首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The serine esterase TL2 from human T4+ lymphocytes is a binding component to HIV-1 glycoprotein gp120 and seems to play a role in the HIV-1 infection mechanism. Recombinant variants of the Kunitz-type serine proteinase inhibitor aprotinin were investigated for their ability to inhibit tryptase TL2 and the binding of gp120 to this enzyme. Furthermore, the viral replication of HIV-1 was investigated in H9 cell cultures under the influence of recombinant aprotinin and bikunin variants. In contrast to native aprotinin, the recombinant variant [Arg15, Phe17, Glu52]aprotinin with a reactive-site sequence homologous to the V3 loop of HIV-1 gp120 showed a specific inhibition of tryptase TL2 (>80%). However, the [Leu15, Phe17, Glu52]aprotinin variant with hydrophobic subsites was the most potent inhibitor of the binding of gp120 to tryptase TL2 (68%). Our results show that the enzyme activity of purified tryptase TL2 is inhibited not only by variants with basic amino acids, but also those with hydrophobic residues in the reactive-site region. Therefore, tryptase TL2 is not a typical trypsin-like or chymotrypsin-like protease. Investigations on inhibition of HIV-1 replication in H9 cell cultures showed that tryptase TL2 is involved in the mechanism of virus internalization into human lymphocytes. The [Leu15, Phe17, Glu52]aprotinin showed a significant retardation of syncytium formation over a period of 5 days in a 1 M concentration. Similar investigations were performed with recombinant variants of bikunin, the light chain of human inter--trypsin inhibitor. Only the single-headed variant [Arg94]82bikunin inhibited slightly the syncytium formation over a period of 2 days in a 2.2 M concentration. Wild-type bikunin and all full-length variants showed no effect, possibly due to steric hindrance by the second domain of the double-headed inhibitor.  相似文献   

2.
Syntheses are described of [Pro1]-LH-RH, [Orotic acid1]-LH-RH, [Glu1]-LH-RH, [Ser2]-LH-RH, [Leu2]-LH-RH, [Gln2]-LH-RH and [Phe2]-LH-RH. The LH-releasing hormone (LH-RH) activity of each of these peptides was compared with that of natural LH-RH in vivo. [Glu1]-LH-RH and [Phe2]-LH-RH had significant LH-RH activity, while all the other analogs possessed extremely low activities. These findings are briefly discussed in the light of the structure-activity relationship for LH-RH.  相似文献   

3.
[Leu2, Leu3, D-Ala6]-LHRH is an analog of pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2 (LHRH) and inhibits the release of LH and FSH induced by LHRH. This analog and inhibitor has been modified with the objective of developing an active-site-directed irreversible inhibitor. The modification consisted of replacing < Glu1 with Chl1 which is the moiety of chlorambucil (a nitrogen mustard). The Chl analog inhibited the release of LH and FSH by LHRH after addition prior to LHRH and after three changes of the incubation medium; in contrast, [Leu2, Leu3, D-Ala6]-LHRH and [des-His2]-LHRH only inhibit release when added together with LHRH. The Chl analog released LH and FSH but not TSH or GH, indicating that its agonist and antagonist activities could be specific at the receptor site for LHRH.  相似文献   

4.
A highly purified trypsin inhibitor was obtained from the oriental plant Hakuhenzu bean (Dolichos lablab) by column chromatography on DEAE-Sephadex and gel-filtration on Sephadex G–75. The purified Hakuhenzu bean trypsin inhibitor (HTI) was obtained as a chemically homogeneous protein, and was stable to heat and to enzymes such as pepsin. It shows no obvious maximum at 280 nm in the ultraviolet absorption spectrum, and it contains more than 20% carbohydrate as galactose and 10% hexosamine as glucosamine. The molecular weight of this inhibitor was determined to be approximately 9,500 by gel-filtration. The protein contained 59 residures of amino acids; Lys3, His4, Arg1, Asp8, Thr3, Ser9, Glu6, Pro5, Gly1, Ala3, l/2Cys10, Val1, Ile1, Leu2, Tyr1, Phe1, from which a molecular weight of 6,400 is obtained. No methionine and tryptophan were found in the amino acid composition of the inhibitor. This inhibitor showed inhibitory activity against α-chymotrypsin in addition to trypsin.  相似文献   

