首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this issue, Wang et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.201911114) describe a phenomenon in which neuromuscular junction synapse elimination triggers myelination of terminal motor axon branches. They propose a mechanism initiated by synaptic pruning that depends on synaptic activity, cytoskeletal maturation, and the associated anterograde transport of trophic factors including Neuregulin 1-III.

Neuromuscular junctions (NMJs) are a favorite model system to study the development, maintenance, and function of neuronal synapses because of their accessibility, size, and simplicity. Although many synaptic mechanisms discovered at the peripheral NMJ have provided important insights into synaptic mechanisms in the central nervous system (CNS), the phenomena of synapse elimination and refinement remain poorly understood in both. In the peripheral nervous system (PNS), synapse elimination is an essential developmental step that removes redundant presynaptic inputs to the muscle fiber. In addition, peripheral motor axon terminals must become myelinated to facilitate rapid and synchronized acetylcholine release to the muscle fiber. However, whether these two essential events during PNS development are coordinately regulated remains unknown.The immature rodent NMJ is first innervated by many axons which are then removed until the synapse reaches a dually innervated state (1). These two axons then further compete for synaptic territory, leaving one “winner” that eventually occupies the motor endplate by the end of the second postnatal week. To determine the relationship between synapse elimination and myelination, Wang et al. (2) used the formation of paranodal junctions between axons and Schwann cells as a surrogate for myelination and then determined whether axons that occupied NMJs in a singly or dually innervated state were more or less likely to be myelinated. They found that when the NMJ is dually innervated, myelination of the terminal axon branch is inhibited; neither synaptic occupancy of the competing axons nor axon diameter influenced myelination. However, once synapse elimination at the NMJ is complete, i.e., a single axon terminal innervates the motor endplate, the winner branch becomes myelinated. Thus, synapse elimination precedes myelination of the terminal axon branch, and competition between dually innervated NMJs restricts myelination.What mechanisms regulate the coordinated maturation of the motor neuron, Schwann cell, and muscle circuit? Since previous studies showed that synapse elimination at the NMJ depends on muscle activity (3), Wang et al. (2) inhibited synapse elimination by blocking acetylcholine receptors with α-bungarotoxin (α-Btx). This inhibition of motor endplate and muscle activity increased not only the number of dually innervated NMJs, but also significantly decreased myelination of terminal axon branches of singly innervated NMJs. Thus, neuromuscular activity must induce retrograde signaling mechanisms that promote not only synapse elimination but also myelination.During synapse elimination, the microtubule cytoskeleton of retracting axons is degraded and reduced (4). In contrast, axons that singly innervate NMJs have a higher microtubule content. α-Btx–dependent block of neuromuscular transmission reduced microtubule content in axons that singly innervate NMJs. Thus, α-Btx treatment simultaneously reduces both microtubule content and myelination.To determine if a mature microtubule-based cytoskeleton is causally related to myelination, Wang et al. used spastin knockout (spastinKO) mice to artificially stabilize microtubules. Although spastinKO mice had delayed axon branch removal, stabilization of the microtubule cytoskeleton increased myelination of axons that dually innervated NMJs. Thus, the brake that synaptic competition normally places on terminal branch myelination can be overcome by increasing the mass and maturity of the microtubule cytoskeleton.How does axonal microtubule stability influence terminal axon myelination? Microtubules participate in the anterograde and retrograde transport of diverse cargoes including mitochondria and growth factors. To determine if anterograde axonal transport promotes myelination of axons that singly innervate NMJs, Wang et al. used a dominant-negative mutant of kinesin-1 heavy chain which binds cargo, but lacks the protein’s motor domain, thereby impairing transport. After confirming transport inhibition by tracking impaired movement of the β1 subunit of voltage gated sodium channels, they found that myelination and node of Ranvier formation were significantly delayed in singly innervated NMJs expressing the dominant negative kinesin. Taken together, these results suggest that synapse elimination promotes maturation of the microtubule cytoskeleton which allows more efficient delivery of promyelinating signals to the terminal branch.What could these promyelinating signals be? One obvious candidate is Neuregulin 1 type III (Nrg1-III), which has long been known to promote myelination of peripheral nervous system axons (5). Consistent with this idea, conditional deletion of Nrg1-III dramatically reduced the number of myelinated axon terminals that singly innervate NMJs but did not alter the number of dually innervated NMJs. In contrast, overexpression of Nrg1-III in a transgenic mouse removed the competition-dependent block on myelination resulting in more myelination of both dually and singly innervating axon terminals. In these same transgenic Nrg1-III mice, among those NMJs that were singly innervated, their corresponding axons had higher levels of Nrg1-III. Remarkably, even in these same transgenic overexpressers, inhibition of muscle activity reduced the amount of Nrg1-III found on singly innervated axons, consistent with the observed impairment of the microtubule-based cytoskeleton after α-Btx treatment. ERK1/2 and AKT are downstream effectors of Nrg1-III in Schwann cells and implicated in the myelination pathway. Immunostaining of Schwann cells ensheathing singly innervating axon terminals revealed higher levels of pERK and pAKT.Taken together, the experiments performed by Wang et al. (2) suggest that as multiple axons actively compete for synaptic dominance at the NMJ, the myelination of their terminal branches is delayed. Upon synapse elimination, neuromuscular activity promotes a retrograde signal that increases maturity of the microtubule cytoskeleton. Maturation of the microtubule-based cytoskeleton facilitates the transport of promyelinating signals like Nrg1-III which, when presented to Schwann cells, results in myelination of the “winner” terminal axon branch of a singly innervated NMJ (Fig. 1).Open in a separate windowFigure 1.Synapse elimination promotes myelination of terminal motor axon branches. During early development, NMJs are innervated by multiple axons that compete for endplate territory. During this time, the terminal branches of the axons are not myelinated, and the tubulin cytoskeletal network remains immature. Synaptic activity induces elimination of redundant connections, which leads the winner axon’s microtubule-based cytoskeleton to mature and increase, while the microtubule cytoskeleton is degraded in the retracting axon. The maturity of the cytoskeleton allows for kinesin dependent anterograde transport of Neuregulin 1-III, which then initiates a promyelination signaling cascade via AKT and ERK activation.To the best of our knowledge, this is the first demonstration of plasticity of myelination downstream of activity and synapse refinement in the peripheral motor nervous system. Many studies in the CNS demonstrate that de novo myelination occurs in response to neuronal activity and learning paradigms (6, 7), although the mechanisms responsible remain unknown. Thus, synapse refinement and elimination-dependent myelination may be a paradigm to uncover mechanisms of learning- and activity-dependent myelination in the CNS. Functionally, the addition of myelin to the terminal motor axon branch promotes efficient neurotransmitter release through faster action potential propagation, improved metabolic support of the axon, and more efficient depolarization of the presynaptic terminal by clustered Na+ channels at the terminal heminode (8). Whether any or all of these benefits also exist in the CNS remains unknown.This is also the first demonstration of postsynaptic activity driving myelination of a presynaptic axon. Although it is clear that a retrograde signal from the muscle promotes the further maturation and subsequent myelination of the terminal axon, the identity of this cue is unknown. One interesting candidate for a muscle-derived competition and axonal maturation cue is the neurotrophin brain-derived neurotrophic factor (BDNF), which is released during muscle activity (9). Consistent with this idea, BDNF promotes axon maturation by stimulating both actin polymerization and microtubule assembly (10). It will be interesting to test the role of trophic factors in activity-dependent synapse elimination and subsequent myelination in both the CNS and PNS.In conclusion, Wang et al. (2) is an excellent addition to a growing body of research that demonstrates how neuronal activity promotes and modulates myelination. Furthermore, it stands as another example of how using simple model systems, such as the NMJ, may provide insights and have important implications for much more complicated biological systems.  相似文献   

