首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Amyloidogenic processing of the beta-amyloid precursor protein (APP) has been implicated in the pathology of Alzheimer's disease. Because it has been suggested that catabolic processing of the APP holoprotein occurs in acidic intracellular compartments, we studied the effects of the protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) and the H+-ATPase inhibitor bafilomycin A1 on APP catabolism in human embryonic kidney 293 cells expressing either wild-type or "Swedish" mutant APP. Unlike bafilomycin A1, which inhibits beta-amyloid production in cells expressing mutant but not wild-type APP, FCCP inhibited beta-amyloid production in both cell types. Moreover, the effects of FCCP were independent of alterations in total cellular APP levels or APP maturation, and the concentrations used did not alter either cellular ATP levels or cell viability. Bafilomycin A1, which had no effect on beta-amyloid production in wild-type cells, inhibited endocytosis of fluorescent transferrin, whereas concentrations of FCCP that inhibited beta-amyloid production in these cells had no effect on endosomal function. Thus, in wild-type-expressing cells it appears that the beta-amyloid peptide is not produced in the classically defined endosome. Although bafilomycin A1 decreased beta-amyloid release from cells expressing mutant APP but not wild-type APP, it altered lysosomal function in both cell types, suggesting that in normal cells beta-amyloid is not produced in the lysosome. Although inhibition of beta-amyloid production by bafilomycin A1 in mutant cells may occur via changes in endosomal/lysosomal pH, our data suggest that FCCP inhibits wild-type beta-amyloid production by acting on a bafilomycin A1-insensitive acidic compartment that is distinct from either the endosome or the lysosome.  相似文献   

2.
The mature form of Alzheimer's beta-amyloid precursor protein (APP) is phosphorylated specifically at Thr(668) in neurons. In mature neurons, phosphorylated APP is detected in neurites, with dephosphorylated APP being found mostly in the cell body. In vitro, active cyclin-dependent kinase 5 (Cdk5) phosphorylated the cytoplasmic domain of APP at Thr(668). Treatment of mature neurons with an antisense oligonucleotide to Cdk5 suppressed Cdk5 expression and significantly diminished the level of phosphorylated APP. The expression of APP was unaffected in antisense-treated neurons. These results indicate that in neurons APP is phosphorylated by Cdk5, and that this may play a role in its localization.  相似文献   

3.
Abstract: A major histopathological hallmark in Alzheimer's disease consists of the extracellular deposition of the amyloid β-peptide (Aβ) that is proteolytically derived from the β-amyloid precursor protein (βAPP). An alternative, nonamyloidogenic cleavage, elicited by a protease called α-secretase, occurs inside the Aβ sequence and gives rise to APPα, a major secreted C-terminal-truncated form of βAPP. Here, we demonstrate that human embryonic kidney 293 (HK293) cells contain a chymotryptic-like activity that can be ascribed to the proteasome and that selective inhibitors of this enzyme reduce the phorbol 12,13-dibutyrate-sensitive APPα secretion by these cells. Furthermore, we establish that a specific proteasome blocker, lactacystin, also induces increased secretion of Aβ peptide in stably transfected HK293 cells overexpressing wild-type βAPP751. Altogether, this study represents the first identification of a proteolytic activity, namely, the proteasome, contributing likely through yet unknown intracellular relays, to the α-secretase pathway in human cells.  相似文献   

4.
Abstract: The β-amyloid precursor protein undergoes a physiological cleavage by α-secretase that leads to the release of a secreted C-terminally truncated fragment called APPα and likely concomitantly reduces the formation of the amyloidogenic Aβ peptide. Here we demonstrate that APPα secretion is increased by the protein kinase A (PKA) effectors 8-bromo cyclic AMP and forskolin in human embryonic kidney cells (HK293), and that this can be prevented by a proteasome inhibitor. Furthermore, we establish that PKA effectors but not protein kinase C agonists increase the chymotrypsin-like activity and phosphorylation state of the proteasome in vitro and in vivo in HK293 cells. Altogether, this report demonstrates that the α-secretase pathway is under the control of PKA in human cells and that the proteasome likely contributes, either directly or through yet unknown intermediates, to the PKA-stimulated APPα secretion in human cells.  相似文献   