5.
The specificity of thermitase (EC 3.4.21.14), a microbial thermostable serine proteinase fromThermoactinomyces vulgaris, with several oligo- and polypeptide substrates was investigated. Preferred hydrolysis of peptide bonds with a hydrophobic amino acid at the carboxylic site was observed. The proved carboxypeptidolytic splitting of Leu5-enkephalin and bradykinin, as well as the noncleavability of casomorphins by thermitase, can be explained by the position of the glycine and proline residues in these substrates. Major cleavage sites in the oxidized insulin B chain in a 15-min incubation with thermitase at Gln4-His5, Ser9-His10, Leu11-Val12, Leu15-Tyr16 and in the oxidized insulin A chain at Cys SO3H11-Ser12, Leu13-Tyr14, and Leu16-Glu17 were observed. Additional cleavages of the bonds His5-Leu6, Arg22-Gly23, Phe24-Phe25, Phe25-Tyr26, and Tyr26-Thr27 in the oxidized B chain and Cys SO3H6-Cys SO3H7 and Tyr19-Cys SO3H20 in the oxidized A chain in 2-h incubations with thermitase were also noted. Hydrolysis of salmine A I component in a 10-min incubation was observed mainly at four peptide bonds: Arg5-Ser6, Ser6-Ser7, Arg18-Val19, and Gly27-Gly28. The cleavage sites of thermitase in both insulin chains were similar to those reported in the studies of subtilisins.  相似文献   

6.
Klebsiella pneumoniae strain DF12SA (HQ114261) was isolated from diabetic foot wounds. The strain showed resistance against ampicillin, kanamycin, gentamicin, streptomycin, spectinomycin, trimethoprim, tetracycline, meropenem, amikacin, piperacillin/tazobactam, augmentin, co-trimoxazole, carbapenems, penicillins and cefoperazone, and was sensitive to clindamycin. Molecular characterization of the multidrug-resistance phenotype revealed the presence of a class 1 integron containing two genes, a dihydrofolate reductase (DHFR) (PF00186), which confers resistance to trimethoprim; and aminoglycoside adenyltransferase (AadA) (PF01909), which confers resistance to streptomycin and spectinomycin. A class 1 integron in K. pneumoniae containing these two genes was present in eight (18.18 %) out of 44 different diabetic foot ulcer (DFU) patients. Hence, there is a need to develop therapeutics that inhibit growth of multidrug resistant K. pneumoniae in DFU patients and still achieve amputation control. Am attempt was made to create a 3D model and find a suitable inhibitor using an in silico study. Rational drug design/testing requires crystal structures for DHFR and AadA. However, the structures of DHFR and AadA from K. pneumoniae are not available. Modelling was performed using Swiss Model Server and Discovery Studio 3.1. The PDBSum server was used to check stereo chemical properties using Ramachandran plot analysis of modeled structures. Clindamycin was found to be suitable inhibitor of DHFR and AadA. A DockingServer based on Autodock & Mopac was used for docking calculations. The amino acid residues Ser32, Ile46, Glu53, Gln54, Phe57, Thr72, Met76, Val78, Leu79, Ser122, Tyr128, Ile151 in case of DHFR and Phe34, Asp60, Arg63, Gln64, Leu68, Glu87, Thr89, Val90 for AadA were found to be responsible for positioning clindamycin into the active site. The study identifies amino acid residues crucial to ‘DHFR and AadA -drug’ and ‘DHFR and AadA -inhibitor’ interactions that might be useful in the ongoing search for a versatile DHFR and AadA -inhibitor.  相似文献   