2.
Sequential photo-bleaching provides a non-invasive way to label individual SCs at the NMJ. The NMJ is the largest synapse of the mammalian nervous system and has served as guiding model to study synaptic structure and function. In mouse NMJs motor axon terminals form pretzel-like contact sites with muscle fibers. The motor axon and its terminal are sheathed by SCs. Over the past decades, several transgenic mice have been generated to visualize motor neurons and SCs, for example Thy1-XFP1 and Plp-GFP mice2, respectively.Along motor axons, myelinating axonal SCs are arranged in non-overlapping internodes, separated by nodes of Ranvier, to enable saltatory action potential propagation. In contrast, terminal SCs at the synapse are specialized glial cells, which monitor and promote neurotransmission, digest debris and guide regenerating axons. NMJs are tightly covered by up to half a dozen non-myelinating terminal SCs - these, however, cannot be individually resolved by light microscopy, as they are in direct membrane contact3.Several approaches exist to individually visualize terminal SCs. None of these are flawless, though. For instance, dye filling, where single cells are impaled with a dye-filled microelectrode, requires destroying a labelled cell before filling a second one. This is not compatible with subsequent time-lapse recordings3. Multi-spectral "Brainbow" labeling of SCs has been achieved by using combinatorial expression of fluorescent proteins4. However, this technique requires combining several transgenes and is limited by the expression pattern of the promoters used. In the future, expression of "photo-switchable" proteins in SCs might be yet another alternative5. Here we present sequential photo-bleaching, where single cells are bleached, and their image obtained by subtraction. We believe that this approach - due to its ease and versatility - represents a lasting addition to the neuroscientist''s technology palette, especially as it can be used in vivo and transferred to others cell types, anatomical sites or species6.In the following protocol, we detail the application of sequential bleaching and subsequent confocal time-lapse microscopy to terminal SCs in triangularis sterni muscle explants. This thin, superficial and easily dissected nerve-muscle preparation7,8 has proven useful for studies of NMJ development, physiology and pathology9. Finally, we explain how the triangularis sterni muscle is prepared after fixation to perform correlated high-resolution confocal imaging, immunohistochemistry or ultrastructural examinations.  相似文献   

