首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the function of cytosolic phosphorylase (Pho2; EC 2.4.1.1), transgenic potato plants were created in which the expression of the enzyme was inhibited by introducing a chimeric gene containing part of the coding region for cytosolic phosphorylase linked in antisense orientation to the 35S CaMV promotor. As revealed by Northern blot analysis and native polyacrylamide gel electrophoresis, the expression of cytosolic phosphorylase was strongly inhibited in both leaves and tubers of the transgenic plants. The transgenic plants propagated from stem cuttings were morphologically indiscernible from the wild-type. However, sprouting of the transgenic potato tubers was significantly altered: compared with the wild-type, transgenic tubers produced 2.4 to 8.1 times more sprouts. When cultivated in the greenhouse, transgenic seed tubers produced two to three times more shoots than the wild-type. Inflorescences appeared earlier in the resulting plants. Many of the transgenic plants flowered two or three times successively. Transgenic plants derived from seed tubers formed 1.6 to 2.4 times as many tubers per plant as untransformed controls. The size and dry matter content of the individual tubers was not noticeably altered. Tuber yield was significantly higher in the transgenic plants. As revealed by carbohydrate determination of freshly harvested and stored tubers, starch and sucrose pools were not noticeably affected by the antisense inhibition of cytosolic phosphorylase; however, glucose and fructose levels were markedly reduced after prolonged storage. These results favour the view that cytosolic phosphorylase does not participate in starch degradation. The possible links between the reduced levels of cytosolic phosphorylase and the observed changes with respect to sprouting and flowering are discussed.  相似文献   

2.
Transgenic potato plants were created in which the expression of ADP-glucose pyrophosphorylase (AGPase) was inhibited by introducing a chimeric gene containing the coding region of one of the subunits of the AGPase linked in an antisense orientation to the CaMV 35S promoter. Partial inhibition of the AGPase enzyme was achieved in leaves and almost complete inhibition in tubers. This resulted in the abolition of starch formation in tubers, thus proving that AGPase has a unique role in starch biosynthesis in plants. Instead up to 30% of the dry weight of the transgenic potato tubers was represented by sucrose and up to 8% by glucose. The process of tuber formation also changed, resulting in significantly more tubers both per plant and per stolon. The accumulation of soluble sugars in tubers of antisense plants resulted in a significant increase of the total tuber fresh weight, but a decrease in dry weight of tubers. There was no significant change in the RNA levels of several other starch biosynthetic enzymes, but there was a great increase in the RNA level of the major sucrose synthesizing enzyme sucrose phosphate synthase. In addition, the inhibition of starch biosynthesis was accompanied by a massive reduction in the expression of the major storage protein species of potato tubers, supporting the idea that the expression of storage protein genes is in some way connected to carbohydrate formation in sink storage tissues.  相似文献   

3.
A potato (Solanum tuberosum) cDNA encoding an isoform of disproportionating enzyme (stDPE2) was identified in a functional screen in Escherichia coli. The stDPE2 protein was demonstrated to be present in chloroplasts and to accumulate at times of active starch degradation in potato leaves and tubers. Transgenic potato plants were made in which its presence was almost completely eliminated. It could be demonstrated that starch degradation was repressed in leaves of the transgenic plants but that cold-induced sweetening was not affected in tubers stored at 4 degrees C. No evidence could be found for an effect of repression of stDPE2 on starch synthesis. The malto-oligosaccharide content of leaves from the transgenic plants was assessed. It was found that the amounts of malto-oligosaccharides increased in all plants during the dark period and that the transgenic lines accumulated up to 10-fold more than the control. Separation of these malto-oligosaccharides by high-performance anion-exchange chromatography with pulsed-amperometric detection showed that the only one that accumulated in the transgenic plants in comparison with the control was maltose. stDPE2 was purified to apparent homogeneity from potato tuber extracts and could be demonstrated to transfer glucose from maltose to oyster glycogen.  相似文献   

