首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipase A2 (PLA2) from Naja naja atra (Taiwan cobra) snake venom was subjected to lysine modification with trinitrobenzene sulfonate (TNBS). Three major derivatives, TNP-1, TNP-2, and TNP-3, were separated by high-performance liquid chromatography (HPLC) from the reaction mixtures in the absence of Ca2+. However, only TNP-2 and TNP-3 were isolated when trinitrophenylated reaction was carried out in the presence of Ca2+. TNP-1 and TNP-2 contained only one TNP group, on Lys-65 and Lys-6, respectively; and both Lys-6 and Lys-65 were modified in TNP-3. The extent of modification on Lys-6 and Lys-65 was calculated from the peak areas of TNP proteins in the HPLC profile. It was found that the susceptibility of Lys-6 toward TNBS markedly increased by the addition of Ca2+ when Ca2+ concentration was higher than 5 mM. With regard to the involvement of Lys-6 in the binding of substrate, the increase in the reactivity of Lys-6 may arise from a conformational change around Lys-6 for binding with substrate in the presence of Ca2+. Alternatively, the nonessentiality of Lys-65 for PLA2 activity was revealed by the finding that TNP-1 still retained 95% activity of native enzyme. Moreover, the reactivity of Lys-65 toward TNBS did not greatly change in either the absence or presence of Ca2+, suggesting that Ca2+ binding did not cause an appreciable change in the microenvironment around Lys-65. These results indicate that the differential reactivities of Lys-6 and Lys-65 toward TNBS as affected by the binding of Ca2+ are well consistent with their functional roles in the catalytic mechanism of PLA2, and suggest that the occurrence of conformational changes with PLA2 could be explored by chemical modification studies.  相似文献   

2.
Phospholipase A2 (PLA2) fromBungarus multicinctus snake venom was subjected to Lys modification with 4-chloro-3,5-dinitrobenzoate and trinitrobenzene sulfonic acid, and one major carboxydinitrophenylated (CDNP) PLA2 and two trinitrophenylated (TNP) derivatives (TNP-1 and TNP-2) were separated by high-performance liquid chromatography. The results of amino acid analysis and sequence determination revealed that CDNP-PLA2 and TNP-1 contained one modified Lys residue at position 6, and both Lys-6 and Lys-62 were modified in TNP-2. It seemed that the Lys-6 was more accessible to modified reagents than other Lys residues in PLA2. Modification of Lys-6 caused a 94% drop in enzymatic activity as observed with CDNP-PLA2 and TNP-1. Alternatively, the enzyme modified on both Lys-6 and Lys-62 retained little PLA2 activity. Either carboxydinitrophenylation or trinitrophenylation did not significantly affect the secondary structure of the enzyme molecule as revealed by the CD spectra, and Ca2+ binding and antigenicity of Lys-6-modified PLA2 were unaffected. Conversion of nitro groups to amino groups resulted in a partial restoration of enzymatic activity of CDNP-PLA2 to 32% of that of PLA2. It reflected that the positively charged side chain of Lys-6 might play an exclusive role in PLA2 activity. The TNP derivatives could be regenerated with hydrazine hydrochloride. The biological activity of the regenerated PLA2 is almost the same as that of native PLA2. These results suggest that the intact Lys-6 is essential for the enzymatic activity of PLA2, and that incorporation of a bulky CDNP or TNP group on Lys-6 might give rise to a distortion of the interaction between substrate and the enzyme molecule, and the active conformation of PLA2.  相似文献   