7.
Abstract

Fluorophore of proflavine was introduced onto the 3′-terminal ribose moiety of yeast tRNAPhe. The distance between the fluorophore and the fluorescent Y base in the anticodon of yeast tRNAPhe was measured by a singlet-singlet energy transfer. Conformational changes of tRNAPhe with binding of tRNAGlu 2, which has the anticodon UUC complementary to the anticodon GAA of tRNAPhe, were investigated. The distance obtained at the ionic strength of 100 mM K+ and 10 mM Mg2+ is very close to the distance from x-ray diffraction, while the distance obtained in the presence of tRNAGlu 2 is significantly smaller. Further, using a fluorescent probe of 4-bromomethl-7-methoxycoumarin introduced onto pseudouridine residue Ψ55 in the TΨC loop of tRNAPhe, Stern-Volmer quenching experiments for the probe with or without added tRNAGlu 2were carried out. The results showed greater access of the probe to the quencher with added tRNAGlu 2. These results suggest that both arms of the L-shaped tRNA structure tend to bend inside with binding of tRNAGlu 2 and some structural collapse occurs at the corner of the L-shaped structure.  相似文献   

8.
The specificity of highly purified alkaline proteinase B (EC 3.4.21.14) from thermophilic Streptomyces rectus var. proteolyticus was investigated with an oxidized insulin B chain. Hydrolysis of the oxidized insulin B chain in a 4-hr incubation was observed mainly at three peptide bonds (Phe24-Phe25, Leu15-Tyr16 and Leu11-Val12) and additionally at six others (Leu6-CySO3H7, Gln4-His5, Leu17-Val18, His5-Leu6, Glu13-Ala14, Asn3-Gln4).

Hydrolysis of angiotensin (formerly designated angiotensin II) was observed at the Tyr4-Ile5 bond. Hydrolysis of proangiotension (formerly designated angiotensin I) was observed at the Tyr4-Ile5 and Phe8-His9 bonds.  相似文献   

9.
An alkaline proteinase of Aspergillus Candidus was purified from wheat bran solid culture by batchwise treatment with Amberlite IRC–50 and sequential chromatography on DEAE-cellulose, hydroxylapatite and Sephadex G–100 gel. This purification results in a 18-fold increase of proteolytic activity and the enzyme preparation was homogeneous in sedimentation analysis of the ultracentrifuge and polyacrylamide gel disc electrophoresis. The molecular weight was estimated to be about 23,000 by gel glltration and 22,000 by calculation from the amino acid composition. The enzyme consisted of Lys14, His4, Arg3, Asp25, Thr15, Ser23, Glu15, Pro7, Gly22, Ala24, Met2, Val16, Ile11, Leu10, Tyr6, Phe7, Trp2 and amide ammonia14 and did not contain cysteine or cystine.  相似文献   

10.
The complete amino acid sequence of human A-I has been determined by manual and automated Edman degradation of intact and peptide fragments of A-I. A-I is a single chain protein of 243 residues with the following amino acid composition: Asp16, Asn5, Thr10, Ser15, Glu27, Gln19, Pro10, Gly10, Ala19, Val13, Met3, Leu37, Tyr7, Phe6, Trp4, Lys21, His5, and Arg16. The amino acid sequence contains no linear segments of hydrophobic or hydrophilic residues. A detailed correlation of the amino acid sequence, conformation, and self association of A-I will add further insight into the molecular mechanisms involved in protein-protein and protein-lipid interactions.  相似文献   

11.
Syntheses by the conventional methods as well as the chemical, physical and biological properties are described of the following analogs of the LH-releasing hormone (LH-RH): [Leu3]-LH-RH, [Phe3]-LH-RH, [Trp2] [His3]-LH-RH, Des-Trp3-LH-RH, Des-His2-[Phe5]-LH-RH, [Ala4]-LH-RH, [Phe5]-LH-RH and [Ala4] [Phe5]-LH-RH. In vivo assays showed that [Leu3]-LH-RH did not release LH in doses as high as 5 – 25 μg, having less than 0.0008% of LH-RH activity, while [Phe3]-LH-RH had 0.43% of the LH-RH activity of natural LH-RH. The LH-RH activities of [Trp2] [His3]-LH-RH, Des-Trp3-LH-RH and Des-His2-[Phe5]-LH-RH were extremely low. On the other hand, [Ala4]-LH-RH, [Phe5]-LH-RH and [Ala4] [Phe5]-LH-RH had significant LH-RH activity. The structure-activity relationship of LH-RH is discussed on the basis of these findings.  相似文献   

12.
Amino acid composition of the CGMMV* coat protein was determined to be as follows: Asp20, Thr10, Ser24, Glu10. Pro6, Gly9, Ala21, Val7, Ile7, Leu18, Tyr4, Phe9, Lys4, His1, Arg8, Trp2. No terminal α-amino group was detected by dinitrophenylation method. The carboxyl-terminus was found to be serine by hydrazinolysis of the protein and digestion with carboxypeptidase A.

