deposits of xyloglucan and cellulose in spite of a great increase (induction) of endogenous 1,4-β-glucanase activity. However, the average degree of polymerization of the resulting xyloglucan was much lower than in controls, and the amount of soluble xyloglucan increased. When macromolecular complexes of xyloglucan and cellulose (cell wall ghosts) were treated in vitro with pea 1,4-β-glucanase, the xyloglucan component was preferentially hydrolyzed and solubilized. It is concluded that xyloglucan is the main cell wall substrate for pea endo-1,4-β-glucanase in growing tissue.  相似文献   

6.
Carbohydrate composition was determined in isolated cell walls of meiospores of Allomyces arbuscula after incubation for 15 min (encysted meiospores: cysts), 150 min (germlings: cysts + rhizoids) and 24 h (cysts + rhizoids + hyphae). The principal constituent in all cell wall samples is chitin, accounting for about 75% of the recovered carbohydrates. In addition, cell walls of all stages examined contain polysaccharides which release galactose, glucose, mannose, arabinose, xylose, fucose, and rhamnose on acid hydrolysis. While different developmental stages show minor quantitative changes in chitin, the ratio of galactose to glucose decreases sharply during differentiation of ungerminated cysts into germlings with rhizoids and hyphae. The increase in glucose is accompanied by a decrease in the amount of xylose and/or fucose and of galactose.List of Abbreviation TFA trifluoroacetic acid  相似文献   

7.
Laminaran, fucose-containing polysaccharides (‘fucans’) and alginic acid were isolated from Dictyopteris plagiogramma.The laminaran comprised G- and M-chains (ratio 3: 1). The ‘fucans’ were present in four extracts of a four-step sequential extraction procedure and all contained slightly differing proportions of fucose, xylose, galactose, mannose, glucuronic acid residues and half-ester sulphate. Non-reducing chain ends as well as the positions of glycosidic linkages to fucose, xylose and glucuronic acid are the same as previously reported for other ‘fucans’. Galactose and mannose occur mainly as trisubstituted residues with substitution at 0-1, 0-3, 0-4 and at 0-1, 0-3, 0-6, respectively.  相似文献   

8.
A synthetic substance, 4-ethoxy-l-(p-tolyl)-s-triazine-2,6(1H,3H)-dione [TA] dramatically promoted mesocotyl growth in dark-grownrice (Oryza sativa L. cv. Nato) seedlings, the optimal concentrationbeing 0.1–0.2 mM. Changes in the cell wall compositionof the rice mesocotyls were examined in relation to growth andtreatment with 0.1 mM TA. The amount of the cell wall increasedduring the elongation in control and treated mesocotyls. Particularly,TA caused a large increase in the amount of the cell wall permesocotyl but a decrease per unit length of mesocotyl. Hydrolysisof the cell wall with trifluoroacetic acid liberated xylose,glucose, arabinose, galactose, and trace amounts of rhamnose,fucose and mannose. An increase in the relative amount of xyloseand a decrease in that of glucose in the noncellulosic fractionduring growth were found in control and treated mesocotyl walls.On the 2nd day after planting when the mesocotyl emerged, TAsignificantly affected the cell wall composition; TA decreasedthe relative amount of -cellulose in the wall, and caused anincrease in the relative amount of glucose and decreases inthose of xylose and arabinose in the noncellulosic fraction. 1This paper is Part 7 in the series "Plant Growth-regulatingActivities of Isourea Derivatives and Related Compounds." (Received March 18, 1980; )  相似文献   

9.
Native cell walls of azuki bean epicotyls incubated in bufferautolytically released neutral sugars, abundant in galactose,and uronic acids. Treatment with 10–5 M IAA of subapicalor basal epicotyl segments for 3 h did not influence the amountof total neutral sugars released from the cell walls duringautolysis. However, the amount of glucose and xylose releasedfrom subapical cell walls was increased by IAA. Pretreatmentwith IAA of subapical epicotyl segments enhanced the solubilizationof neutral sugars from pectinase-treated cell walls during incubationin buffer at pH 5 to 6. The amount of fucose, xylose, and glucosereleased was specifically increased by IAA. Of the sugar fractionsreleased from pectinase-treated cell walls during autolysisand subsequently separated by gel filtration on a ToyopearlHW-40S column, IAA promoted the release of oligosaccharides,consisting mainly of glucose and xylose. These results suggestthat autolytic degradation of xyloglucans is closely relatedto IAA-induced growth of azuki bean epicotyls. (Received May 19, 1989; Accepted January 5, 1990)  相似文献   

