首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transfer of algal cells of Chlorella regularis from 3% CO2 inair into ordinary air in the light increased external carbonicanhydrase (CA) activity as well as photosynthetic affinity forCO2 by several-fold within 2 h. Since no noticeable differencewas observed in CA activity between intact cells and cell homogenates,CA seemed to be mainly localized on the cell surface. Changesin CA activity and K?(CO2) of photosynthesis were not observedin the dark. CA induction was 50%-inhibited by incubation with10 µM DCMU during adaptation of high-CO2 cells to air,whereas it was considerably suppressed when high-CO2 cells preincubatedwith DCMU in the light for 6 h or without DCMU in the dark for24 h were used. The change in K?(CO2) of photosynthesis wasonly slightly affected by DCMU. Uncoupler like carbonylcyanide-m-chlorophenyl-hydrazone(CCCP) and inhibitors of mitochondrial respiration (KCN plussalicylhydroxamic acid) suppressed CA induction during adaptationof high-CO2 cells to low CO2 conditions. These results suggest that photosynthesis is not essential forCA induction in Chlorella regularis when some amounts of photosyntheticproducts are previously stored in the cells and respirationis active. A decrease in K?(CO2) of photosynthesis during adaptationfrom high to low CO2 was mostly independent on photosynthesis.However, light is essential for both phenomena. (Received July 16, 1990; Accepted January 21, 1991)  相似文献   

2.
When Chlorella vulgaris llh cells which had been grown in airenriched with 2–4% CO2 (high-CO2 cells) were bubbled withair containing ca. 400 ppm CO2, illumination at an intensityas low as the light compensation point (350 lux) was sufficientto increase the photosynthetic rate under limiting CO2 concentrations.The same treatment induced carbonic anhydrase (CA) activity.The induction of CA activity and increase in photosyntheticrate at limiting CO2 concentrations were observed in the presenceof 10 µM DCMU which completely inhibits photosynthesis.These results indicate that photosynthetic electron transportis not involved in CA induction in Chlorella vulgaris llh cells.The parallelism between the changes in CA activity and the rateof photosynthesis under limiting CO2 concentrations agree withthe previous conclusion that the transport of CO2 from outsideto the site of CO2 fixation is facilitated by CA and hence lowersthe apparent Km(CO2) for photosynthesis. (Received December 24, 1982; Accepted May 10, 1983)  相似文献   

3.
In the green alga Chlorella vulgaris UAM 101, a CO2-concentrating mechanism (CCM) is induced when cells are transferred from high (5%) to low (0.03%) CO2 concentrations. The induction of the CCM is correlated with de-novo synthesis of several polypeptides that remain to be identified. The internal carbonic anhydrase (CA; EC 4.2.1.1) activity increased 6- to 7-fold within 6 h of acclimation to air. When crude homogenates were further separated into soluble and insoluble fractions, nearly all of the CA activity was associated with the membrane fraction. Immunoblot analysis of cell homogenates probed with antibodies raised against the 37-kDa subunit of periplasmic CA of Chlamydomonas reinhardtii showed a cross-reaction with a single 38-kDa polypeptide in both high- and low-CO2-grown cells. The up-regulation of the expression of the 38-kDa polypeptide was closely correlated with the increase in internal CA activity. Furthermore, its subcellular location was also correlated with the distribution of the activity. Immunoblot analysis of pyrenoid fractions showed that the 38-kDa polypeptide was concentrated in the pyrenoids from low-CO2-grown cells but was not present in pyrenoids from high-CO2-grown cells. In addition, immunogold labeling experiments showed that the protein was mainly associated with membranes crossing the pyrenoid, while it was absent from the pyrenoid matrix. These studies have identified a putative intracellular CA polypeptide associated with the pyrenoid in Chlorella vulgaris, suggesting that this structure may play an important role in the operation of the CCM and the acclimation to low CO2 conditions. Received: 16 July 1997 / Accepted: 26 April 1998  相似文献   