4.
Transgenic potato ( Solanum tuberosum cv. Prairie) lines were produced over-expressing a sucrose non-fermenting-1-related protein kinase-1 gene ( SnRK1 ) under the control of a patatin (tuber-specific) promoter. SnRK1 activity in the tubers of three independent transgenic lines was increased by 55%−167% compared with that in the wild-type. Glucose levels were decreased, at 17%−56% of the levels of the wild-type, and the starch content showed an increase of 23%−30%. Sucrose and fructose levels in the tubers of the transgenic plants did not show a significant change. Northern analyses of genes encoding sucrose synthase and ADP-glucose pyrophosphorylase, two key enzymes involved in the biosynthetic pathway from sucrose to starch, showed that the expression of both was increased in tubers of the transgenic lines compared with the wild-type. In contrast, the expression of genes encoding two other enzymes of carbohydrate metabolism, α-amylase and sucrose phosphate synthase, showed no change. The activity of sucrose synthase and ADP-glucose pyrophosphorylase was also increased, by approximately 20%–60% and three- to five-fold, respectively, whereas the activity of hexokinase was unchanged. The results are consistent with a role for SnRK1 in regulating carbon flux through the storage pathway to starch biosynthesis. They emphasize the importance of SnRK1 in the regulation of carbohydrate metabolism and resource partitioning, and indicate a specific role for SnRK1 in the control of starch accumulation in potato tubers.  相似文献   

5.
To change the hexose-to-sucrose ratio within phloem cells, yeast-derived cytosolic invertase was expressed in transgenic potato (Solanum tuberosum cv. Desirée) plants under control of the rolC promoter. Vascular tissue specific expression of the transgene was verified by histochemical detection of invertase activity in tuber cross-sections. Vegetative growth and tuber yield of transgenic plants was unaltered as compared to wild-type plants. However, the sprout growth of stored tubers was much delayed, indicating impaired phloem-transport of sucrose towards the developing bud. Biochemical analysis of growing tubers revealed that, in contrast to sucrose levels, which rapidly declined in growing invertase-expressing tubers, hexose and starch levels remained unchanged as compared to wild-type controls. During storage, sucrose and starch content declined in wild-type tubers, whereas glucose and fructose levels remained unchanged. A similar response was found in transgenic tubers with the exception that starch degradation was accelerated and fructose levels increased slightly. Furthermore, changes in carbohydrate metabolism were accompanied by an elevated level of phosphorylated intermediates, and a stimulated rate of respiration. Considering that sucrose breakdown was restricted to phloem cells it is concluded that, in response to phloem-associated sucrose depletion or hexose elevation, starch degradation and respiration is triggered in parenchyma cells. To study further whether elevated hexose and/or hexose-phosphates or decreased sucrose levels are responsible for the metabolic changes observed, sucrose content was decreased by tuber-specific expression of a bacterial sucrose isomerase. Sucrose isomerase catalyses the reversible conversion of sucrose into palatinose, which is not further metabolizable by plant cells. Tubers harvested from these plants were found to accumulate high levels of palatinose at the expense of sucrose. In addition, starch content decreased slightly, while hexose levels remained unaltered, compared with the wild-type controls. Similar to low sucrose-containing invertase tubers, respiration and starch breakdown were found to be accelerated during storage in palatinose-accumulating potato tubers. In contrast to invertase transgenics, however, no accumulation of phosphorylated intermediates was observed. Therefore, it is concluded that sucrose depletion rather than increased hexose metabolism triggers reserve mobilization and respiration in stored potato tubers.  相似文献   

6.
Sugars are not only metabolic substrates: they also act as signals that regulate the metabolism of plants. Previously, we found that glycolysis is induced in transgenic tubers expressing a yeast invertase in the cytosol but not in those expressing invertase in the apoplast. This suggests that either the low level of sucrose, the increased formation of cytosolic glucose or the increased levels of metabolites downstream of the sucrose cleavage is responsible for the induction of glycolysis in storage organs. In order to discriminate between these possibilities, we cloned and expressed a bacterial sucrose phosphorylase gene from Pseudomonas saccharophila in potato tubers. Due to the phosphorolytic cleavage of sucrose, formation of glucose was circumvented, thus allowing assessment of the importance of cytosolic glucose – and, by implication, flux through hexokinase – in glycolytic induction. Expression of sucrose phosphorylase led to: (i) a decrease in sucrose content, but no decrease in glucose or fructose; (ii) a decrease in both starch accumulation and tuber yield; (iii) increased levels of glycolytic metabolites; (iv) an induction of the activities of key enzymes of glycolysis; and (v) increased respiratory activity. We conclude that the induction of glycolysis in heterotrophic tissues such as potato tubers occurs via a glucose‐independent mechanism.  相似文献   

