首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
We have computed the average structures for the ras-p21 protein and its strongly homologous inhibitor protein, rap-1A, bound to the ras-binding domain (RBD) of the raf protein, using molecular dynamics. Our purpose is to determine the differences in structure between these complexes that would result in no mitogenic activity of rap-1A-RBD but full activity of p21-RBD. We find that despite the similarities of the starting structures for both complexes, the average structures differ considerably, indicating that these two proteins do not interact in the same way with this vital target protein. p21 does not undergo major changes in conformation when bound to the RBD, while rap-1 A undergoes significant changes in structure on binding to the RBD, especially in the critical region around residue 61. The p21 and rap-1A make substantially different contacts with the RBD. For example, the loop region from residues 55–71 of rap-la makes extensive hydrogen-bond contacts with the RBD, while the same residues of p21 do not. Comparison of the structures of the RBD in both complexes reveals that it undergoes considerable changes in structure when its structure bound to p21 is compared with that bound to rap-1A. These changes in structure are due to displacements of regular structure (e.g., -helices and -sheets) rather than to changes in the specific conformations of the segments themselves. Three regions of the RBD have been found to differ significantly from one another in the two complexes: the binding interface between the two proteins at residues 60 and 70, the region around residues 105–106, and 118–120. These regions may constitute effector domains of the RBD whose conformations determine whether or not mitogenic signal transduction will occur.  相似文献   

2.
The three-dimensional structures of theras-p21 protein and its protein inhibitor, rap-1A, have been computed bound to theras-binding domain, RBD (residues 55–131), of theraf-p74 protein, a critical target protein ofras-p21 in theras-induced mitogenic signal transduction pathway. The coordinates of RBD have been reconstructed from the stereoview of an X-ray crystal structure of this domain bound to rap-1A and have been subjected to energy minimization. The energy-minimized structures of bothras- p21 and rap-1A, obtained in previous studies, have been docked against RBD, using the stereo figure of the RBD-rap-1A complex, based on a six-step procedure. The final energy-minimized structure of rap-1A-RBD is identical to the X-ray crystal structure. Comparison of theras-p21- and rap-1A-RBD complexes reveals differences in the structures of effector domains ofras-p21 and rap-1a, including residues 32–47, a domain that directly interacts with RBD, 60–66, 96–110, involved in the interaction ofras-p21 withjun kinase (JNK) andjun protein, and 115–126, involved in the interaction of p21 with JNK. The structure of the RBD remained the same in both complexes with the exception of small deviations in itsβ-2 binding loop (residues 63–71) and residues 89–91, also involved in binding to rap-1A. The results suggest that the binding of these two proteins to RBD may allow them to interact with other cellular target proteins such as JNK andjun.  相似文献   

3.
The three-dimensional structures of theras-p21 protein and its protein inhibitor, rap-1A, have been computed bound to theras-binding domain, RBD (residues 55–131), of theraf-p74 protein, a critical target protein ofras-p21 in theras-induced mitogenic signal transduction pathway. The coordinates of RBD have been reconstructed from the stereoview of an X-ray crystal structure of this domain bound to rap-1A and have been subjected to energy minimization. The energy-minimized structures of bothras- p21 and rap-1A, obtained in previous studies, have been docked against RBD, using the stereo figure of the RBD-rap-1A complex, based on a six-step procedure. The final energy-minimized structure of rap-1A-RBD is identical to the X-ray crystal structure. Comparison of theras-p21- and rap-1A-RBD complexes reveals differences in the structures of effector domains ofras-p21 and rap-1a, including residues 32–47, a domain that directly interacts with RBD, 60–66, 96–110, involved in the interaction ofras-p21 withjun kinase (JNK) andjun protein, and 115–126, involved in the interaction of p21 with JNK. The structure of the RBD remained the same in both complexes with the exception of small deviations in its-2 binding loop (residues 63–71) and residues 89–91, also involved in binding to rap-1A. The results suggest that the binding of these two proteins to RBD may allow them to interact with other cellular target proteins such as JNK andjun.  相似文献   