4.
Effects of CO2 concentration during growth on intracellular structure were studied with ftve species of Chlorella and Scenedesmus obliquus. Cells grown under ordinary air conditions (low-CO2 cells) had a well developed pyrenoid surrounded by starch, while those grown under high CO2 conditions (high-CO2 cells) had a less developed pyrenoid or no detectable pyrenoid. Two mitochondria, one at each side of the neck of the projection of the chloroplast close to the pyrenoid, were found in low CO2 cells of C. vulgaris 11h. Usually, lamellar stacks extended in parallel in the chloroplast of low-CO2 cells of C. vulgaris 11h, while a grana-like structure was found in high-CO2 cells. However, in C. pyrenoidosa, grana like structures were found more commonly in low-CO2 cells than in high-CO2 cells. These results suggest that development of pyrenoid starch is generally correlated with growth under low CO2 conditions, whereas CO2-effects on lamellar stacking are species dependent.  相似文献   

5.
6.
Carbonic anhydrase (CA) is a diffusion-limited enzyme that rapidly catalyzes the hydration of carbon dioxide (CO2). CA has been proposed as an eco-friendly yet powerful catalyst for CO2 capture and utilization. A bacterial whole-cell biocatalyst equipped with periplasmic CA provides an option for a cost-effective CO2-capturing system. However, further utilization of the previously constructed periplasmic system has been limited by its relatively low activity and stability. Herein, we engineered three genetic components of the periplasmic system for the construction of a highly efficient whole-cell catalyst: a CA-coding gene, a signal sequence, and a ribosome-binding site (RBS). A stable and halotolerant CA (hmCA) from the marine bacterium Hydrogenovibrio marinus was employed to improve both the activity and stability of the system. The improved secretion and folding of hmCA and increased membrane permeability were achieved by translocation via the Sec-dependent pathway. The engineering of RBS strength further enhanced whole-cell activity by improving both the secretion and folding of hmCA. The newly engineered biocatalyst displayed 5.7-fold higher activity and 780-fold higher stability at 60°C compared with those of the previously constructed periplasmic system, providing new opportunities for applications in CO2 capture and utilization.  相似文献   

7.
Reports in the 1970s from several laboratories revealed that the affinity of photosynthetic machinery for dissolved inorganic carbon (DIC) was greatly increased when unicellular green microalgae were transferred from high to low-CO2 conditions. This increase was due to the induction of carbonic anhydrase (CA) and the active transport of CO2 and/or HCO3 which increased the internal DIC concentration. The feature is referred to as the `CO2-concentrating mechanism (CCM)'. It was revealed that CA facilitates the supply of DIC from outside to inside the algal cells. It was also found that the active species of DIC absorbed by the algal cells and chloroplasts were CO2 and/or HCO3 , depending on the species. In the 1990s, gene technology started to throw light on the molecular aspects of CCM and identified the genes involved. The identification of the active HCO3 transporter, of the molecules functioning for the energization of cyanobacteria and of CAs with different cellular localizations in eukaryotes are examples of such successes. The first X-ray structural analysis of CA in a photosynthetic organism was carried out with a red alga. The results showed that the red alga possessed a homodimeric β-type of CA composed of two internally repeating structures. An increase in the CO2 concentration to several percent results in the loss of CCM and any further increase is often disadvantageous to cellular growth. It has recently been found that some microalgae and cyanobacteria can grow rapidly even under CO2 concentrations higher than 40%. Studies on the mechanism underlying the resistance to extremely high CO2 concentrations have indicated that only algae that can adopt the state transition in favor of PS I could adapt to and survive under such conditions. It was concluded that extra ATP produced by enhanced PS I cyclic electron flow is used as an energy source of H+-transport in extremely high-CO2 conditions. This same state transition has also been observed when high-CO2 cells were transferred to low CO2 conditions, indicating that ATP produced by cyclic electron transfer was necessary to accumulate DIC in low-CO2 conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
In experiments with the unicellular green algae Scenedesmus obliquus a correlation was found between the presence of the CO2-accumulating mechanism and the appearance of polyphasic luminescence decay kinetics. A potentiometric titration method was used to measure and calculate photosynthetic carbon uptake.Polyphasic luminescence decay kinetics was found when the algae showed photosynthetic characteristics typical of algae adapted to low-CO2 conditions. When high-CO2 grown algae were transferred to low-CO2 conditions they gradually developed polyphasic decay kinetics during the first 25–30 minutes. When low-CO2 grown algae were transferred to high-CO2 conditions the polyphasic decay kinetics disappeared. To account for these results a working hypothesis is presented on the basis of the energy requirement for a CO2-accumulating mechanism.  相似文献   