3.
Although physiological differences among neuromuscular junctions (NMJs) have long been known, NMJs have usually been considered as one type of synapse, restricting their potential value as model systems to investigate mechanisms controlling synapse assembly and plasticity. Here we discuss recent evidence that skeletal muscles in the mouse can be subdivided into two previously unrecognized subtypes, designated FaSyn and DeSyn muscles. These muscles differ in the pattern of neuromuscular synaptogenesis during embryonic development. Differences between classes are intrinsic to the muscles, and manifest in the absence of innervation or agrin. The distinct rates of synaptogenesis in the periphery may influence processes of circuit maturation through retrograde signals. While NMJs on FaSyn and DeSyn muscles exhibit a comparable anatomical organization in postnatal mice, treatments that challenge synaptic stability result in nerve sprouting, NMJ remodeling, and ectopic synaptogenesis selectively on DeSyn muscles. This anatomical plasticity of NMJs diminishes greatly between 2 and 6 months postnatally. NMJs lacking this plasticity are lost selectively and very early on in mouse models of motoneuron disease, suggesting that disease-associated motoneuron dysfunction may fail to initiate maintenance processes at “non-plastic” NMJs. Transgenic mice overexpressing growth-promoting proteins in motoneurons exhibit greatly enhanced stimulus-induced sprouting restricted to DeSyn muscles, supporting the notion that anatomical plasticity at the NMJ is primarily controlled by processes in the postsynaptic muscle. The discovery that entire muscles in the mouse differ substantially in the anatomical plasticity of their synapses establishes NMJs as a uniquely advantageous experimental system to investigate mechanisms controlling synaptic rearrangements at defined synapses in vivo.  相似文献   

4.
Coagulation Factor XIII (F. VIII), a member of the transglutaminase (TGase) superfamily, is activated by thrombin, cross-links fibrin and stabilizes clots. Another member of this family, tissue TGase (tTG), having similar enzymatic activity, is implicated in neural development and synapse stabilization. Our previous studies indicated that synapse formation and maintenance at the neuromuscular junction (NMJ) involved components of the coagulation cascade in development. Others then showed that either F. XIII or tTG were localized at NMJs in a developmentally-regulated fashion. In the current studies, we addressed the temporal course of skeletal muscle tTG gene expression and found maximal expression at birth and continuing into the immediate postnatal period. Subcellular fractionation revealed a relatively constant particulate isoform of TGase activity which predominated in early embryonic muscle development. In contrast, cytosolic TGase specific activity became the major isoform in the postnatal period. The timing of muscle TGase activity correlated well with expression of tTG mRNA and we now present novel data of Tgm 2 gene expression for tTG in skeletal muscle. Confirming and extending the previous studies, TGase becomes localized at NMJs in the early, further ramifying in the late, neonatal period. These data suggest that the early pulse of particulate activity could coincide with the period of myoblast cell death in embryonic muscle. On the other hand, the peak cytosolic TGase activity occurs in the neonatal period, correlating temporally with muscle prothrombin expression during activity-dependent synapse elimination and possibly the source of the enzyme localized to the NMJ extracellular matrix resulting in synaptic stabilization.  相似文献   