3.
Phospholipase A2 (PLA2) fromBungarus multicinctus snake venom was subjected to Lys modification with 4-chloro-3,5-dinitrobenzoate and trinitrobenzene sulfonic acid, and one major carboxydinitrophenylated (CDNP) PLA2 and two trinitrophenylated (TNP) derivatives (TNP-1 and TNP-2) were separated by high-performance liquid chromatography. The results of amino acid analysis and sequence determination revealed that CDNP-PLA2 and TNP-1 contained one modified Lys residue at position 6, and both Lys-6 and Lys-62 were modified in TNP-2. It seemed that the Lys-6 was more accessible to modified reagents than other Lys residues in PLA2. Modification of Lys-6 caused a 94% drop in enzymatic activity as observed with CDNP-PLA2 and TNP-1. Alternatively, the enzyme modified on both Lys-6 and Lys-62 retained little PLA2 activity. Either carboxydinitrophenylation or trinitrophenylation did not significantly affect the secondary structure of the enzyme molecule as revealed by the CD spectra, and Ca2+ binding and antigenicity of Lys-6-modified PLA2 were unaffected. Conversion of nitro groups to amino groups resulted in a partial restoration of enzymatic activity of CDNP-PLA2 to 32% of that of PLA2. It reflected that the positively charged side chain of Lys-6 might play an exclusive role in PLA2 activity. The TNP derivatives could be regenerated with hydrazine hydrochloride. The biological activity of the regenerated PLA2 is almost the same as that of native PLA2. These results suggest that the intact Lys-6 is essential for the enzymatic activity of PLA2, and that incorporation of a bulky CDNP or TNP group on Lys-6 might give rise to a distortion of the interaction between substrate and the enzyme molecule, and the active conformation of PLA2.  相似文献   

4.
Phospholipase A2 (PLA2) from Naja naja atra (Taiwan cobra) snake venom was subjected to lysine modification with trinitrobenzene sulphonic acid (TNBS), and two major trinitrophenylated (TNP) derivatives, TNP-1 and TNP-2, were separated by h.p.l.c. TNP-1 contained only one TNP group on Lys-6 and showed a marked decrease in enzymic activity, but still retained 45% of the lethal toxicity. Both Lys-6 and Lys-65 were modified in TNP-2, and modification of Lys-65 caused a further reduction of the lethal toxicity to 12.6%. However, the antigenicity of both TNP-1 and TNP-2 remained unchanged. The reactivity of Lys-6 and Lys-65 toward TNBS was greatly enhanced by Ca2+ and dihexanoyl-lecithin, suggesting that the two Lys residues are not directly involved in the binding of Ca2+ and substrate. The modified derivatives retained their affinity for Ca2+, indicating that Lys-6 and Lys-65 did not participate in the Ca2+ binding. The TNP derivatives could be regenerated with hydrazine hydrochloride. The biological activities of the regenerated PLA2 are almost the same as those of native PLA2. These results indicate that Lys-6 and Lys-65 are important for the biological activities of PLA2, and incorporation of a bulky TNP group on Lys-6 and Lys-65 might give rise to a distortion of the active conformation of PLA2.  相似文献   

5.
To assess whether chemical modification of phospholipase A2 (PLA2) enzymes may affect their fine structure and consequently alter their enzymatic activity, the present study was carried out. Both Lys-6 and Lys-65 in the Taiwan cobra (Naja naja atra) PLA2 were selectively modified with trinitrobenzene sulfonate and pyridoxal-5′-phosphate (PLP), respectively. Incorporation of either trinitrophenylated (TNP) or PLP groups on Lys-6 and Lys-65 caused a drop in PLA2 activity, but the Ca2+-binding ability and global conformation of modified derivatives were not significantly different from that of native enzyme. A distinct enhancement of stability was observed with native PLA2 when thermal unfolding was conducted in the presence of 20 mM Ca2+. Conformational transition induced by guanidine hydrochloride was also attenuated by the addition of Ca2+. Conversely, a marked decrease in the structural stability was noted with modified derivatives, and the enhancing effect of Ca2+ pronouncedly decreased. Together with the finding that the incorporated TNP and PLP groups did not equally affect enzymatic activity and structural stability of PLA2, our data suggest that an alteration in the fine structure owing to the incorporated groups should contribute to the observed decrease in PLA2 activity.  相似文献   