5.
12/15 Lipoxygenase (12/15LO) protein levels and activity are increased in pathologically affected regions of Alzheimer's disease (AD) brains, compared with controls. Its metabolic products are elevated in cerebrospinal fluid of patients with AD and individuals with mild cognitive impairment, suggesting that this enzyme may be involved early in AD pathogenesis. Herein, we investigate the effect of pharmacologic inhibition of 12/15LO on the amyloid beta precursor protein (APP) metabolism. To this end, we used CHO and N2A cells stably expressing human APP with the Swedish mutant, and two structurally distinct and selective 12/15LO inhibitors, PD146176 and CDC. Our results demonstrated that both drugs dose-dependently reduced Abeta formation without affecting total APP levels. Interestingly, in the same cells we observed a significant reduction in secreted (s)APPbeta and beta-secretase (BACE), but not sAPPalpha and ADAM10 protein levels. Together, these data show for the first time that this enzymatic pathway influences Abeta formation whereby modulating the BACE proteolytic cascade. We conclude that specific pharmacologic inhibition of 12/15LO could represent a novel therapeutic target for treating or preventing AD pathology in humans.  相似文献   

6.
FE65 is an adaptor protein that interacts with the cytoplasmic tail of the amyloid precursor protein (APP). In cultured non-neuronal cells, the formation of the FE65-APP complex is a key element for the modulation of APP processing, signalling and beta-amyloid (Abeta) production. The functions of FE65 in vivo, including its role in the metabolism of neuronal APP, remain to be investigated. In this study, transgenic mice expressing human FE65 were generated and crossbred with APP transgenic mice, known to develop Abeta deposits at 6 months of age. Compared with APP mice, APP/FE65 double transgenic mice exhibited a lower Abeta accumulation in the cerebral cortex as demonstrated by immunohistochemistry and immunoassay, and a lower level of APP-CTFs. The reduced accumulation of Abeta in APP/FE65 double transgenics, compared with APP mice, could be linked to the low Abeta42 level observed at 4 months of age and to the lower APP-CTFs levels. The present work provides evidence that FE65 plays a role in the regulation of APP processing in an in vivo model.  相似文献   

7.
Polymorphisms in the apolipoprotein E (APOE) gene affect the risk of Alzheimer disease and the amount of amyloid beta-protein (Abeta) deposited in the brain. The apoE protein reduces Abeta levels in conditioned media from cells in culture, possibly through Abeta clearance mechanisms. To explore this effect, we treated multiple neural and non-neural cell lines for 24 h with apoE at concentrations similar to those found in the cerebrospinal fluid (1-5 microg/mL). The apoE treatment reduced Abeta40 by 60-80% and Abeta42 to a lesser extent (20-30%) in the conditioned media. Surprisingly, apoE treatment resulted in an accumulation of amyloid precursor protein (APP)-C-terminal fragments in cell extracts and a marked reduction of APP intracellular domain-mediated signaling, consistent with diminished gamma-secretase processing of APP. All three isoforms of apoE, E2, E3 and E4, had similar effects on Abeta and APP-C-terminal fragments, and the effects were independent of the low-density lipoprotein receptor family. Apolipoprotein E had minimal effects on Notch cleavage and signaling in cell-based assays. These data suggest that apoE reduces gamma-secretase cleavage of APP, lowering secreted Abeta levels, with stronger effects on Abeta40. The apoE modulation of Abeta production and APP signaling is a potential mechanism affecting Alzheimer disease risk.  相似文献   