10.
The Hindak strain of a Cryptomonas species (Cryptophyceae) produces extracellular polysaccharides. Because there is no information on the structure of these compounds in the Cryptophyceae we conducted structural studies. Gas–liquid chromatographic analyses showed that the polysaccharide is composed of fucose, rhamnose, xylose, mannose, glucose, galactose, galacturonic acid, glucuronic acid, and traces of 3-O-methyl galactose. The polysaccharide was separated into two subtractions by ion-exchange chromatography. Fraction A consisted mainly of 1,3-linked galactose units and 1,4-linked galacturonic acid. Unlike fraction B, fraction A did not have xylose, 3-O-methyl galactose, or glucuronic acid. Also, its degree of branching was low compared to that of fraction B. Only traces of sulfate were present infraction A, but fraction B was 10–15% sulfated. Protein was approximately 1% in both fractions. These polysaccharides appear to be a novel type of polymer in algae.  相似文献   

11.
Liyan Yang 《Carbohydrate research》2010,345(13):1909-2164
A water-soluble polysaccharide, FCAP1, was isolated from an alkaline extract from the fruits of Cornus officinalis. Its molecular weight was 34.5 kDa. Monosaccharide composition analysis revealed that it was composed of fucose, arabinose, xylose, mannose, glucose, and galactose in a molar ratio of 0.29:0.19:1.74:1:3.30:1.10. On the basis of partial acid hydrolysis and methylation analysis, FCAP1 was shown to be a highly branched polysaccharide with a backbone of β-(1→4)-linked-glucose partially substituted at the O-6 position with xylopyranose residues. The branches were composed of (1→3)-linked-Ara, (1→4)-linked-Man, (1→4,6)-linked-Man, (1→4)-linked-Glc, and (1→2)-linked-Gal. Arabinose, fucose, and galactose were located at the terminal of the branches. The structure was further elucidated by a specific enzymatic degradation with an endo-β-(1→4)-glucanase and MALDI-TOF-MS analysis. Oligosaccharides generated from FCAP1 indicated that FCAP1 contained XXXG-type and XXG-type xyloglucan fragments.  相似文献   

12.
Xyloglucan oligosaccharides were isolated with various degreesof polymerization (DP) and reduced with tritiated sodium borohydride.The 3H-oligosaccharides were tested for their ability to bindto amorphous and microcrystalline celluloses and to cellulosefilter paper. The time course of binding indicated that theradiolabeled oligosaccharides continued to be bound for at least1 h after heating at 120°C. The binding probably requiredthe organization of the oligosaccharides and celluloses by gradualannealing after heating. Although neither pentasaccharide (glucose:xylose, 3 : 2), heptasaccharide (glucose: xylose, 4 : 3) andnonasaccharide (glucose : xylose : galactose : fucose, 4 : 3: 1 : 1) failed to bind to the celluloses, binding occurredwith oligosaccharides with DP equivalent to more than four consecutive1,4-ß-glucosyl residues. The extent of binding tothe celluloses increased gradually from octasaccharide (glucose:xylose, 5 : 3) to hendecosanosaccharide (glucose/xylose, 12: 9), with the increase in the DP of 1,4-ß-glucosylresidues. The binding of reduced cello-dextrins to celluloserequired at least 4 consecutive 1,4-ß-glucosyl residues.The extent of binding of cellopentitol or cellohexitol to cellulosewas similar to that of hendecosanosaccharide, showing lowerbinding for xyloglucan oligosaccharides in spite of longer chainsof 1,4-ß-glucosyl residues. These findings suggestthat the mode of binding to cellulose of xyloglucan oligosaccharidesis different from that of cello-oligosaccharides. (Received February 18, 1994; Accepted June 1, 1994)  相似文献   