For sequence analysis of the coat protein, tryptic digestion was accomplished at pH 8.0 resulting in ten soluble and several insoluble peptides at pH 4.5. The amino acids contained in soluble peptides accounted for 91 out of 160 residues in the whole protein. The amino acid sequences of ten soluble peptides were determined.

From the similarities of amino acid sequence of the peptides to those of TMV* protein, CGMMV was assumed to be a strain of TMV group.  相似文献   

13.
The NMR assignments of backbone 1H, 13C,and 15N resonances for calcium-bound human S100B werecompleted via heteronuclear multidimensional NMR spectroscopic techniques.NOE correlations, amide exchange, 3JHNHcoupling constants, and CSI analysis were used to identify the secondarystructure for Ca-S100B. The protein is comprised of four helices (helix I,Glu2-;Arg20; helix II,Glu31-;Asn38; helix III,Gln50-;Thr59; helix IV,Phe70-;Phe87), three loops (loop I,Glu21-;His25; loop II,Glu39-;Glu49; loop III,Leu60-;Gly66), and two -strands(strand I, Lys26>-;Lys28; strand II,Glu67-;Asp69) which form a shortantiparallel -sheet. Helix IV is extended by approximately one turnwhen compared to the secondary structures of apo-rat [Drohat et al. (1996)Biochemistry, 35, 11577-;11588] and bovine S100B [Kilby et al. (1996)Structure, 4, 1041-;1052]. In addition, several residues outside thecalcium-binding loops in S100B undergo significant backbone chemical shiftchanges upon binding calcium which are not observed in the related proteincalbindin D9k. Together these observations support previoussite-directed mutagenesis, absorption spectroscopy, and cysteine chemicalreactivity experiments, suggesting that the C-terminus in Ca-S100B isimportant for interactions with other proteins.  相似文献   

14.
A peptide, which was released accompanying with the activation of bovine plasma fibrin stabilizing factor (FSF) by thrombin, was isolated and characterized. The peptide consisted of Asp4, Thr3, Ser4, Glu4, Pro5, Gly4, Ala4, Val2, Ile1, Leu2, Phe1, and Arg3. The content of proline was highest in all of these amino acids. The carboxyl-terminal residue of the peptide was identified as arginine. However, no N-terminal amino acid reactive with phenylisothiocyanate and dansyl chloride could be determined. Edman degradation on the inactive FSF showed glutamic acid or glutamine as one N-terminal residue. After the activation of FSF by thrombin, glycine was identified as a second N-terminal residue, in addition to glutamic acid (glutamine).These results indicate that the transformation of FSF to the active enzyme by thrombin involves proteolysis of an arginyl-glycyl bond located in the N-terminal region of one of the subunits of the proenzyme.  相似文献   

15.
CaBP4 modulates Ca2+-dependent activity of L-type voltage-gated Ca2+ channels (Cav1.4) in retinal photoreceptor cells. Mg2+ binds to the first and third EF-hands (EF1 and EF3), and Ca2+ binds to EF1, EF3, and EF4 of CaBP4. Here we present NMR structures of CaBP4 in both Mg2+-bound and Ca2+-bound states and model the CaBP4 structural interaction with Cav1.4. CaBP4 contains an unstructured N-terminal region (residues 1–99) and four EF-hands in two separate lobes. The N-lobe consists of EF1 and EF2 in a closed conformation with either Mg2+ or Ca2+ bound at EF1. The C-lobe binds Ca2+ at EF3 and EF4 and exhibits a Ca2+-induced closed-to-open transition like that of calmodulin. Exposed residues in Ca2+-bound CaBP4 (Phe137, Glu168, Leu207, Phe214, Met251, Phe264, and Leu268) make contacts with the IQ motif in Cav1.4, and the Cav1.4 mutant Y1595E strongly impairs binding to CaBP4. We conclude that CaBP4 forms a collapsed structure around the IQ motif in Cav1.4 that we suggest may promote channel activation by disrupting an interaction between IQ and the inhibitor of Ca2+-dependent inactivation domain.  相似文献   