8.
Abstract: Extracellular amyloid β-peptide (Aβ) deposition is a pathological feature of Alzheimer's disease and the aging brain. Intracellular Aβ accumulation is observed in the human muscle disease, inclusion body myositis. Aβ has been reported to be toxic to neurons through disruption of normal calcium homeostasis. The pathogenic role of Aβ in inclusion body myositis is not as clear. Elevation of intracellular calcium following application of calcium ionophore increases the generation of Aβ from its precursor protein (βAPP). A receptor-based mechanism for the increase in Aβ production has not been reported to our knowledge. Here, we use caffeine to stimulate ryanodine receptor (RYR)-regulated intracellular calcium release channels and show that internal calcium stores also participate in the genesis of Aβ. In cultured HEK293 cells transfected with βAPP cDNA, caffeine (5–10 m M ) significantly increased the release of Aβ fourfold compared with control. These actions of caffeine were saturable, modulated by ryanodine, and inhibited by the RYR antagonists ruthenium red and procaine. The calcium reuptake inhibitors thapsigargin and cyclopiazonic acid potentiated caffeine-stimulated Aβ release. NH4Cl and monensin, agents that alter acidic gradients in intracellular vesicles, abolished both the caffeine and ionophore effects. Immunocytochemical studies showed some correspondence between the distribution patterns of RYR and cellular βAPP immunoreactivities. The relevance of these findings to Alzheimer's disease and inclusion body myositis is discussed.  相似文献   

9.
The effects of peptide fragments of the beta-amyloid precursor protein (betaAPP) on parallel fiber (PF)-Purkinje cell synaptic transmission in the rat cerebellum were examined. Transient inward currents associated with calcium influx were induced by localized applications of the 105-amino acid carboxy-terminal fragment (CT105) of betaAPP to discrete dendritic regions of intact Purkinje cells. betaAPP and the amyloid beta (Abeta) peptide fragments Abeta1-16, Abeta25-35, and Abeta1-42 had little or no effect. Inward currents were also observed following applications of CT105 to isolated patches of somatic Purkinje cell membrane. All five proteins/peptides induced some depression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor-mediated synaptic transmission between PFs and Purkinje cells, through a combination of pre- and postsynaptic effects. CT105 induced the greatest depression, which spread to distant synapses following local application and which was prevented by inhibition of nitric oxide synthase. These data indicate that CT fragments of the betaAPP can modulate AMPA-mediated glutamatergic synaptic transmission in the cerebellar cortex. These fragments may therefore be considered alternative candidates for some of the neurotoxic effects of Alzheimer's disease.  相似文献   

10.
The amyloid beta-protein precursor (APP) is proteolytically cleaved to generate the amyloid beta-protein (Abeta), the principal constituent of senile plaques found in Alzheimer's disease (AD). In addition, Abeta in its oligomeric and fibrillar forms have been hypothesized to induce neuronal toxicity. We and others have previously shown that APP can be cleaved by caspases at the C-terminus to generate a potentially cytotoxic peptide termed C31. Furthermore, this cleavage event and caspase activation were increased in the brains of AD, but not control, cases. In this study, we show that in cultured cells, Abeta induces caspase cleavage of APP in the C-terminus and that the subsequent generation of C31 contributes to the apoptotic cell death associated with Abeta. Interestingly, both Abeta toxicity and C31 pathway are dependent on the presence of APP. Both APP-dependent Abeta toxicity and C31-induced apoptotic cell death involve apical or initiator caspases-8 and -9. Our results suggest that Abeta-mediated toxicity initiates a cascade of events that includes caspase activation and APP cleavage. These findings link C31 generation and its potential cell death activity to Abeta cytotoxicity, the leading mechanism proposed for neuronal death in AD.  相似文献   