4.
rap-1A, an anti-oncogene-encoded protein, is aras-p21-like protein whose sequence is over 80% homologous to p21 and which interacts with the same intracellular target proteins and is activated by the same mechanisms as p21, e.g., by binding GTP in place of GDP. Both interact with effector proteins in the same region, involving residues 32–47. However, activated rap-1A blocks the mitogenic signal transducing effects of p21. Optimal sequence alignment of p21 and rap-1A shows two insertions of rap-1A atras positions 120 and 138. We have constructed the three-dimensional structure of rap-1A bound to GTP by using the energy-minimized three-dimensional structure ofras-p21 as the basis for the modeling using a stepwise procedure in which identical and homologous amino acid residues in rap-1A are assumed to adopt the same conformation as the corresponding residues in p21. Side-chain conformations for homologous and nonhomologous residues are generated in conformations that are as close as possible to those of the corresponding side chains in p21. The entire structure has been subjected to a nested series of energy minimizations. The final predicted structure has an overall backbone deviation of 0.7 å from that ofras-p21. The effector binding domains from residues 32–47 are identical in both proteins (except for different side chains of different residues at position 45). A major difference occurs in the insertion region at residue 120. This region is in the middle of another effector loop of the p21 protein involving residues 115–126. Differences in sequence and structure in this region may contribute to the differences in cellular functions of these two proteins.  相似文献   

5.
By comparing the average structures, computed using molecular dynamics, of the ras-binding domain of raf (RBD) bound to activated wild-type ras-p21 and its homologous inhibitory protein, rap-1A, we formerly identified three domains of the RBD that changed conformation between the two complexes, residues 62–76, 97–110, and 111–121. We found that one synthetic peptide, corresponding to RBD residues 97–110, selectively inhibited oncogenic ras-p21-induced oocyte maturation. In this study, we performed molecular dynamics on the Val 12-ras-p21-RBD complex and compared its average structure with that for the wild-type protein. We find that there is a large displacement of a loop involving these residues when the structures of the two complexes are compared. This result corroborates our former finding that the RBD 97–110 peptide inhibits only signal transduction by oncogenic ras-p21 and suggests that oncogenic p21 uses this loop to interact with raf in a unique manner.  相似文献   

6.
rap-1A, an anti-oncogene-encoded protein, is aras-p21-like protein whose sequence is over 80% homologous to p21 and which interacts with the same intracellular target proteins and is activated by the same mechanisms as p21, e.g., by binding GTP in place of GDP. Both interact with effector proteins in the same region, involving residues 32–47. However, activated rap-1A blocks the mitogenic signal transducing effects of p21. Optimal sequence alignment of p21 and rap-1A shows two insertions of rap-1A atras positions 120 and 138. We have constructed the three-dimensional structure of rap-1A bound to GTP by using the energy-minimized three-dimensional structure ofras-p21 as the basis for the modeling using a stepwise procedure in which identical and homologous amino acid residues in rap-1A are assumed to adopt the same conformation as the corresponding residues in p21. Side-chain conformations for homologous and nonhomologous residues are generated in conformations that are as close as possible to those of the corresponding side chains in p21. The entire structure has been subjected to a nested series of energy minimizations. The final predicted structure has an overall backbone deviation of 0.7 å from that ofras-p21. The effector binding domains from residues 32–47 are identical in both proteins (except for different side chains of different residues at position 45). A major difference occurs in the insertion region at residue 120. This region is in the middle of another effector loop of the p21 protein involving residues 115–126. Differences in sequence and structure in this region may contribute to the differences in cellular functions of these two proteins.  相似文献   

7.
In the preceding paper we found from molecular dynamics calculations that the structure of the ras-binding domain (RBD) of raf changes predominantly in three regions depending upon whether it binds to ras-p21 protein or to its inhibitor protein, rap-1A. These three regions of the RBD involve residues from the protein–protein interaction interface, e.g., between residues 60 and 72, residues 97–110, and 111–121. Since the rap-1A–RBD complex is inactive, these three regions are implicated in ras-p21-induced activation of raf. We have therefore co-microinjected peptides corresponding to these three regions, 62–76, 97–110, and 111–121, into oocytes with oncogenic p21 and microinjected them into oocytes incubated in in insulin, which activates normal p2l. All three peptides, but not a control peptide, strongly inhibit both oncogenic p21- and insulin-induced oocyte maturation. These findings corroborate our conclusions from the theoretical results that these three regions constitute raf effector domains. Since the 97–110 peptide is the strongest inhibitor of oncogenic p21, while the 111–121 peptide is the strongest inhibitor of insulin-induced oocyte maturation, the possibility exists that oncogenic and activated normal p21 proteins interact differently with the RBD of raf.  相似文献   