16.
Pathogenesis of primary localized cutaneous amyloidosis (PLCA) is unclear, but pathogenic relationship to keratinocyte apoptosis has been implicated. We have previously identified galectin-7, actin, and cytokeratins as the major constituents of PLCA. Determination of the amyloidogenetic potential of these proteins by thioflavin T (ThT) method demonstrated that galectin-7 molecule incubated at pH 2.0 was capable of binding to the dye, but failed to form amyloid fibrils. When a series of galectin-7 fragments containing β-strand peptides were prepared to compare their amyloidogenesis, Ser31-Gln67 and Arg120-Phe136 were aggregated to form amyloid fibrils at pH 2.0. The rates of aggregation of Ser31-Gln67 and Arg120-Phe136 were dose-dependent with maximal ThT levels after 3 and 48 h, respectively. Their synthetic analogs, Phe33-Lys65 and Leu121-Arg134, which are both putative tryptic peptides, showed comparable amyloidogenesis. The addition of sonicated fibrous form of Ser31-Gln67 or Phe33-Lys65 to monomeric Ser31-Gln67 or Phe33-Lys65 solution, respectively, resulted in an increased rate of aggregation and extension of amyloid fibrils. Amyloidogenic potentials of Ser31-Gln67 and Phe33-Lys65 were inhibited by actin and cytokeratin fragments, whereas those of Arg120-Phe136 and Leu121-Arg134 were enhanced in the presence of Gly84-Arg113, a putative tryptic peptide of galectin-7. Degraded fragments of the galectin-7 molecule produced by limited trypsin digestion, formed amyloid fibrils after incubation at pH 2.0. These results suggest that the tryptic peptides of galectin-7 released at neutral pH, may lead to amyloid fibril formation of PLCA in the intracellular acidified conditions during keratinocyte apoptosis via regulation by the galectin-7 peptide as well as actin and cytokeratins.  相似文献   

17.
Studies conducted some 50 years ago showed that serial intracerebral passage of dengue viruses in mice selected for neurovirulent mutants that also exhibited significant attenuation for humans. We investigated the genetic basis of mouse neurovirulence of dengue virus because it might be directly or indirectly associated with attenuation for humans. Analysis of the sequence in the C-PreM-E-NS1 region of the parental dengue type 2 virus (DEN2) New Guinea C (NGC) strain and its mouse-adapted, neurovirulent mutant revealed that 10 nucleotide changes occurred during serial passage in mice. Seven of these changes resulted in amino acid substitutions, i.e., Leu55-Phe and Arg57-Lys in PreM, Glu71-Asp, Glu126-Lys, Phe402-Ile, and Thr454-Ile in E, and Arg105-Gln in NS1. The sequence of C was fully conserved between the parental and mutant DEN2. We constructed intertypic chimeric dengue viruses that contained the PreM-E genes or only the NS1 gene of neurovirulent DEN2 NGC substituting for the corresponding genes of DEN4. The DEN2 (PreM-E)/DEN4 chimera was neurovirulent for mice, whereas DEN2 (NS1)/DEN4 was not. The mutations present in the neurovirulent DEN2 PreM-E genes were then substituted singly or in combination into the sequence of the nonneurovirulent, parental DEN2. Intracerebral titration of the various mutant chimeras so produced identified two amino acid changes, namely, Glu71-Asp and Glu126-Lys, in DEN2 E as being responsible for mouse neurovirulence. The conservative amino acid change of Glu71-Asp probably had a minor effect, if any. The Glu126-Lys substitution in DEN2 E, representing a change from a negatively charged amino acid to a positively charged amino acid, most likely plays an important role in conferring mouse neurovirulence.  相似文献   

18.
Some physicochemical properties of neutral proteinases I and II, zinc-containing metalloenzymes, from Aspergillus sojae were investigated.