6.
In order to address the mechanism whereby Ca2+ wad crucial for the manifestation of the enzymatic activity of phospholipase A2 (PLA2), four divalent cations were used to assess their influences on the catalytic activity and the fine structures ofNaja naja atra PLA2. It was found that substitution of Mg2+ or Sr2+ for Ca2+ in the substrate solution caused a decrease in the PLA2 activity to 77.5% or 54.5%, respectively, of that in the presence of Ca2+. However, no PLA2 activity was observed with the addition of Ba2+. With the exception of Mg2+, the nonpolarity of the 8-anilinonaphthalene-1-sulfonate (ANS)-binding site of PLA2 markedly increased with the binding of cations to PLA2. In the meantime, the accessibilities of Lys-6 (65) and Tyr-3 (63) toward trinitrobenzene sulfonate andp-nitrobenzenesulfonyl fluoride were enhanced by the addition of Ca2+, Sr2+, and Ba2+, but not by Mg2+. The order of the ability of cations to enhance the ANS fluorescence and the reactivity of Lys and Tyr residues toward modified reagents was Ba2+> Sr2+> Ca2+> Mg2+, which was the same order as the increase in their atomic radii. These results, together with the observations that the ANS molecule binds at the active site of PLA2 and that Tyr-3, Lys-6, and Tyr-63 of PLA2 are involved in the binding with the substrate, suggest that the binding of Ca2+ to PLA2 induces conformational changes at the active site and substrate-binding site. However, the smaller atomic radius with Mg2+ or the bigger atomic radii with Sr2+ and Ba2+ might render the conformation improperly rearranged after their binding to PLA2 molecule.  相似文献   

7.
In order to address the mechanism whereby Ca2+ wad crucial for the manifestation of the enzymatic activity of phospholipase A2 (PLA2), four divalent cations were used to assess their influences on the catalytic activity and the fine structures ofNaja naja atra PLA2. It was found that substitution of Mg2+ or Sr2+ for Ca2+ in the substrate solution caused a decrease in the PLA2 activity to 77.5% or 54.5%, respectively, of that in the presence of Ca2+. However, no PLA2 activity was observed with the addition of Ba2+. With the exception of Mg2+, the nonpolarity of the 8-anilinonaphthalene-1-sulfonate (ANS)-binding site of PLA2 markedly increased with the binding of cations to PLA2. In the meantime, the accessibilities of Lys-6 (65) and Tyr-3 (63) toward trinitrobenzene sulfonate andp-nitrobenzenesulfonyl fluoride were enhanced by the addition of Ca2+, Sr2+, and Ba2+, but not by Mg2+. The order of the ability of cations to enhance the ANS fluorescence and the reactivity of Lys and Tyr residues toward modified reagents was Ba2+> Sr2+> Ca2+> Mg2+, which was the same order as the increase in their atomic radii. These results, together with the observations that the ANS molecule binds at the active site of PLA2 and that Tyr-3, Lys-6, and Tyr-63 of PLA2 are involved in the binding with the substrate, suggest that the binding of Ca2+ to PLA2 induces conformational changes at the active site and substrate-binding site. However, the smaller atomic radius with Mg2+ or the bigger atomic radii with Sr2+ and Ba2+ might render the conformation improperly rearranged after their binding to PLA2 molecule.  相似文献   

8.
Two phospholipases A2 (PLA2) fromNaja naja atra andNaja nigricollis snake venoms were subjected to tyrosine modification withp-nitrobenzenesulfonyl fluoride (NBSF) atpH 8.0. Three major NBS derivatives from each PLA2 were separated by high-performance liquid chromatography. The results of amino acid analysis showed that only two Tyr residues out of nine were modified, and the modified residues were identified to be Tyr-3 and Tyr-63 (or Tyr-62) in the sequence. Spectrophotometric titration indicated that the phenolic group of Tyr-3 and Tyr-63 (or Tyr-62) had apK of 10.1 and 11.0, respectively. The reactivity of Tyr-3 toward NBSF was not affected in the presence or absence of Ca 2+; however, the reactivity of Tyr-63 (or Tyr-62) toward NBSF was greatly enhanced by Ca2+. Modification of Tyr-63 (or Tyr-62) resulted in a marked decrease in both lethality and enzymatic activity. Conversely, modification of Tyr-3 inN. naja atra PLA2 could cause more than a sixfold increase in lethal potency, in sharp contrast to the loss of enzymatic activity.Tyrosine-63-modifiedN. naja atra PLA2 exhibited the same Ca2+-induced difference spectra as that of native PLA2, indicating that the Ca2+-binding ability of Tyr-63-modifiedN. naja atra PLA2 was not impaired. However, Tyr-3-modified PLA2 and all Tyr-modifiedN. nigricollis CMS-9 were not perturbed by Ca2+, revealing that the Ca2+-binding ability have been lost after tyrosine modification. These results suggest that Tyr-62 inN. nigricollis CMS-9 and Tyr-3 in both enzymes are involved in Ca2+ binding. AtpH 8.0, both native PLA2 enzymes enhance the emission intensity of 8-anilinonaphthalene sulfonate (ANS) dramatically, while all of the Tyr-modified derivatives did not enhance the emission intensity at all either in the presence or absence of Ca2+, suggesting that the hydrophobic pocket that interacts with ANS might be the substrate binding site, in which Tyr-3 and Tyr-63 (or Tyr-62) are involved.  相似文献   