11.
Beta amyloid peptide-containing neuritic plaques are a defining feature of Alzheimer's disease pathology. Beta amyloid are 38-43 residue peptides derived by proteolytic cleavage of amyloid precursor protein. Although much attention has focused on the proteolytic events leading to beta amyloid generation, the function of amyloid precursor protein remains poorly described. Previously, we reported that amyloid precursor protein functions as a pro-inflammatory receptor on monocytic lineage cells and defined a role for amyloid precursor protein in adhesion by demonstrating that beta(1) integrin-mediated pro-inflammatory activation of monocytes is amyloid precursor protein dependent. We demonstrated that antibody-induced cross-linking of amyloid precursor protein in human THP-1 monocytes and primary mouse microglia stimulates a tyrosine kinase-based pro-inflammatory signaling response leading to acquisition of a reactive phenotype. Here, we have identified pro-inflammatory mediators released upon amyloid precursor protein-dependent activation of monocytes and microglia. We show that amyloid precursor protein cross-linking stimulated tyrosine kinase-dependent increases in pro-inflammatory cytokine release and a tyrosine kinase-independent increase in beta amyloid 1-42 generation. These data provide much needed insight into the function of amyloid precursor protein and provide potential therapeutic targets to limit inflammatory changes associated with the progression of Alzheimer's disease.  相似文献   

12.
Frame-shifted amyloid precursor protein (APP(+1)), which has a truncated out-of-frame C-terminus, accumulates in the neuropathological hallmarks of patients with Alzheimer's disease pathology. To study a possible involvement of APP(+1) in the pathogenesis of Alzheimer's disease, we expressed APP695 and APP(+1) in the HEK293 cell-line and studied whether the processing of APP695 was affected. APP(+1) is a secretory protein, but high expression of APP695 and APP(+1) results in the formation of intracellular aggregate-like structures containing both proteins and Fe65, an adaptor protein that interacts with APP695. APP(+1) is shown to interact with APP695, suggesting that these structures consist of functional protein complexes. Such an interaction can also be anticipated in post-mortem brains of young Down's syndrome patients without any sign of neuropathology. Here we observed APP(+1) immunoreactivity in beaded fibres. Additional support for functional consequences on the processing of APP695 comes from a 1.4-fold increase in levels of secreted amyloid beta40 in cells co-expressing APP695 and APP(+1), although APP(+1) itself does not contain the amyloid beta sequence. Taken together, these data show that co-expression of APP695 and APP(+1) affects the processing of APP695 in a pro-amyloidogenic way and this could gradually contribute to Alzheimer's disease pathology, as has been implicated in Down's syndrome patients.  相似文献   

13.
14.
Amyloid beta-peptide (Abeta) is implicated as the major causative agent in Alzheimer's disease (AD). Abeta is produced by the processing of the amyloid precursor protein (APP) by BACE1 (beta-secretase) and gamma-secretase. Many inhibitors have been developed for the secretases. However, the inhibitors will interfere with the processing of not only APP but also of other secretase substrates. In this study, we describe the development of inhibitors that prevent production of Abeta by specific binding to the beta-cleavage site of APP. We used the hydropathic complementarity (HC) approach for the design of short peptide inhibitors. Some of the HC peptides were bound to the substrate peptide (Sub W) corresponding to the beta-cleavage site of APP and blocked its cleavage by recombinant human BACE1 (rhBACE1) in vitro. In addition, HC peptides specifically inhibited the cleavage of Sub W, and not affecting other BACE1 substrates. Chemical modification allowed an HC peptide (CIQIHF) to inhibit the processing of APP as well as the production of Abeta in the treated cells. Such novel APP-specific inhibitors will provide opportunity for the development of drugs that can be used for the prevention and treatment of AD with minimal side effects.  相似文献   

15.
Mutations within the amyloid-beta (Abeta) domain of the amyloid precursor protein (APP) typically generate hemorrhagic strokes and vascular amyloid angiopathy. In contrast, the Arctic mutation (APP E693G) results in Alzheimer's disease. Little is known about the pathologic mechanisms that result from the Arctic mutation, although increased formation of Abeta protofibrils in vitro and intraneuronal Abeta aggregates in vivo suggest that early steps in the amyloidogenic pathway are facilitated. Here we show that the Arctic mutation favors proamyloidogenic APP processing by increased beta-secretase cleavage, as demonstrated by altered levels of N- and C-terminal APP fragments. Although the Arctic mutation is located close to the alpha-secretase site, APP harboring the Arctic mutation is not an inferior substrate to a disintegrin and metalloprotease-10, a major alpha-secretase. Instead, the localization of Arctic APP is altered, with reduced levels at the cell surface making Arctic APP less available for alpha-secretase cleavage. As a result, the extent and subcellular location of Abeta formation is changed, as revealed by increased Abeta levels, especially at intracellular locations. Our findings suggest that the unique clinical symptomatology and neuropathology associated with the Arctic mutation, but not with other intra-Abeta mutations, could relate to altered APP processing with increased steady-state levels of Arctic Abeta, particularly at intracellular locations.  相似文献   