13.
Rapid effects of indole-3-acetic acid (IAA) on the mechanical properties of cell wall, and sugar compositions, intrinsic viscosity and molecular weight distribution of cell wall polysaccharides were investigated with excised epicotyl segments of Vigna angularis Ohwi et Ohashi cv. Takara.
  • 1 IAA caused cell wall loosening as studied by stress-relaxation analysis within 15 min after the IAA application.
  • 2 IAA stimulated the decrease in the content of arabinose and galactose in the hemicellulose 1 h after its application. The amounts of other component sugars in the cell wall polysaccharides remained constant during the IAA-induced segment growth.
  • 3 The intrinsic viscocity of the pectin increased as early as 30 min after the IAA application. This effect was not prevented when elongation growth of the segment was osmotically suppressed by 0.15 M mannitol.
  • 4 Gel permeation chromatography of the pectin on a Sepharose 4 B column demonstrated that IAA caused increase in the mass-average molecular weight of the pectin. Analysis of the sugar compositions of the pectin eluted from the Sepharose 4 B column indicated that IAA increased the molecular weight of the polysaccharides composed of uronic acid, galactose, rhamnose and arabinose. This effect became apparent within 30 min after the IAA application. Furthermore, IAA increased the molecular weight of the pectin when elongation growth of the epicotyl segments was osmotically suppressed by 0.15 M mannitol.
  • 5 Hemicellulose of the cell wall chromatographed on a Sepharose CL-4 B column. Analysis of the neutral sugar compositions and the iodine staining property (specific for xyloglucans) of the polysaccharide solution eluted from the column indicated that the hemicellulose consisted of xyloglucans, arabinogalactans and polysaccharides composed of xylose and/or mannose. IAA caused a decrease in the arabinogalactan content and depolymerization of xyloglucans. These IAA effects became apparent within 30 min after the IAA application. These changes occurred even when elongation growth of the epicotyl segments was osmotically suppressed by 0.15 M mannitol.
Polymerization of the pectin, degradation of arabinogalactans and depolymerization of xyloglucans appear to be involved in the mechanism by which IAA induces cell wall loosening and therefore extension growth of cells.  相似文献   

14.
Changes in mechanical properties and chemical nature of the cell walls of the different zones along elongating maize ( Zea mays L. cv. LG 11) roots were analyzed and the following results were obtained. (1) The apical region 2 to 5 mm from the tip of 15 mm long roots showed rapid elongation whereas the region 8–10 mm from the tip showed very little growth. (2) The minimum stress-relaxation time (To) and the mean stress-relaxation rate (R) of the cell wall were small whereas the maximum stress-relaxation time (Tm) was large in the region where cell elongation was optimum. The To and R increased and the Tm decreased gradually towards the base of the root. (3) The amounts of non-cellulosic polysaccharides of the cell wall were highest in the region 1.5–2.5 mm from the tip, decreasing until 5 mm from the tip, and then increasing towards the base. However, the proportion of this fraction in the total cell wall polysaccharides was highest in the extreme tip (cap and meristem, 0–1 mm) and decreased towards the base. (4) Major neutral sugars constituting the non-cellulosic polysaccharides of the cell wall were xylose, arabinose, galactose and glucose, with minor amounts of rhamnosc. mannose and fucose. The 1–15 mm region was on the whole rich in glucose and xylose and contained arabinose to a lesser extent. However, the chemical nature in the apical region, (0–2 mm, was rather special, being rich in galactose and fucose. (5) The cell wall of maize roots contained, as a whole, only little pectic substances but was high in hemicellulose 1 (rich in xylose, arabinose and glucose) and hemicellulose 2 (rich in glucose and xylose). (6) It appeared that in the elongating region (apical 2 to 5 mm) the cell elongation rate (CET) showed a rather good correlation with the parameters of mechanical properties (To, Tm and R) and with neutral sugar compositions in the non-cellulosic polysaccharides.  相似文献   

15.
To gain insights into dimorphism, cell wall polysaccharides from Tremella fuciformis strains were obtained from alkali-extracted water-soluble fractions PTF-M38 (from the mycelial form), PTF-Y3 and PTF-Y8 (from the yeast form) of T. fuciformis strains were used to gain some insights into dimorphism study. Their chemical properties and structural features were investigated using gel permeation chromatography, gas chromatography, UV and IR spectrophotometry and Congo red binding reactions. The results indicated that the backbones of PTF-M38, PTF-Y3 and PTF-Y8 were configured with α-linkages with average molecular weights of 1.24, 1.08, and 1.19 kDa, respectively. PTF-M38 was mainly composed of xylose, mannose, glucose, and galactose in a ratio of 1:1.47:0.48:0.34, while PTF-Y3 and PTF-Y8 were mainly composed of xylose, mannose and glucose in a ratio of 1:1.65:4.06 and 1:1.21:0.44, respectively. The sugar profiles of PTF-M38, PTF-Y3 and PTF-Y8 were also established for further comparison. These profiles showed that all three polysaccharides contained the same sugars but in different ratios, and the carbon sources (xylose, mannose, glucose, and galactose) affected the sugar ratios within the polysaccharides.  相似文献   