9.
R Narumi  T Yamamoto  A Inoue  T Arata 《FEBS letters》2012,586(19):3172-3178
We have identified 15 residues from the surface of sarcoplasmic reticulum Ca2+-pump ATPase, by mass spectrometry using diethylpyrocarbonate modification. The reactivity of 9 residues remained high under all the conditions. The reactivity of Lys-515 at the nucleotide site was severely inhibited by ATP, whereas that of Lys-158 in the A-domain decreased by one-half and increased by five-fold in the presence of Ca2+ and MgF4, respectively. These are well explained by solvent accessibility, pKa and nearby hydrophobicity of the reactive atom on the basis of the atomic structure. However, the reactivity of 4 residues near the interface among A-, N- and P-domain suggested larger conformational changes of these domains in membrane upon binding of Ca2+ (Lys-436), ATP (Lys-158) and MgF4 (His-5, -190, Lys-436).  相似文献   

10.
Two phospholipases A2 (PLA2) fromNaja naja atra andNaja nigricollis snake venoms were subjected to tyrosine modification withp-nitrobenzenesulfonyl fluoride (NBSF) atpH 8.0. Three major NBS derivatives from each PLA2 were separated by high-performance liquid chromatography. The results of amino acid analysis showed that only two Tyr residues out of nine were modified, and the modified residues were identified to be Tyr-3 and Tyr-63 (or Tyr-62) in the sequence. Spectrophotometric titration indicated that the phenolic group of Tyr-3 and Tyr-63 (or Tyr-62) had apK of 10.1 and 11.0, respectively. The reactivity of Tyr-3 toward NBSF was not affected in the presence or absence of Ca 2+; however, the reactivity of Tyr-63 (or Tyr-62) toward NBSF was greatly enhanced by Ca2+. Modification of Tyr-63 (or Tyr-62) resulted in a marked decrease in both lethality and enzymatic activity. Conversely, modification of Tyr-3 inN. naja atra PLA2 could cause more than a sixfold increase in lethal potency, in sharp contrast to the loss of enzymatic activity. Tyrosine-63-modifiedN. naja atra PLA2 exhibited the same Ca2+-induced difference spectra as that of native PLA2, indicating that the Ca2+-binding ability of Tyr-63-modifiedN. naja atra PLA2 was not impaired. However, Tyr-3-modified PLA2 and all Tyr-modifiedN. nigricollis CMS-9 were not perturbed by Ca2+, revealing that the Ca2+-binding ability have been lost after tyrosine modification. These results suggest that Tyr-62 inN. nigricollis CMS-9 and Tyr-3 in both enzymes are involved in Ca2+ binding. AtpH 8.0, both native PLA2 enzymes enhance the emission intensity of 8-anilinonaphthalene sulfonate (ANS) dramatically, while all of the Tyr-modified derivatives did not enhance the emission intensity at all either in the presence or absence of Ca2+, suggesting that the hydrophobic pocket that interacts with ANS might be the substrate binding site, in which Tyr-3 and Tyr-63 (or Tyr-62) are involved.  相似文献   

11.
Rat kidneyγ-glutamylcysteine synthetase (γGCS) was inactivated by reaction with trinitrobenzene sulfonate (TNBS), and the reaction followed pseudo-first-order kinetics. Inactivation kinetics revealed that only one of the amino acid residues modified by TNBS was essential forGCS activity. The addition of 10 mM Mg2+ to the TNBS inactivation reaction resulted in a 16-fold increase in the rate of inactivation. Chromatographic analysis on the tryptic hydrolyzates of trinitrophenylated (TNP) derivatives showed that Lys-38 in theγGCS heavy subunit was significantly modified in the presence of Mg2+. In contrast to small changes in the catalytic properties observed by mutation of Lys-38 to Arg, the mutants K38N and K38E had a marked decrease in enzymatic activity and about twofold increase inK m for glutamate. These results suggest that the positively charged Lys-38 may sbe involved in the binding of glutamate toγGCS.  相似文献   

12.
    