16.
Brain-derived neurotrophic factor (BDNF) stimulates beta-amyloid precursor protein (APP) promoter activity by a Ras-dependent mechanism in TrkB-expressing SH-SY5Y cells. To determine the signalling pathways involved in the BDNF-induced response, we have analysed the ability of TrkB mutated forms to mediate promoter stimulation. Brain-derived neurotrophic factor causes a significant induction of promoter activity and mutation K540R in the active site of TrkB completely abolishes the neurotrophin-induced response. A substitution of the Y484 residue by phenylalanine, which blocks binding of Shc, reduces the activation of APP promoter by BDNF by approximately 50% whereas mutation Y785P, which blocks binding of phospholipase C gamma, does not affect the response. In addition, the phosphatidylinositide 3-kinase (PI3K)-specific inhibitors wortmannin and LY294002 reduced BDNF-induced activation. In agreement with a participation of both Ras/MAPK- and PI3K/Akt-mediated mechanisms, transient expression of constitutive active forms of Ras, PI3K and other components of both signalling pathways led to a significant increase of APP promoter activity. Furthermore, the stimulation of the APP promoter by BDNF was completely precluded by expression of dominant-negative forms of Ras and PI3K effectors. Taken together, our results suggest that simultaneous activation of at least two signalling pathways, Ras/MAPK and PI3K/Akt, is necessary to mediate a full activation of the APP promoter by BDNF.  相似文献   

17.
Our previous studies have demonstrated that perlecan and perlecan-derived glycosaminoglycans (GAGs) not only bind beta-amyloid protein (Abeta) 1-40 and 1-42, but are also potent enhancers of Abeta fibril formation and stabilize amyloid fibrils once formed. However, it was not determined which moieties in perlecan heparan sulfate GAG chains may be responsible for the observed effects and whether other GAGs were also capable of a similar enhancement of Abeta fibril formation as observed with perlecan GAGs. In the present study, thioflavin T fluorometry (over a 1-week period) was used to extend our previous studies and to test the hypothesis that the sulfate moiety is critical for the enhancing effects of heparin/heparan sulfate GAGs on Abeta 1-40 fibrillogenesis. This hypothesis was confirmed when removal of all sulfates from heparin (i.e., completely desulfated N-acetylated heparin) led to a complete loss in the enhancement of Abeta fibrillogenesis as demonstrated in both thioflavin T fluorometry and Congo red staining studies. On the other hand, removal of O-sulfate from heparin (i.e., completely desulfated N-sulfated heparin), and to a lesser extent N-sulfate (i.e., N-desulfated N-acetylated heparin), resulted in only a partial loss of the enhancement of Abeta 1-40 fibril formation. These studies indicate that the sulfate moieties of GAGs are critical for enhancement of Abeta amyloid fibril formation. In addition, other sulfated molecules such as chondroitin-4-sulfate, dermatan sulfate, dextran sulfate, and pentosan polysulfate all significantly enhanced (greater than twofold by 3 days) Abeta amyloid fibril formation. These latter findings indicate that deposition and accumulation of other GAGs at sites of Abeta amyloid deposition in Alzheimer's disease brain may also participate in the enhancement of Abeta amyloidosis.  相似文献   