8.
In the preceding paper we found from molecular dynamics calculations that the structure of the ras-binding domain (RBD) of raf changes predominantly in three regions depending upon whether it binds to ras-p21 protein or to its inhibitor protein, rap-1A. These three regions of the RBD involve residues from the protein–protein interaction interface, e.g., between residues 60 and 72, residues 97–110, and 111–121. Since the rap-1A–RBD complex is inactive, these three regions are implicated in ras-p21-induced activation of raf. We have therefore co-microinjected peptides corresponding to these three regions, 62–76, 97–110, and 111–121, into oocytes with oncogenic p21 and microinjected them into oocytes incubated in in insulin, which activates normal p2l. All three peptides, but not a control peptide, strongly inhibit both oncogenic p21- and insulin-induced oocyte maturation. These findings corroborate our conclusions from the theoretical results that these three regions constitute raf effector domains. Since the 97–110 peptide is the strongest inhibitor of oncogenic p21, while the 111–121 peptide is the strongest inhibitor of insulin-induced oocyte maturation, the possibility exists that oncogenic and activated normal p21 proteins interact differently with the RBD of raf.  相似文献   

9.
10.
In the preceding paper we performed molecular dynamics calculations of the average structures of the SOS protein bound to wild-type and oncogenic ras–p21. Based on these calculations, we have identified four major domains of the SOS protein, consisting of residues 631–641, 676–691, 718–729, and 994–1004, which differ in structure between the two complexes. We have now microinjected synthetic peptides corresponding to each of these domains into Xenopus laevis oocytes either together with oncogenic (Val 12)-p21 or into oocytes subsequently incubated with insulin. We find that the first three peptides inhibit both oncogenic and wild-type p21-induced oocyte maturation, while the last peptide much more strongly inhibits oncogenic p21 protein-induced oocyte maturation. These results suggest that each identified SOS region is involved in ras–stimulated signal transduction and that the 994–1004 domain is involved uniquely with oncogenic ras–p21 signaling.  相似文献   

11.
GTPase activating protein (GAP) is a known regulator of ras-p21 activity and is a likely target of ras-induced mitogenic signaling. The domains of GAP that may be involved in this signaling are unknown. In order to infer which domains of GAP may be involved, we have performed molecular dynamics calculations of GAP complexed to wild-type and oncogenic (Val 12–containing) ras-p21, both bound to GTP. We have computed and superimposed the average structures for both complexes and find that there are four domains of GAP that undergo major changes in conformation: residues 821–851, 917–924, 943–953, and 1003–1020. With the exception of the 943–953 domain, none of these domains is involved in making contacts with ras-p21, and all of them occur on the surface of the protein, making them good candidates for effector domains. In addition, three ras-p21 domains undergo major structural changes in the oncogenic p21-GAP complex: 71–76 from the switch 2 domain; 100–108, which interacts with SOS, jun and jun kinase (JNK); and residues 122–138. The change in conformation of the 71–76 domain appears to be induced by changes in conformation in the switch 1 domain (residues 32–40) and in the adjacent domain involving residues 21–31. In an accompanying paper, we present results from microinjection of peptides corresponding to each of these domains into oocytes induced to undergo maturation by oncogenic ras-p21 and by insulin-activated wild-type cellular p21 to determine whether these domain peptides may be involved in ras signaling through GAP.  相似文献   

12.
The X-ray crystal structure of the ras oncogene-encoded p21 protein bound to SOS, the guanine nucleotide exchange-promoting protein, has been determined. We have undertaken to determine if there are differences between the three-dimensional structures of SOS bound to normal and oncogenic (Val 12-p21) proteins. Using molecular dynamics, we have computed the average structures for both complexes and superimposed them. We find four domains of SOS that differ markedly in structure: 631–641, 676–691, 718–729, and 994–1004. Peptides corresponding to these sequences have been synthesized and found to be powerful modulators of oncogenic p21 in cells as described in an accompanying paper. We find that the SOS segment from 809–815 makes contacts with multiple domains of ras-p21 and can facilitate correlated conformational changes in these domains.  相似文献   

13.
Theras-oncogene-encoded p21 protein becomes oncogenic if amino acid substitutions occur at critical positions in the polypeptide chain. The most commonly found oncogenic forms contain Val in place of Gly 12 or Leu in place of Gln 61. To determine the effects of these substitutions on the three-dimensional structure of the whole p21 protein, we have performed molecular dynamics calculations on each of these three proteins bound to GDP and magnesium ion to compute the average structures of each of the three forms. Comparisons of the computed average structures shows that both oncogenic forms with Val 12 and Leu 61 differ substantially in structure from that of the wild type (containing Gly 12 and Gln 61) in discrete regions: residues 10–16, 32–47, 55–74, 85–89, 100–110, and 119–134. All of these regions occur in exposed loops, and several of them have already been found to be involved in the cellular functioning of the p21 protein. These regions have also previously been identified as the most flexible domains of the wild-type protein and have been bound to be the same ones that differ in conformation between transforming and nontransforming p21 mutant proteins neither of which binds nucleotide. The two oncogenic forms have similar conformations in their carboxyl-terminal domains, but differ in conformation at residues 32–47 and 55–74. The former region is known to be involved in the interaction with at least three downstream effector target proteins. Thus, differences in structure between the two oncogenic proteins may reflect different relative affinities of each oncogenic protein for each of these effector targets. The latter region, 55–74, is known to be a highly mobile segment of the protein. The results strongly suggest that critical oncogenic amino acid substitutions in the p21 protein cause changes in the structures of vital domains of this protein.  相似文献   