7.
Zhu Q  Song B  Zhang C  Ou Y  Xie C  Liu J 《Plant cell reports》2008,27(1):47-55
The improvement of processing quality of potato products (fries and chips) demands less accumulation of reducing sugars (glucose and fructose) in cold-stored potato (Solanum tuberosum) tubers. Control of gene expression to achieve this requires promoters with specificity to tubers as well as inducible activity under low temperatures. Here we use overlapping extension PCR to construct two chimeric promoters, pCL and pLC, to control gene expression in a tuber-specific and cold-inducible pattern. This combined different combinations of the LTRE (low-temperature responsive element) from Arabidopsis thaliana cor15a promoter and the TSSR (tuber-specific and sucrose-responsive sequence) from potato class I patatin promoter. The cold-inducible and tuber-specific activities of the chimeric promoters were investigated by quantitative analysis of GUS activity in transgenic potato cultivar E3 plants. The results showed that the cis-elements, LTRE and TSSR, played responsive roles individually or in combination. pCL with the TSSR closer to the TATA-box showed substantially higher promoter activity than pLC with the LTRE closer to the TATA-box at either normal (20°C) or low temperature (2°C), suggesting that the promoter activity was closely associated with the position of the two elements. The chimeric promoter pCL with tuber-specific and cold-inducible features may provide valuable tool for controlling the expression of gene constructs designed to lower the formation of reducing sugars in tubers stored at low temperature and to improve the processing quality of potato products. The nucleotide sequence data reported will appear in the GenBank database under the accession numbers DQ494557 (pCL) and DQ494558 (pLC ).  相似文献   

8.
The synthesis of amylose in amyloplasts is catalyzed by granule-bound starch synthase (GBSS). GBSS gene expression was inhibited via antisense RNA in Agrobacterium rhizogenes-transformed potato plants. Analysis of starch production and starch granule composition in transgenic tubers revealed that reduction of GBSS activity always resulted in a reduction of the production of amylose. Field experiments, performed over a 2-year period, showed that stable inhibition of GBSS gene expression can be obtained. Microscopic evaluation of iodine-stained starch granules was shown to be a sensitive system for qualitative and quantitative examination of amylose formation in starch granules of transgenic potato tubers. In plants showing inhibition of GBSS gene expression, the reduced amylose content in tuber starch was not a consequence of a lower amylose content throughout the entire starch granule. Starch granules of transgenic tubers were found to contain amylose at a percentage similar to wild-type starch in a core of varying size at the hilum of each granule. This indicated that reduced GBSS gene expression results in amylose formation in a restricted zone of the granules. The size of this zone is suggested to be dependent on the GBSS protein level. During development of the granules, the available GBSS protein is thought to become limiting, resulting in the formation of starch that lacks amylose. RNA gel blot analysis of tuber tissue showed that inhibition of GBSS gene expression resulted in a reduced GBSS mRNA level but did not affect the expression level of other starch synthesizing enzymes. Antisense RNA could only be detected in leaf tissue of the transgenic plants.  相似文献   

9.
Inorganic pyrophosphate (PPi) is an enzyme involved in sugar metabolism in potato tubers. In our previous study, we isolated an inorganic pyrophosphatase (PPase) gene from potato and obtained the transgenic potato plants transformed with the sense and antisense PPase genes respectively. In the present experiment, the physiological indexes, tuber dormancy, and sprouting characteristics of the transgenic potatoes were analyzed and evaluated. The result showed that the PPase activity and the inorganic phosphate content of tubers were lower in the antisense transgenic plant lines but were higher in the sense transgenic plant lines, compared with wild-type tubers. Soluble sugars, such as glucose, fructose and sucrose increased in transgenic plants that had overexpression of the sense PPase gene, but decreased in the antisense transgenic plant lines, compared with wild-type tubers. Tuber sprouting time of the antisense transgenic plants were delayed for 2 and 3 weeks and reached the 100 % sprouting rate only after 14 and 16 weeks storage compared with the wild-type when tubers are stored under 25 and 4 °C, respectively. In contrast, tuber sprouting time of the sense transgenic plants was earlier by approximately 2 weeks than that of wild-type tubers under these storage temperatures.  相似文献   