18.
Claudins constitute tight junction (TJ) strands. In order to examine the function of the second extracellular loop (ECL2), we constructed 1CLΔFY and 1CLΔPL in which highly conserved amino acids, FY or PL, in the ECL2 of mouse claudin-1 were deleted. They were then tagged with either EGFP at the NH2-terminus (EGFP1CLΔFY and EGFP1CLΔPL) or the myc-epitope at the COOH-terminus (1CLΔFYmyc and 1CLΔPLmyc). The expression of EGFP1CLΔFY and EGFP1CLΔPL in TJ-free HEK293 cells formed TJ strands resembling those formed by wild-type claudin-1. The expression of 1CLΔPLmyc in TJ-bearing MDCK II cells induced aberrant TJ strands in the lateral plasma membranes whose intramembranous particles were almost equally distributed in the P- and E-face. In contrast, 1CLΔFYmyc formed aggregates of short continuous strands which were frequently associated with vesicle-like structures. Coculture experiments with MDCK II cells showed that 1CLΔPLmyc was localized at heterotypic cell–cell junctions but 1CLΔFYmyc was not. These results suggest that changes in the TJ morphology due to the expression of either 1CLΔFYmyc or 1CLΔPLmyc may be caused by some factors specific to epithelial MDCK II cells including endogenous claudins. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Homozygous APPV717F transgenic mice overexpress a human beta-amyloid precursor protein (betaAPP) minigene encoding a familial Alzheimer's disease mutation. These mice develop Alzheimer-type neuritic beta-amyloid plaques surrounded by astrocytes. S100beta is an astrocyte-derived cytokine that promotes neurite growth and promotes excessive expression of betaAPP. S100beta overexpression in Alzheimer's disease correlates with the proliferation of betaAPP-immunoreactive neurites in beta-amyloid plaques. We found age-related increases in tissue levels of both betaAPP and S100beta mRNA in transgenic mice. Neuronal betaAPP overexpression was found in cell somas in young mice, whereas older mice showed betaAPP overexpression in dystrophic neurites in plaques. These age-related changes were accompanied by progressive increases in S100beta expression, as determined by S100beta load (percent immunoreactive area). These increases were evident as early as 1 and 2 months of age, months before the appearance of beta-amyloid deposits in these mice. Such precocious astrocyte activation and S100beta overexpression are similar to our earlier findings in Down's syndrome. Accelerated age-related overexpression of S100beta may interact with age-associated overexpression of mutant betaAPP in transgenic mice to promote development of Alzheimer-like neuropathological changes.  相似文献   

20.
beta-Amyloid peptide accumulates in the brain of patients affected by sporadic or familial forms of Alzheimer's disease. It derives from the proteolytic attacks of the beta-amyloid precursor protein (betaAPP) by beta- and gamma-secretase activities. An additional epsilon cleavage taking place a few residues C-terminal to the gamma-site has been reported, leading to the formation of an intracellular fragment referred to as APP intracellular domain C50. This epsilon cleavage received particular attention because it resembles the S3 Notch cleavage generating Notch intracellular domain. Indeed, APP intracellular domain, like its Notch counterpart, appears to mediate important physiological functions. gamma and epsilon cleavages on betaAPP appear spatio-temporally linked but pharmacologically distinct and discriminable by mutagenesis approaches. As these cleavages could be seen as either deleterious (gamma-site) or beneficial (epsilon-site), it appears of most interest to set up models aimed at studying these activities separately, particularly to design specific and bioavailable inhibitors. On the other hand, it is important to respect the topology of the substrates in order to examine physiologically relevant cleavages. Here we describe the obtention of cells overexpressing APPepsilon, the epsilon-secretase-derived N-terminal fragment of betaAPP. Interestingly, this N-terminal fragment of betaAPP was shown by biochemical and immunohistochemical approaches to behave as a genuine membrane-bound protein. APPepsilon undergoes constitutive and protein kinase C-regulated alpha-secretase cleavages. Furthermore, APPepsilon is targeted by the beta-secretase beta-site APP-cleaving enzyme and is subsequently cleaved by gamma-secretase. The resulting beta-amyloid peptide production is fully prevented by various gamma-secretase inhibitors. Altogether, our study shows that APPepsilon is a relevant betaAPP derivative to study gamma-secretase activities and to design specific inhibitors without facing any rate-limiting effect of epsilon-secretase-derived cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号