14.
Molecular dynamics calculations have been performed to determine the average structures ofras-gene-encoded p21 proteins bound to GTP, i.e., the normal (wild-type) protein and two oncogenic forms of this protein, the Val 12- and Leu 61-p21 proteins. We find that the average structures for all of these proteins exhibit low coordinate fluctuations (which are highest for the normal protein), indicating convergence to specific structures. From previous dynamics calculations of the average structures of these proteins bound to GDP, major regional differences were found among these proteins (Monacoet al. (1995),J. Protein Chem., in press). We now find that the average structures of the oncogenic proteins are more similar to one another when the proteins are bound to GTP than when they are bound to GDP (Monacoet al. (1995),J. Protein Chem., in press). However, they still differ in structureat specific amino acid residues rather than in whole regions, in contradistinction to the results found for the p21-GDP complexes. Two exceptions are the regions 25–32, in anα-helical region, and 97–110. The two oncogenic (Val 12- and Leu 61-) proteins have similar structures which differ significantly in the region of residues 97–110. This region has recently been identified as being critical in the interaction of p21 with kinase target proteins. The differences in structure between the oncogenic proteins suggest the existence of more than one oncogenic form of the p21 protein that can activate different signaling pathways.  相似文献   

15.
ras-p21 protein binds to the son-of-sevenless (SOS) guanine nucleotide-exchange promoter that allows it to exchange GDP for GTP. Previously, we performed molecular dynamics calculations on oncogenic (Val 12-) and wild-type ras-p21 bound to SOS. By superimposing the average structures of these two complexes, we identified four domains (residues 631-641, 676-691, 718-729, and 994-1004) in SOS that change conformation and were candidates for being effector domains. These calculations were performed in the absence of three crystallographically undefined loops (i.e., residues 591-596, 654-675, and 742-751). We have now modeled these loops into the SOS structure and have re-performed the dynamics calculations. We find that all three loop domains undergo large changes in conformation that involve mostly changes in their positioning and not their individual conformations. We have also identified another potential effector domain (i.e., residues 980-989). Overall, our current results suggest that SOS interactions with oncogenic ras-p21 may enhance ras-p21 mitogenic signaling through prolonging its activation by maintaining its binding to GTP and by allowing its effector domains to interact with intracellular targets.  相似文献   

16.
In the preceding paper we performed molecular dynamics calculations of the average structures of the SOS protein bound to wild-type and oncogenic ras–p21. Based on these calculations, we have identified four major domains of the SOS protein, consisting of residues 631–641, 676–691, 718–729, and 994–1004, which differ in structure between the two complexes. We have now microinjected synthetic peptides corresponding to each of these domains into Xenopus laevis oocytes either together with oncogenic (Val 12)-p21 or into oocytes subsequently incubated with insulin. We find that the first three peptides inhibit both oncogenic and wild-type p21-induced oocyte maturation, while the last peptide much more strongly inhibits oncogenic p21 protein-induced oocyte maturation. These results suggest that each identified SOS region is involved in ras–stimulated signal transduction and that the 994–1004 domain is involved uniquely with oncogenic ras–p21 signaling.  相似文献   

17.
Theras-oncogene-encoded p21 protein becomes oncogenic if amino acid substitutions occur at critical positions in the polypeptide chain. The most commonly found oncogenic forms contain Val in place of Gly 12 or Leu in place of Gln 61. To determine the effects of these substitutions on the three-dimensional structure of the whole p21 protein, we have performed molecular dynamics calculations on each of these three proteins bound to GDP and magnesium ion to compute the average structures of each of the three forms. Comparisons of the computed average structures shows that both oncogenic forms with Val 12 and Leu 61 differ substantially in structure from that of the wild type (containing Gly 12 and Gln 61) in discrete regions: residues 10–16, 32–47, 55–74, 85–89, 100–110, and 119–134. All of these regions occur in exposed loops, and several of them have already been found to be involved in the cellular functioning of the p21 protein. These regions have also previously been identified as the most flexible domains of the wild-type protein and have been bound to be the same ones that differ in conformation between transforming and nontransforming p21 mutant proteins neither of which binds nucleotide. The two oncogenic forms have similar conformations in their carboxyl-terminal domains, but differ in conformation at residues 32–47 and 55–74. The former region is known to be involved in the interaction with at least three downstream effector target proteins. Thus, differences in structure between the two oncogenic proteins may reflect different relative affinities of each oncogenic protein for each of these effector targets. The latter region, 55–74, is known to be a highly mobile segment of the protein. The results strongly suggest that critical oncogenic amino acid substitutions in the p21 protein cause changes in the structures of vital domains of this protein.  相似文献   