10.
In potato plants (Solanum tuberosum), a chimeric yeast-derived invertase gene fused to a 35S cauliflower mosaic virus promoter has been expressed. The protein was targeted to the cell wall by using the signal peptide of proteinase inhibitor II fused to the amino terminus of the yeast invertase. The transformed plants had crinkled leaves, showed a reduced growth rate, and produced fewer tubers. Although in the apoplast of the leaves of the transformed plants the content of glucose and fructose rose by a factor of 20, and that of sucrose declined 20-fold, 98% of the carbohydrate in the phloem sap consisted of sucrose, demonstrating the strong specificity of phloem loading. In the leaf cells of the transformed plants, glucose, fructose, and amino acids, especially proline, were accumulated. Consequently, the osmolality of the cell sap rose from 250 to 350 mosmol/kg. Our results show that the observed 75% decrease of photosynthesis is not caused by a feedback regulation of sucrose synthesis and is accompanied by an increase in the osmotic pressure in the leaf cells. In the transformed plants, not only the amino acid to sucrose ratio in the phloem sap, but also the amino acid and protein contents in the tubers were found to be elevated. In the tubers of the transformed plants, the protein to starch ratio increased.  相似文献   

11.
Transgenic plants of a tetraploid potato cultivar were obtained in which the amylose content of tuber starch was reduced via antisense RNA-mediated inhibition of the expression of the gene encoding granule-bound starch synthase (GBSS). GBSS is one of the key enzymes in the biosynthesis of starch and catalyses the formation of amylose. The antisense GBSS genes, based on the full-length GBSS cDNA driven by the 35S CaMV promoter or the potato GBSS promoter, were introduced into the potato genome by Agrobacterium tumefaciens-mediated transformation. Expression of each of these genes resulted in the complete inhibition of GBSS gene expression, and thus in the production of amylose-free tuber starch, in mature field-grown plants originating from rooted in vitro plantlets of 4 out of 66 transgenic clones. Clones in which the GBSS gene expression was incompletely inhibited showed an increase of the extent of inhibition during tuber growth. This is likely to be due to the increase of starch granule size during tuber growth and the specific distribution pattern of starch components in granules of clones with reduced GBSS activity. Expression of the antisense GBSS gene from the GBSS promoter resulted in a higher stability of inhibition in tubers of field-grown plants as compared to expression from the 35S CaMV promoter. Field analysis of the transgenic clones indicated that inhibition of GBSS gene expression could be achieved without significantly affecting the starch and sugar content of transgenic tubers, the expression level of other genes involved in starch and tuber metabolism and agronomic characteristics such as yield and dry matter content.  相似文献   

12.
I型H+-PPase参与糖异生和蔗糖分解代谢,利用不同的糖(蔗糖、葡萄糖和果糖)饲喂拟南芥(Arabidopsis thaliana)Ⅰ型H+-PPase基因不同类型的突变体,产生的表型不一致,因此,推测Ⅰ型H+-PPase可能存在其它影响糖代谢的机制。为进一步明确该酶对糖代谢的影响,以过表达MtVP1的马铃薯(Solanum tuberosum)渭薯4号为研究对象,观察不同培养条件下的表型,监测糖含量变化,并利用转录组测序分析转录谱。结果表明,过表达MtVP1马铃薯表现出红色茎、紫色花和表皮毛更发达,单株块茎数减少,块茎变大,块茎皱缩速度加快;转基因马铃薯块茎中淀粉、葡萄糖和果糖含量显著下降,芽中葡萄糖和果糖含量也显著下降。果糖饲喂导致转基因马铃薯花青素含量显著降低;转基因马铃薯体内果糖-1,6-二磷酸酶和果糖-2,6-二磷酸酶基因表达上调3–7倍。研究结果为进一步从糖代谢角度探究Ⅰ型H+-PPase的生理功能提供参考。  相似文献   