Comparative studies on Naja naja atra phospholipase A2 (NNA-PLA2), Bungarus multicinctus phospholipase A2 (BM-PLA2), and their Lys-modified derivatives were made to assess the differences in the fine structures around the conserved Lys residues of PLA2 enzymes. It was found that the accessibility of Lys residues of PLA2 enzymes toward modified reagent, trinitrobenzene sulfonate, were not the same. Moreover, the extent of decrease in pI values of PLA2 enzymes that resulted from trinitrophenylation of lysine residues was different between NNA-PLA2 and BM-PLA2. The Lys-6 of BM-PLA2 mostly contributed to the positively charged character of the enzyme molecule, whereas the contribution of Lys-6 of NNA-PLA2 to its molecular charge was not notably different from other Lys residues. A linear relationship was observed by plotting the mobilities of PLA2 enzymes and their TNP derivatives against their pI values. However, native and Lys-modified NNA-PLA2 were not aligned with those of BM-PLA2 in the same line. Apparently the gross conformation of PLA2 enzymes was not notably perturbed by the modification of Lys residues, but the fine structure of NNA-PLA2 was not the same as that of BM-PLA2. These results indicate that the positioning of side chains of the conserved Lys residues in the two PLA2 enzymes is essentially different, and suggest that the variations in the fine structures of homologous proteins could be effectively explored by chemical modification studies and electrophoretic analysis.  相似文献   

13.
Comparative studies on Naja naja atra phospholipase A2 (NNA-PLA2), Bungarus multicinctus phospholipase A2 (BM-PLA2), and their Lys-modified derivatives were made to assess the differences in the fine structures around the conserved Lys residues of PLA2 enzymes. It was found that the accessibility of Lys residues of PLA2 enzymes toward modified reagent, trinitrobenzene sulfonate, were not the same. Moreover, the extent of decrease in pI values of PLA2 enzymes that resulted from trinitrophenylation of lysine residues was different between NNA-PLA2 and BM-PLA2. The Lys-6 of BM-PLA2 mostly contributed to the positively charged character of the enzyme molecule, whereas the contribution of Lys-6 of NNA-PLA2 to its molecular charge was not notably different from other Lys residues. A linear relationship was observed by plotting the mobilities of PLA2 enzymes and their TNP derivatives against their pI values. However, native and Lys-modified NNA-PLA2 were not aligned with those of BM-PLA2 in the same line. Apparently the gross conformation of PLA2 enzymes was not notably perturbed by the modification of Lys residues, but the fine structure of NNA-PLA2 was not the same as that of BM-PLA2. These results indicate that the positioning of side chains of the conserved Lys residues in the two PLA2 enzymes is essentially different, and suggest that the variations in the fine structures of homologous proteins could be effectively explored by chemical modification studies and electrophoretic analysis.  相似文献   

14.
The role of the primary amino groups of lysine sidechains in Ca2+ binding to calreticulin was evaluated by chemical modification of the amino group with 2,4,6-trinitrobenzenesulfonic acid (TNBS). TNBS binding to calreticulin could be described by two steps: (i) a fast reaction, with low affinity, and (ii) a slow reaction with a relatively high affinity. Inclusion of Ca2+ and/or Mg2+ decreased both the amount of TNBS bound to calreticulin and the apparent affinity constant of the slower reaction. In contrast, the properties of the faster reaction for TNBS binding were not sensitive to Ca2+ and/or Mg2+. Analysis of TNBS binding to the carboxyl-terminal (C-domain) and aminoterminal (N-domain) of calreticulin revealed that theC-domain andN-domain are responsible for the slow and fast component of the TNBS binding, respectively. In keeping with this, in the presence of Ca2+, TNBS binding to theC-domain was significantly reduced, whereas modification of theN-domain was unaffected. TNBS modification of calreticulin significantly decreased Ca2+ binding to the low affinity/high capacity Ca2+ binding site(s) which are localized to theC-domain but had no effect on the high affinity/low capacity Ca2+ binding localized to theN-domain.In theC-domain of calreticulin, which contains the low affinity/high capacity Ca2+ binding sites, acidic residues are interspersed at regular intervals with one or more positively charged lysine and arginine residues. Our results indicate that the aminogroups of the lysine sidechains in theC-domain of calreticulin have a role in the low affinity/high capacity Ca2+ binding that is characteristic of this region of the protein and which is proposed to contribute significantly to the capacity of the endoplasmic reticulum Ca2+ store. (Mol Cell Biochem130: 19–28, 1994)Abbreviations TNBS 2,4,6-Trinitrobenzenesulfonic Acid - GST Glutathione S-Transferase - SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis - EDTA Ethylenediaminetetraacetic Acid - EGTA Ethylene Glycol bis(-aminoethylether)-N,N,N,N-tetraacetic Acid - MOPS 4-Morpholinepropanesulfonic Acid  相似文献   