16.
Culture filtrates of four basidiomycete fungi, Stereum strigoso-zonatum, Fomes australis, Trametes lilacinogilva and Polyporus tumulosus were fractionated and examined for polysaccharide content. Acid hydrolysis showed the presence of galactose, mannose, xylose, fucose and glucose. Their relative amounts were estimated by gas chromatography of the corresponding alditol acetates. Galactose and mannose were the major constituent sugars, amounting to more than 50% of the total. One of the polysaccharides, a fucogalactomannan elaborated by P. tumulosus, was isolated in a purified form. It was shown to have [alpha]D +42 degrees and contained galactose, mannose, fucose and xylose in the relative proportions 2 : 1 : 1 : 0-2.  相似文献   

17.
Studies on by-products from the industrial extraction of alginate   总被引:1,自引:0,他引:1  
The chemical composition of fucans isolated from leach-water, an industrial alginate extraction by-product, was investigated. Several fractions were obtained by anion exchange and gel permeation chromatography. They all contained fucose, but differed in the uronic acid, sulfate, xylose and galactose contents. They distributed as a continuum between uronic acid rich and sulfate poor to sulfate rich and uronic acid poor molecules. Two highly sulfated fractions were studied in particularly by chemical means (methylation, carboxy reduction, desulfation, controlled acid hydrolysis) and by13C nuclear magnetic resonance spectroscopy. One fraction consisted of a highly branched fucan (43.8% fucose) composed mostly of 1,2,3,4- and 1,2,4-linked fucose with some 1,4-,1,3,4- and 1,3-linkages and sulfate (23.9%) occurring on O2 and/or O3 and/or O4. The other was composed mainly of fucose (31.6%), galactose (24.7%) and sulfate (23.7%). It consisted primarily of 1,6-, 1,4,6-, 1,3- and 1,3,6-linked galactose 6-and/or 4- and/or 3-sulfate on which are linked essentially terminal fucose or 1,4-linked with sulfate on O2 and/or O3 and/or O4. None of these highly branched fractions contained sufficiently regular segments to yield series of homologous oligosaccharides on partial acid hydrolysis or interpretable13C NMR spectra.author for correspondence  相似文献   

18.
Gum-tears from the leaves of Welwitschia mirabilis contain a polysaccharide composed of arabinose, galactose and glucuronic acid as main constituents with xylose, fucose and rhamnose in smaller quantities. Periodate oxidation and permethylation studies indicated that the gum could consist of a framework of glucuronic acid residues linked 1 → 4 and galactose residues linked 1 → 6 and of short chains of arabinose, xylose, fucose and rhamnose linked 1 → 3 to both residues. All rhamnose and fucose and part of arabinose were found as non-reducing terminal units.  相似文献   

19.
A technique of centrifuging pea epicotyl sections which extracts water-soluble cell wall polysaccharides with less than 1.5% cytoplasmic contamination as revealed by malate dehydrogenase activity determinations was developed. Tests for protein, hexose, pentose, and malate dehydrogenase indicate that significant damage to the cells occurs above 3,000g. Below this force, there is little damage, as evidenced by the similar growth rates of centrifuged and noncentrifuged sections. Centrifugation at 1,000g extracts polysaccharides containing rhamnose, fucose, arabinose, xylose, mannose, galactose, and glucose. An increase in xylose and glucose, presumably xyloglucan, is induced by treating sections with indoleacetic acid. Much of the alcohol-insoluble, water-soluble polysaccharide within the wall is extractable by centrifugation, since nearly as much arabinose and xylose are extractable by centrifugation as by homogenization. The utility of this method for the study of cell wall metabolism is discussed.  相似文献   

20.
Ginkgo biloba exocarp polysaccharide (GBEP) was obtained by hot water extraction, the crude polysaccharide was deproteinized by Sevag method and fractionized by a DEAE Sepharose fast flow anion-exchange column. Five fragments were obtained, including neutral polysaccharide (GBEP-N) and four acidic polysaccharides (GBEP-A1, GBEP-A2, GBEP-A3 and GBEP-A4). GBEP-N and GBEP-A3 were further purified by Superdex 200 gel column chromatography. The resulted two fractions GBEP-NN, and GBEP-AA were characterized by FT-IR, and HPGFC (high pressure gel filtration chromatography). Monosaccharide composition was determined by RP-HPLC method of precolumn derivatization with 1-phenyl-3-5-pyrazolone. GBEP-NN was mainly composed of rhamnose, arabinose, mannose, glucose and galactose, while GBEP-AA was mainly made up of mannose, rhamnose, glucuronic acid, galacturonic acid, galactosamine, glucose, galactose, xylose, arabinose, and fucose. The crude GBEP exhibited certain antioxidant activity. At the concentration of 5 mg/mL, the hydroxyl radical scavenging effect of GBEP was 90.52%, greater than 77.37% for the positive control ascorbic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号