13.
Exposure to low but nonfreezing temperatures induces the breakdown of starch and the accumulation of sucrose, glucose and fructose in potato tubers, a complex phenomenon known as low-temperature sweetening (LTS). A kinetic model for the degradation of starch to sucrose, fructose, glucose, hexose phosphates and carbon dioxide in 2 degrees C-stored mature Solanum tuberosum cv. Norchip (LTS-sensitive) and Solanum tuberosum seedlling ND860-2 (LTS-tolerant) tubers is presented in this work. Analysis of sugar accumulation data in tubers grown in 1993 and 1994 showed no significant differences in the rates of conversion of starch to hexose phosphates and hexose phosphates to sucrose for both cultivars (P > 0.05). The rate constant corresponding to invertase activity was 2.3 day(-1) for Norchip tubers and 1.1 day(-1) for ND860-2 tubers grown in 1993 (P < or = 0.05); however, no significant differences were observed in invertase activity for 1994-grown tubers (P > 0.05). The accumulation of the reducing sugars fructose and glucose was found to be dependent on the relative difference in rate constants corresponding to invertase activity and glycolytic/respiratory capacity. This difference was 3-4 fold greater for Norchip in 1993, and 4-6 fold greater for Norchip in 1994, than for ND860-2 (P < or = 0.05). Results from the analysis also suggest that the amount of available starch for degradation was greater in Norchip tubers than ND860-2 tubers (P < or = 0.05). Our analysis suggests that tubers with decreased invertase activity coupled to increased glycolytic/respiratory capacity should be more tolerant to low-temperature stress.  相似文献   

14.
对2个含有酸性转化酶(AcInv)反义基因的转基因马铃薯品系及对照品种进行低温贮藏(4℃)及室温还暖处理.随低温贮藏时间的延长,供试材料均表现出还原糖含量升高,总淀粉含量下降的趋势.低温处理40 d时,"Ac转Atlantic"和"Ac转甘农薯2号"的还原糖含量比未转基因品种低23%和18%.总淀粉含量分别比未处理前下降约1.0%和1.3%,支链淀粉含量分别下降约1.4%和1.7%,淀粉直/支比明显低于对照,分别为0.29和0.38.块茎的石蜡切片显示,转基因块茎中深蓝色淀粉颗粒明显少于未转基因对照.另外,对低温贮藏的块茎室温还暖后,2个转基因品系的还原糖含量仍低于对照品种.实验结果证明反义AcInv基因对低温贮藏下块茎还原糖和淀粉含量具有下向调节作用.  相似文献   

15.
In human and animal cells, the catecholamines are involved in glycogen mobilization. Since the compounds are found in a potato, their function in starch mobilization was hypothesized. In order to verify this hypothesis, the transgenic potato plants Solanum tuberosum L. cv. Desiree overexpressing tyrosine decarboxylase (TD EC 4.1.1.25) cDNA from parsley has been generated. The cDNA expression was judged by the northern blot analysis and the enzyme activity measurements. Four independent transgenic lines with the highest TD mRNA expression were selected and analyzed. The expected substantial decrease in tyrosine content was followed by significant increase in tyramine and dramatic enhancement of norepinephrine synthesis was detected. The level of L-3,4-dihydroxyphenylalanin (L-Dopa) was only slightly increased and dopamine significantly decreased in most cases in these plants. The increase in norepinephrine was accompanied by changes in carbohydrate metabolism. The significant increase in glucose and sucrose and the decrease in starch content were characteristic features of TD overexpressed transgenic potato tubers. The features mentioned above indicate that catecholamines potentiate starch mobilization in potato plants in common with animal cells. The decrease in tyrosine content in transgenic plants is also compensated by significant increase in chlorogenic acid synthesis thus potentially increasing the antioxidant capacity of transgenic tubers. The glycoalkaloids content is changed in the transformants. This may originate from glucose accumulation and glycolysis activation. The obtained transgenic potato provides material for further detailed studies of the physiological function of catecholamines in plants.  相似文献   

16.
Changes in the sugar and amino acid contents of potato tubers during short-term storage and the effect on the acrylamide level in chips after frying were investigated. The acrylamide content in chips began to increase after 3 days of storage at 2 degrees C in response to the increase of glucose and fructose contents in the tubers. There was strong correlation between the reducing sugar content and acrylamide level, R(2)=0.873 for fructose and R(2)=0.836 for glucose. The sucrose content had less correlation with the acrylamide content because of its decrease after 4 weeks of storage at 2 degrees C, while the reducing sugar in potato tubers and the acrylamide in chips continued to increase. The contents of the four amino acids, i.e., asparatic acid, asparagine, glutamic acid and glutamine, showed no significant correlation with the acrylamide level. These results suggest that the content of reducing sugars in potato tubers determined the degree of acrylamide formation in chips. The chip color, as evaluated by L* (lightness), was correlated well with the acrylamide content.  相似文献   