Neutral proteinase I: The enzyme protein had a sedimentation coefficient of 3.90S, an intrinsic viscosity of 0.0315 dl/g, and a partial specific volume, calculated from the amino acid and carbonhydrate composition, of 0.715 cm3/g. The molecular weight was 42,200 from the Yphantis’ procedure, and was 42,500 from the calculation according to the Scheraga-Mandel-kern’s formula. The integral numbers of amino acid residues per molecule calculated on the basis of 42,200 as molecular weight were as follows; Lys16, His6, Arg13, Trp8, Asp56, Thr25, Ser23, Glu31, Pro18, Gly40, Ala33, l/2Cys4, Val11, Met6, Ile15, Leu25, Tyr20, Р?е10, (amide-ammonia)29, in addition to mannose6, galactose1, hexosamine3.

Neutral proteinase II: The enzyme protein had a sedimentation coefficient of 2.32S, an intrinsic viscosity of 0.0270 dl/g, and a calculated partial specific volume of 0.714 cm3/g. The molecular weight was 16,800 from the Yphantis’ procedure, and was 18,000 from the sedimentation and intrinsic viscosity. The following amino acid compositions was calculated on the basis of 16,800 as molecular weight; Lys8, His3, Arg3, Asp19, Thr17, Ser11, GIu23, Pro5, Gly9, Ala24, l/2Cys4, Val5, Ile3, Leu13, Tyr10, Phe3, (amide-ammonia)15. In the enzyme preparation, neither methionine nor tryptophan was detected and carbohydrate was also absent.

In both neutral proteinases I and II, no free SH group was detected by the PCMB-titration in the presence of 8 M urea.  相似文献   

19.
The 27-residue membrane-spanning domain (MSD) of the HIV-1 glycoprotein gp41 bears conserved sequence elements crucial to the biological function of the virus, in particular a conserved GXXXG motif and a midspan arginine. However, structure-based explanations for the roles of these and other MSD features remain unclear. Using molecular dynamics and metadynamics calculations of an all-atom, explicit solvent, and membrane-anchored model, we study the conformational variability of the HIV-1 gp41 MSD. We find that the MSD peptide assumes a stable tilted α-helical conformation in the membrane. However, when the side chain of the midspan Arg 694 “snorkels” to the outer leaflet of the viral membrane, the MSD assumes a metastable conformation where the highly-conserved N-terminal core (between Lys681 and Arg694 and containing the GXXXG motif) unfolds. In contrast, when the Arg694 side chain snorkels to the inner leaflet, the MSD peptide assumes a metastable conformation consistent with experimental observations where the peptide kinks at Phe697 to facilitate Arg694 snorkeling. Both of these models suggest specific ways that gp41 may destabilize viral membrane, priming the virus for fusion with a target cell.  相似文献   

20.
Osteopontin (OPN) is a highly modified integrin-binding protein present in most tissues and body fluids where it has been implicated in numerous biological processes. A significant regulation of OPN function is mediated through phosphorylation and proteolytic processing. Proteolytic cleavage by thrombin and matrix metalloproteinases close to the integrin-binding Arg-Gly-Asp sequence modulates the function of OPN and its integrin binding properties. In this study, seven N-terminal OPN fragments originating from proteolytic cleavage have been characterized from human milk. Identification of the cleavage sites revealed that all fragments contained the Arg–Gly–Asp145 sequence and were generated by cleavage of the Leu151–Arg152, Arg152–Ser153, Ser153–Lys154, Lys154–Ser155, Ser155–Lys156, Lys156–Lys157, or Phe158–Arg159 peptide bonds. Six cleavages cannot be ascribed to thrombin or matrix metalloproteinase activity, whereas the cleavage at Arg152–Ser153 matches thrombin specificity for OPN. The principal protease in milk, plasmin, hydrolyzed the same peptide bond as thrombin, but its main cleavage site was identified to be Lys154–Ser155. Another endogenous milk protease, cathepsin D, cleaved the Leu151–Arg152 bond. OPN fragments corresponding to plasmin activity were also identified in urine showing that plasmin cleavage of OPN is not restricted to milk. Plasmin, but not cathepsin D, cleavage of OPN increased cell adhesion mediated by the αVβ3- or α5β1-integrins. Similar cellular adhesion was mediated by plasmin and thrombin-cleaved OPN showing that plasmin can be a potent regulator of OPN activity. These data show that OPN is highly susceptible to cleavage near its integrin-binding motifs, and the protein is a novel substrate for plasmin and cathepsin D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号