9.
10.
Carbonic anhydrase (CA) induction has been studied in three marine green algae under acidic (pH 4.5) or alkaline (pH 8.0) conditions. An inhibition of the induction of the external CA in acidic conditions, similar to that observed in some freshwater green algae, could be observed in only Chlorella saccharophila. In the two other species, Chlorococcum littorale and Stichococcus bacillaris, no significant difference in CA induction was found under two pH conditions. The exact function of the external CA of C. saccharophila remains unclear, since cells grown under acidic conditions (under which this enzyme is repressed) possess the same abilities to use inorganic carbon (Ci) as alkaline‐grown cells. Internal pH values were not modified by the pH of the medium used to cultivate C. saccharophila. Regardless of the growth conditions, activities related to carbon fixation, that is, photosynthetic oxygen evolution, Ci uptake and assimilation were enhanced when the measurements were performed at acidic pH. This indicates that this marine alga is able to use CO2 more efficiently than HCO3?. No evidence could be found for a specific Ci uptake and assimilation system in the acid‐grown cells.  相似文献   

11.
Carbonic anhydrase is an enzyme that reversibly catalyzes the hydration of carbon dioxide (CO2). It has been suggested recently that this remarkably fast enzyme can be used for sequestration of CO2, a major greenhouse gas, making this a promising alternative for chemical CO2 mitigation. To promote the economical use of enzymes, we engineered the carbonic anhydrase from Neisseria gonorrhoeae (ngCA) in the periplasm of Escherichia coli, thereby creating a bacterial whole-cell catalyst. We then investigated the application of this system to CO2 sequestration by mineral carbonation, a process with the potential to store large quantities of CO2. ngCA was highly expressed in the periplasm of E. coli in a soluble form, and the recombinant bacterial cell displayed the distinct ability to hydrate CO2 compared with its cytoplasmic ngCA counterpart and previously reported whole-cell CA systems. The expression of ngCA in the periplasm of E. coli greatly accelerated the rate of calcium carbonate (CaCO3) formation and exerted a striking impact on the maximal amount of CaCO3 produced under conditions of relatively low pH. It was also shown that the thermal stability of the periplasmic enzyme was significantly improved. These results demonstrate that the engineered bacterial cell with periplasmic ngCA can successfully serve as an efficient biocatalyst for CO2 sequestration.  相似文献   

12.
Summary Six independently isolated mutants of Chlamydomonas reinhardtii that require elevated CO2 for photoautotrophic growth were tested by complementation analysis. These mutants are likely to be defective in some aspect of the algal concentrating mechanism for inorganic carbon as they exhibit CO2 fixation and inorganic carbon accumulation properties different from the wild-type. Four of the six mutants defined a single complementation group and appear to be defective in an intracellular carbonic anhydrase. The other two mutations represent two additional complementation groups.Abbreviations HS high salt medium which has 13 mM phosphate at pH 6.8 - HSA high salt plus 36 mM acetate medium - YA high salt medium with 4 g yeast extract per L and 36mM acetate - Arg arginine - cia- CO2 accumulation mutants that cannot grow on low CO2 - Ci inorganic carbon (CO2+HCO - 3 ) - CA carbonic anhydrase - mt mating type Supported in part by the McKnight Foundation and by NSF grant PCM 8005917 and published as journal article 11924 from the Michigan State Agriculatural Experiment Station  相似文献   

13.
Recent genetic studies have elucidated that carbonic anhydrase (CA; EC 4.2.1.1), a ubiquitous enzyme catalyzing interconversion between CO2 and bicarbonate, is essential for microbial growth under ambient air but not under high-CO2 air. The irregular distribution of the phylogenetically distinct types of CA in the prokaryotic genome suggests its complex evolutionary history in prokaryotes. This paper deals with the genetic defect of CA in Symbiobacterium thermophilum, a syntrophic bacterium that effectively grows on CO2 generated by other bacteria. Phylogenetic analysis based on 31 ribosomal protein sequences demonstrated the affiliation of Symbiobacterium with the class Clostridia with 100% bootstrap support. The phylogeny of β- and γ-type CA distributed among Clostridia supported the view that S. thermophilum and several related organisms lost this enzyme during the course of evolution. The loss of CA could be based on the availability of a high level of CO2 in their living environments. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Unicellular algae grow well under limiting CO2 conditions, aided by a carbon concentrating mechanism (CCM). In C. reinhardtii, this mechanism is inducible and is present only in cells grown under low CO2 conditions. We constructed a cDNA library from cells adapting to low CO2, and screened the library for cDNAs specific to low CO2-adapting cells. Six classes of low CO2-inducible clones were identified. One class of clone, reported here, represents a novel gene associated with adaptation of cells to air. A second class of clones corresponds to the air-inducible periplasmic carbonic anhydrase I (CAH1). These clones represent genes that respond to the level of CO2 in the environment.  相似文献   