17.
Potato tubers as bioreactors for palatinose production   总被引:4,自引:0,他引:4  
Palatinose (isomaltulose, 6-O-alpha-D-glucopyranosyl-D-fructose) is a structural isomer of sucrose with very similar physico-chemical properties. Due to its non-cariogenicity and low calorific value it is an ideal sugar substitute for use in food production. Palatinose is produced on an industrial scale from sucrose by an enzymatic rearrangement using immobilized bacterial cells. To explore the potential of transgenic plants as alternative production facilities for palatinose, a chimeric sucrose isomerase gene from Erwinia rhapontici under control of a tuber-specific promoter was introduced into potato plants. The enzyme catalyses the conversion of sucrose into palatinose. Expression of the palI gene within the apoplast of transgenic tubers led to a nearly quantitative conversion of sucrose into palatinose. Despite the soluble carbohydrates having been altered within the tubers, growth of palI expressing transgenic potato plants was indistinguishable from wild type plants. Therefore, expression of a bacterial sucrose isomerase provides a valid tool for high level palatinose production in storage tissues of transgenic crop plants.  相似文献   

18.
A full length cDNA clone encoding plastidic fructose-1,6-bisphosphatase (cp-FBPase), together with a transit peptide, was isolated from a potato (Solanum tuberosum L.) leaf cDNA library. Potato plants were transformed with the isolated cp-FBPase sequence behind a patatin class I promoter to ensure tuber-specific expression of the enzyme. Plant lines were selected which expressed up to 250 mU (g FW)-1 in the developing tubers, which is 10- to 20-fold the activity found in wild-type tubers. Intact amyloplasts were isolated from in vitro-grown minitubers developed in darkness. Comparison with marker enzymes showed that cp-FBPase activity in transgenic tubers, as well as the low FBPase activity in the wild-type tubers, was localised inside the amyloplasts. The intact amyloplasts isolated from both wild-type and transgenic tubers synthesised starch from [U-14C] glucose-6-phosphate. Conversely, only the transgenic tubers expressing cp-FBPase showed appreciable synthesis of starch from [U-14C] dihydroxyacetone phosphate, and this synthesis rate was correlated to the activity of cp-FBPase. Thus, the expression of cp-FBPase in tubers allows for a new route of starch biosynthesis from triose-phosphates imported from the cytosol. The transgenic tubers did not differ from wild-type tubers with respect to starch content, or the levels of neutral sugars and phosphorylated hexoses.  相似文献   

19.
In many plants, sucrose transporters are essential for both sucrose exports from sources and imports into sinks, indicating a function in assimilate partitioning. To investigate whether sucrose transporters can improve the yield of starch plant, potato plants (Solanum tuberosum L. cv. Désirée) were transformed with cDNAs of the rice sucrose transporter genes OsSUT5Z and OsSUT2M under the control of a tuber-specific, class-I patatin promoter. Compared to the controls, the average fructose content of OsSUT5Z transgenic tubers significantly increased. However, the content of the sugars and starch in the OsSUT2M transgenic potato tubers showed no obvious difference. Correspondingly, the average tuber yield, average number of tubers per plant and average weight of single tuber showed no significant difference in OsSUT2M transgenic tubers with controls. In the OsSUT5Z transgenic lines, the average tuber yield per plant was 1.9-fold higher than the controls, and the average number of tubers per plant increased by more than 10 tubers on average, whereas the average weight of a single tuber did not increase significantly. These results suggested that the average number of tubers per plant showed more contribution than the average weight of a single tuber to the tuber yield per plant.  相似文献   

20.
The aim of this work was to establish whether plastidial phosphoglucomutase is involved in the starch biosynthetic pathway of potato tubers and thereby to determine the form in which carbon is imported into the potato amyloplast. For this purpose, we cloned the plastidial isoform of potato PGM (StpPGM), and using an antisense approach generated transgenic potato plants that exhibited decreased expression of the StpPGM gene and contained significantly reduced total phosphoglucomutase activity. We confirmed that this loss in activity was due specifically to a reduction in plastidial PGM activity. Potato lines with decreased activities of plastidial PGM exhibited no major changes in either whole-plant or tuber morphology. However, tubers from these lines exhibited a dramatic (up to 40%) decrease in the accumulation of starch, and significant increases in the levels of sucrose and hexose phosphates. As tubers from these lines exhibited no changes in the maximal catalytic activities of other key enzymes of carbohydrate metabolism, we conclude that plastidial PGM forms part of the starch biosynthetic pathway of the potato tuber, and that glucose-6-phosphate is the major precursor taken up by amyloplasts in order to support starch synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号