18.
《Journal of molecular biology》2019,431(17):3179-3190
Stress proteins promote cell survival by monitoring protein homeostasis in cells and organelles. YcjX is a conserved protein of unknown function, which is highly upregulated in response to acute and chronic stress. Notably, heat shock induction of ycjX exceeded even levels observed for major stress-induced chaperones, including GroEL, ClpB, and HtpG, which use ATP as energy source. YcjX features a Walker-type nucleotide-binding domain indicating that YcjX might function as a molecular chaperone. Here, we present the first crystal structure of YcjX from Shewanella oneidensis solved at 1.9-Å resolution by SAD phasing. We show that YcjX is a GTP-binding protein that shares at its core the canonical alpha-beta domain of p21ras (Ras). However, unlike Ras, YcjX features several unique insertions, including an entirely α-helical domain not previously observed in Ras-like GTPases. We note that this helical domain is reminiscent of a similar domain in the Gα subunit of heterotrimeric G proteins, supporting a potential role for YcjX as a signal transducer of stress responses. To elucidate the mechanism of GTP hydrolysis, we determined crystal structures of YcjX bound to GDP and GDPCP, respectively, which crystallized in three different nucleotide switch conformations. Supported by targeted mutagenesis experiments, we show that YcjX utilizes a non-canonical switch 2′ motif not previously observed in Ras-like GTPases. Together, our structures provide atomic snapshots of YcjX in different functional states, illustrating the structural determinants for stress signaling.  相似文献   

19.
The GTP-binding p21 protein encoded by the ras-oncogene can be activated to cause malignant transformation of cells by substitution of a single amino acid at critical positions along the polypeptide chain. Substitution of any non-cyclic L-amino acid for Gly 12 in the normal protein results in a transforming protein. This substitution occurs in a hydrophobic sequence (residues 6-15) which is known to be involved in binding the phosphate moities of GTP (and GDP). We find, using conformational energy calculations, that the 6-15 segment of the normal protein (with Gly 12) adopts structures that contain a bend at residues 11 and 12 with the Gly in the D* conformation, not allowed energetically for L-amino acids. Substitution of non-cyclic L-amino acids for Gly 12 results in shifting this bend to residues 12 and 13. We show that many computed structures for the Gly 12-containing phosphate binding loop, segment 9-15, are superimposable on the corresponding segment of the recently determined X-ray crystallographic structure for residues 1-171 of the p21 protein. All such structures contain bends at residues 11 and 12 and most of these contain Gly 12 in the C* or D* conformational state. Other computed conformations for the 9-15 segment were superimposable on the structure of the corresponding 18-23 segment of EFtu, the bacterial chain elongation factor having structural similarities to the p21 protein in the phosphate-binding regions. This segment contains a Val residue where a Gly occurs in the p21 protein. As previously predicted, all of these superimposable conformations contain a bend at positions 12 and 13, not 11 and 12. If these structures that are superimposable on EFtu are introduced into the p21 protein structure, bad contacts occur between the sidechain of the residue (here Val) at position 12 and another phosphate binding loop region around position 61. These bad contacts between the two segments can be removed by changing the conformation of the 61 region in the p21 protein to the corresponding position of the homologous region in EFtu. In this new conformation, a large site becomes available for the binding of phosphate residues. In addition, such phenomena as autophosphorylation of the p21 protein by GTP can be explained with this new model structure for the activated protein which cannot be explained by the structure for the non-activated protein.  相似文献   

20.
The ras genes encode GTP/GDP-binding proteins that participate in mediating mitogenic signals from membrane tyrosine kinases to downstream targets. The activity of p21ras is determined by the concentration of GTP-p21ras, which is tightly regulated by a complex array of positive and negative control mechanisms. GAP and NF1 can negatively regulate p21ras activity by stimulating hydrolysis of GTP bound to p21ras. Other cellular factors can positively regulate p21ras by stimulating GDP/GTP exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号