15.
From high-CO2 (5% CO2) grown unicellular green alga, Chlamydomonas reinhardtii, carbonic anhydrase (CA) was isolated by affinity chromatography and characterized. Isolated CA was identified as an isozyme (CA2) which is the product from the second gene CAH2 by peptide sequencing. The CA2 was inactivated by dithiothreitol. This treatment caused dissociation of CA2 into the large (38 kDa) and small subunits (4243 Da). The molecular mass of the CA2 holoenzyme measured by low-angle laser light-scattering photometry and precision differential refractometry combined with gel-filtration HPLC was 87.9 kDa. These results and gene structure indicate that CA2 is a heterotetramer consisting of two large and two small subunits linked by disulfide bonds like CA1, which is the CAH1 gene product. The speciffc activity of CA2 purified by anion-exchange HPLC was 3300 units per mg protein, which was approximately 1.6 times higher than that of CA1. Therefore, it was concluded that two structurally related isozymes, CA1 and CA2, are present in the wild type cells of C. reinhardtii and differentially regulated by the atmospheric CO2 concentration.  相似文献   

16.
The capacity for photosynthesis is often affected when plants are grown in air with elevated CO2 partial pressure. We grew Phaseolus vulgaris L. in 35 and 65 Pa CO2 and measured photosynthetic parameters. When assayed at the growth CO2 level, photosynthesis was equal in the two CO2 treatments. The maximum rate of ribulose-1,5-bisphosphate (RuBP) consumption was lower in plants grown at 65 Pa, but the CO2 partial pressure at which the maximum occurred was higher in the high-CO2-grown plants, indicating acclimation to high CO2. The acclimation of RuBP consumption to CO2 involved a reduction of the activity of RuBP carboxylase which resulted from reduced carbamylation, not a loss of protein. The rate of RuBP consumption declined with CO2 when the CO2 partial pressure was above 50Pa in plants grown under both CO2 levels. This was caused by feedback inhibition as judged by a lack of response to removing O2 from the air stream. The rate of photosynthesis at high CO2 was lower in the high-CO2-grown plants and this was correlated with reduced activity of sucrose-phosphate synthase. This is only the second report of O2-insensitive photosynthesis under growth conditions for plants grown in high CO2.  相似文献   

17.
In the green marine alga Dunaliella tertiolecta, a CO2-concentrating mechanism is induced when the cells are grown under low-CO2 conditions (0.03% CO2). To identify proteins induced under low-CO2 conditions the cells were labelled with 35SO4 2–, and seven polypeptides with molecular weights of 45, 47, 49, 55, 60, 68 and 100 kDa were detected. The induction of these polypeptides was observed when cells grown in high CO2 (5% CO2 in air) were switched to low CO2, but only while the cultures were growing in light. Immunoblot analysis of total cell protein against pea chloroplastic carbonic anhydrase polyclonal antibodies showed immunoreactive 30-kDa bands in both high- and low-CO2-grown cells and an aditional 49-kDa band exclusively in low-CO2-grown cells. The 30-kDa protein was shown to be located in the chloroplast. Western blot analysis of the plasmamembrane fraction against corn plasma-membrane AT-Pase polyclonal antibodies showed 60-kDa bands in both high- and low-CO2 cell types as well as an immunoreactive 100-kDa band occurring only in low-CO2-grown cells. These results suggest that there are two distinct forms of both carbonic anhydrase and plasma-membrane ATPase, and that one form of each of them can be regulated by the CO2 concentration.Abbreviations CA carbonic anhydrase - DIC dissolved inorganic carbon (CO2+ HCO3 ) - CCM CO2-concentrating mechanism - low CO2 air containing 0.03% CO2 - high CO2 air supplemented with 5% CO2 (v/v) We thank Prof. John Coleman for providing antibodies raised against pea chloroplast CA, Dr. James V. Moroney for providing antibodies raised against the 37-kDa periplasmic carbonic anhydrase of CO2 Chlamydomonas reinhardtii, and Prof. Leonard T. Robert for a gift of corn plasma-membrane 100-kDa ATPase antibodies. We thank Dr. Jeanine Olsen (University of Groningen, the Netherlands) for style comments. This work was supported by the Institute Tecnológico de Canarias (Spain).  相似文献   