15.
Two basic phospholipase A2 (PLA2) isoforms were isolated from Lachesis muta muta snake venom and partially characterized. The venom was fractionated by molecular exclusion chromatography in ammonium bicarbonate buffer followed by reverse-phase HPLC on a C-18 μ-Bondapack column and RP-HPLC on a C-8 column. From liquid chromatography-electrospray ionization/mass spectrometry, the molecular mass of the two isoforms LmTX-I and LmTX-II was respectively measured as 14,245.4 and 14,186.2 Da. The pI was respectively estimated to be 8.7 and 8.6 for LmTX-I and LmTX-II, as determined by two-dimensional electrophoresis. The two proteins were sequenced and differentiated from each other by a single amino acid substitution, Arg65 (LmTX-I)  Pro65 (LmTX-II). The amino acid sequence showed a high degree of homology between PLA2 isoforms from Lachesis muta muta and other PLA2 snake venoms. LmTX-I and LmTX-II had PLA2 activity in the presence of a synthetic substrate and showed a minimum sigmoidal behaviour; with maximal activity at pH 8.0 and 35–45 °C. Full PLA2 activity required Ca2+ and was respectively inhibited by Cu2+ and Zn2+ in the presence and absence of Ca2+. Crotapotin from Crotalus durissus cascavella rattlesnake venom significantly inhibited (P < 0.05) the enzymatic activity of LmTX-I, suggesting that the binding site for crotapotin in this PLA2 was similar to another in the basic PLA2 of the crotoxin complex from C. durissus cascavella venom.  相似文献   

16.
Phospholipases A2 (PLA2s) are enzymes responsible for membrane disruption through Ca2+‐dependent hydrolysis of phospholipids. Lys49‐PLA2s are well‐characterized homologue PLA2s that do not show catalytic activity but can exert a pronounced local myotoxic effect. These homologue PLA2s were first believed to present residual catalytic activity but experiments with a recombinant toxin show they are incapable of catalysis. Herein, we present a new homologue Asp49‐PLA2 (BthTX‐II) that is also able to exert muscle damage. This toxin was isolated in 1992 and characterized as presenting very low catalytic activity. Interestingly, this myotoxic homologue Asp49‐PLA2 conserves all the residues responsible for Ca2+ coordination and of the catalytic network, features thought to be fundamental for PLA2 enzymatic activity. Previous crystallographic studies of apo BthTX‐II suggested this toxin could be catalytically inactive since a distortion in the calcium binding loop was observed. In this article, we show BthTX‐II is not catalytic based on an in vitro cell viability assay and time‐lapse experiments on C2C12 myotube cell cultures, X‐ray crystallography and phylogenetic studies. Cell culture experiments show that BthTX‐II is devoid of catalytic activity, as already observed for Lys49‐PLA2s. Crystallographic studies of the complex BthTX‐II/Ca2+ show that the distortion of the calcium binding loop is still present and impairs ion coordination even though Ca2+ are found interacting with other regions of the protein. Phylogenetic studies demonstrate that BthTX‐II is more phylogenetically related to Lys49‐PLA2s than to other Asp49‐PLA2s, thus allowing Crotalinae subfamily PLA2s to be classified into two main branches: a catalytic and a myotoxic one. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
We here demonstrate the presence of a plasma membrane-associated phospholipase A2 (EC 3.1.1.4; PLA2) activity in spinach (Spinacia oleracea) leaves. The pH profile of the spinach plasma membrane PLA2 activity revealed two peaks, one at pH 4.4 and one at pH 5.5. The activity at pH 5.5 had an absolute requirement of Ca2+, with full enzyme activity at 10 μmol/L Ca2+. The Ca2+-dependent PLA2 activity was both heat sensitive and stimulated by diacylglycerol, whereas ATP completely inhibited the activity. Thus, the spinach plasma membrane contains a Ca2+-dependent PLA2 activity, which has not previously been characterised in plants. Cold acclimation of spinach resulted in a 2.2-fold higher plasma membrane PLA2 activity whereas the plasma membrane phospholipase D activity remained unaffected. Taken together, our data suggest a role of PLA2 in cold acclimation in plants.  相似文献   