5.
The effect of action potentials on elimination of mouse neuromuscular junctions (NMJ) was studied in a three compartment cell culture preparation. Axons from superior cervical ganglion or ventral spinal cord neurons in two lateral compartments formed multiple neuromuscular junctions with muscle cells in a central compartment. The loss of synapses over a 2–7-day period was determined by serial electrophysiological recording and a functional assay. Electrical stimulation of axons from one side compartment during this period, using 30-Hz bursts of 2-s duration, repeated at 10-s intervals, caused a significant increase in synapse elimination compared to unstimulated cultures (p< 0.001). The extent of homosynaptic and heterosynaptic elimination was comparable, i. e., of the 226 functional synapses of each type studied, 111 (49%) of the synapses that had been stimulated were eliminated, and 87 (39%) of unstimulated synapses on the same muscle cells were eliminated. Also, simultaneous bilateral stimulation caused significantly greater elimination of synapses than unilateral stimulation (p< 0.005). These observations are contrary to the Hebbian hypothesis of synaptic plasticity. A spatial effect of stimulus-induced synapse elimination was also evident following simultaneous bilateral stimulation. Prior to stimulation, most muscle cells were innervated by axons from both side compartments, but after bilateral stimulation, muscle cells were predominantly unilaterally innervated by axons from the closer compartment. These experiments suggest that synapse elimination at the NMJ is an activity-dependent process, but it does not follow Hebbian or anti-Hebbian rules of synaptic plasticity. Rather, elimination is a consequence of postsynaptic activation and a function of location of the muscle cell relative to the neuron. An interaction between spatial and activity-dependent effects on synapse elimination could help produce optimal refinement of synaptic connections during postnatal development. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Lømo  Terje 《Brain Cell Biology》2003,32(5-8):835-848
This review focuses on mechanisms that determine the position, number, size, and distribution of neuromuscular junctions (NMJs) on skeletal muscle fibers. Most of the data reviewed derive from studies of ectopic NMJ formation on soleus (SOL) muscle fibers in adult rats, which recapitulates essential aspects of NMJ formation in normal development. Transplanted axons induce acetylcholine receptor (AChR) aggregates, which are multiple and irregularly distributed initially but subsequently undergo massive reorganization such that one or a few winners survive and reach a certain size while the rest are eliminated (the losers). Results obtained by blocking nerve activity early and stimulating the SOL electrically show that evoked muscle impulse activity is responsible for the growth of winners to a given size and the creation of refractory zones, about 0.75 long, on each side of the winners, in which the elimination of losers occurs. Consequently, when two or more aggregates or NMJs survive on one fiber, they are, on average, at least 1.5 mm apart. Locally applied neural agrin induces comparable aggregation of AChRs and other postsynaptic proteins on denervated SOL fibers and such aggregates undergo similar activity-dependent selection for survival or elimination in refractory zones. In a dose-dependent way, neural agrin alone also induces expression of ε-AChR subunits and stabilizes AChRs to a half-life of 10 days, as found at normal NMJs. It is argued that signs of prepatterning of innervation sites by intrinsic muscle mechanisms may refer to epiphenomena that play no important role in NMJ formation. The conclusion is that neural agrin initiates and then maintains NMJs where motor axons happen to contact receptive muscle fibers and that evoked muscle impulse activity then ensures that the NMJs reach their appropriate size, efficiency and spatial distribution along each fiber.  相似文献   

7.
In developing muscle, synapse elimination reduces the number of motor axons that innervate each postsynaptic cell. This loss of connections is thought to be a consequence of axon branch trimming. However, branch retraction has not been observed directly, and many questions remain, such as: do all motor axons retract branches, are eliminated branches withdrawn synchronously, and are withdrawing branches localized to particular regions? To address these questions, we used transgenic mice that express fluorescent proteins in small subsets of motor axons, providing a unique opportunity to reconstruct complete axonal arbors and identify all the postsynaptic targets. We found that, during early postnatal development, each motor axon loses terminal branches, but retracting branches withdraw asynchronously and without obvious spatial bias, suggesting that local interactions at each neuromuscular junction regulate synapse elimination.  相似文献   