18.
Prelabeled Anabaena variabilis Kütz. evolves 14CO2 in the light with KCN and DCMU (2,4-dichlorophenyl-1,1-dimethylurea) present, comparable to the dark control without inhibitors added. Double-reciprocal plots of CO2 release vs. light intensity with either KCN or KCN+DCMU present result in two straight lines intersecting at the ordinate. Apparently, reducing equivalents originating from carbohydrate catabolism are channeled into the photosynthetic electron-transport chain, competing for electrons from photosystem II. Under these conditions, the CO2 release is accompanied by a light-dependent oxygen uptake, presumably due to oxygen-reducing photosystem-I activity while ribulose-bisphosphate carboxylase is inhibited by KCN.Comparing nine blue-green algae it was shown that only nitrogen-fixing species release substantial amounts of CO2 in the light with KCN or KCN+DCMU present. This release is particularly obvious with Anabaena variabilis Kütz. under nitrogen-fixing conditions, but small when the alga is grown with combined nitrogen.We conclude that nitrogen-fixing species share a common link between respiratory and photosynthetic electron transport. The physiological role may be electron supply of nitrogenase by photosystem I.  相似文献   

19.
Chlorella vulgaris 11h cells grown in air enriched with 4% CO2(high-CO2 cells) had carbonic anhydrase (CA) activity whichwas 20 to 90 times lower than that of algal cells grown in ordinaryair (containing 0.04% CO2, low-CO2 cells). The CO2 concentrationduring growth did not affect either ribulose 1,5-bisphosphate(RuBP) carboxylase activity or its Km for CO2. When high-CO2 cells were transferred to low CO2 conditions,CA activity increased without a lag period, and this increasewas accompanied by an increase in the rate of photosynthetic14CO2 fixation under 14CO2-limiting conditions. On the otherhand, CA activity as well as the rate of photosynthetic 14CO2fixation at low 14CO2 concentrations decreased when low-CO2cells were transferred to high CO2 conditions. Diamox, an inhibitor of CA, at 0.1 mM did not affect photosynthesisof low-CO2 cells at high CO2 concentration (0.5%). Diamox inhibitedphotosynthesis only under low CO2 concentrations, and the lowerthe CO2 concentration, the greater was the inhibition. Consequently,the CO2 concentration at which the rate of photosynthesis attainedone-half its maximum rate (Km) greatly increased in the presenceof this inhibitor. When CO2 concentration was higher than 1%, the photosyntheticrate in low-CO2 cells decreased, while that in high-CO2 cellsincreased. Fractionation of the low-CO2 cells in non-aqueous medium bydensity showed that CA was fractionated in a manner similarto the distribution of chlorophyll and RuBP carboxylase. These observations indicate that CA enhances photosynthesisunder CO2-limiting conditions, but inhibits it at CO2 concentrationshigher than a certain level. The mechanism underlying the aboveregulatory functions of CA is discussed. 1This work was reported at the International Symposium on PhotosyntheticCO2-Assimilation and Photorespiration, Sofia, August, 1977 (18).Requests for reprints should be addressed to S. Miyachi, RadioisotopeCentre, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan. (Received December 11, 1978; )  相似文献   

20.
Two cDNA clones exclusively induced under an extremely high-CO2concentration (20%) were isolated from Chlorococcum littoraleby differential screening and named HCR (high-CO2 response)1 and 2, respectively. The amino acid sequence of the proteinencoded by HCR2 exhibited homology to the gp91-phox protein,a critical component of a human phagocyte oxidoreductase, andto the yeast ferric reductases, Saccharomyces cerevisiae FRE1and FRE2 and Schizosaccharomyces pombe Frpl. The induction ofboth HCR mRNAs required extremely high-CO2 conditions and irondeficiency, being suppressed under air conditions and by ironsufficiency, suggesting that the expression of these two HCRgenes required extremely high-CO2 conditions and iron deficiencyin combination. The HCR2 protein was detected in the membranefractions of cells grown under conditions which would favorthe induction of HCR2-mRNA and the protein level was loweredwhen the cells were transferred from iron deficient to 10 µMFeSO4 conditions (with 20% CO2). (Received September 10, 1997; Accepted November 14, 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号