18.
The crystal structure of n-dodecylphosphorylcholine (n-C12PC)–bovine pancreas phospholipase A2 (PLA2) complex provided the following structural.characteristics: (1) the dodecyl chain of n-C12PC was located at the PLA2 N -terminal helical region by hydrophobic interactions, which corresponds to the binding pocket of 2-acyl fatty acid chain (β-chain) of the substrate phospholipid, (2) the region from Lys-53 to Lys-56 creates a cholinereceiving pocket of n-C12PC and (3) the N-termillal group of Ala-1 shifts significantly toward the Tyr-52 OH group by the binding of the n-C12PC inhibitor. Since the accuracy of the X-ray analysis (R = 0.275 at 2.3 Å resolution) was insufficient to establish these important X-ray insights, the complex structure was further investigated through the molecular dynamics (M D) simulation, assuming a system in aqueous solution at 310K. The M D simulation covering 176 ps showed that the structural characteristics observed by X-ray analysis are intrinsic and also stable in the dynamic state. Furthermore, the M D simulation made clear that the PLA2 binding pocket is large enough to permit the conformational fluctuation of the n-C12PC hydrocarbon chain. © 1994 Wiley-Liss, Inc. © 1994 Wiley-Liss, Inc.  相似文献   

19.
    
Rat kidney-glutamylcysteine synthetase (GCS) was inactivated by reaction with trinitrobenzene sulfonate (TNBS), and the reaction followed pseudo-first-order kinetics. Inactivation kinetics revealed that only one of the amino acid residues modified by TNBS was essential for-GCS activity. The addition of 10 mM Mg2+ to the TNBS inactivation reaction resulted in a 16-fold increase in the rate of inactivation. Chromatographic analysis on the tryptic hydrolyzates of trinitrophenylated (TNP) derivatives showed that Lys-38 in theGCS heavy subunit was significantly modified in the presence of Mg2+. In contrast to small changes in the catalytic properties observed by mutation of Lys-38 to Arg, the mutants K38N and K38E had a marked decrease in enzymatic activity and about twofold increase inK m for glutamate. These results suggest that the positively charged Lys-38 may sbe involved in the binding of glutamate toGCS.  相似文献   

20.
A crotoxin homolog was purified from the Crotalus durissus collilineatus venom using molecular exclusion and reverse-phase HPLC. This crotoxin contained one PLA2 (Cdcolli III F6) and four crotapotin isoforms, whereas crotoxin from Crotalus durissus terrificus venom had three PLA2 isoforms and two crotapotin isoforms. SDS-PAGE showed that the C. d. collilineatus PLA2 and crotapotin had relative molecular mass of 15 and 9 kDa, respectively. Neither the PLA2 (Cdcolli III F6) nor the crotapotins (Cdcolli III F3 and F4) had any neurotoxicity in mouse phrenic nerve-diaphragm preparations when tested alone. However, when PLA2 and crotapotin were coincubated before testing, the neurotoxicity was restored to a level similar to test in the venom in native crotoxin. The two crotapotins (Cdcolli III F3 and F4) differed in their ability to inhibit PLA2 activity, perhaps because of variations in their affinities for this enzyme. Cdcolli III F6 showed allosteric enzymatic behavior, with maximal activity at pH 8.3 and 36°C. Full PLA2 activity required the presence of a low Ca2+ concentration and was inhibited by Cu2+ and Zn2+ and by Cu2+ and Mg2+ in the presence and absence of Ca2+, respectively. These results indicate that crotoxin from C. d. collineatus venom is very similar enzymatically to crotoxin from C. d. terrificus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号