8.
A family of three position-specific (PS) integrins are expressed at the Drosophila neuromuscular junction (NMJ): a beta subunit ((betaPS), expressed in both presynaptic and postsynaptic membranes, and two alpha subunits (alphaPS1, alphaPS2), expressed at least in the postsynaptic membrane. PS integrins appear at postembryonic NMJs coincident with the onset of rapid morphological growth and terminal type-specific differentiation, and are restricted to type I synaptic boutons, which mediate fast, excitatory glutamatergic transmission. We show that two distinctive hypomorphic mutant alleles of the beta subunit gene myospheroid (mys(b9) and mys(ts1)), differentially affect betaPS protein expression at the synapse to produce distinctive alterations in NMJ branching, bouton formation, synaptic architecture and the specificity of synapse formation on target cells. The mys(b9) mutation alters betaPS localization to cause a striking reduction in NMJ branching, bouton size/number and the formation of aberrant 'mini-boutons', which may represent a developmentally arrested state. The mys(ts1) mutation strongly reduces betaPS expression to cause the opposite phenotype of excessive synaptic sprouting and morphological growth. NMJ function in these mutant conditions is altered in line with the severity of the morphological aberrations. Consistent with these mutant phenotypes, transgenic overexpression of the betaPS protein with a heat-shock construct or tissue-specific GAL4 drivers causes a reduction in synaptic branching and bouton number. We conclude that betaPS integrin at the postembryonic NMJ is a critical determinant of morphological growth and synaptic specificity. These data provide the first genetic evidence for a functional role of integrins at the postembryonic synapse.  相似文献   

9.
Low-density lipoprotein receptor-related protein 4 (Lrp4) is essential for pre- and post-synaptic specialization at the neuromuscular junction (NMJ), an indispensable synapse between a motor nerve and skeletal muscle. Muscle-specific receptor tyrosine kinase MuSK must form a complex with Lrp4 to organize postsynaptic specialization at NMJs. Here, we show that the chaperon Mesdc2 binds to the intracellular form of Lrp4 and promotes its glycosylation and cell-surface expression. Furthermore, knockdown of Mesdc2 suppresses cell-surface expression of Lrp4, activation of MuSK, and postsynaptic specialization in muscle cells. These results suggest that Mesdc2 plays an essential role in NMJ formation by promoting Lrp4 maturation.  相似文献   

10.
The P/Q-type voltage-dependent calcium channels (VDCCs) are essential for synaptic transmission at adult mammalian neuromuscular junctions (NMJs); however, the subsynaptic location of VDCCs relative to active zones in rodent NMJs, and the functional modification of VDCCs by the interaction with active zone protein Bassoon remain unknown. Here, we show that P/Q-type VDCCs distribute in a punctate pattern within the NMJ presynaptic terminals and align in three dimensions with Bassoon. This distribution pattern of P/Q-type VDCCs and Bassoon in NMJs is consistent with our previous study demonstrating the binding of VDCCs and Bassoon. In addition, we now show that the interaction between P/Q-type VDCCs and Bassoon significantly suppressed the inactivation property of P/Q-type VDCCs, suggesting that the Ca(2+) influx may be augmented by Bassoon for efficient synaptic transmission at NMJs. However, presynaptic Bassoon level was significantly attenuated in aged rat NMJs, which suggests an attenuation of VDCC function due to a lack of this interaction between VDCC and Bassoon. Importantly, the decreased Bassoon level in aged NMJs was ameliorated by isometric strength training of muscles for two months. The training increased Bassoon immunoreactivity in NMJs without affecting synapse size. These results demonstrated that the P/Q-type VDCCs preferentially accumulate at NMJ active zones and play essential role in synaptic transmission in conjunction with the active zone protein Bassoon. This molecular mechanism becomes impaired by aging, which suggests altered synaptic function in aged NMJs. However, Bassoon level in aged NMJs can be improved by muscle exercise.  相似文献   

11.
12.
Synapse elimination was examined in the developing frog cutaneous pectoris muscle using histological and electrophysiological techniques. Morphological synapse elimination occurred in two phases. The first phase, which began at the time of metamorphosis and continued until the second to third postmetamorphic week, was characterized by a rapid decline in the number of endplates receiving greater than or equal to 3 synaptic inputs. However, 50% of the muscle fibers still remained dually innervated. This dual innervation decreased with a much slower time course; approximately 20% of the muscle fibers were dually innervated in 1- to 2-year-old frogs. During the first phase of synapse elimination no difference was noted between the distribution of acetylcholine receptors or acetylcholinesterase activity associated with the terminal arborizations formed by separate axons at one synaptic site. However, terminal arborizations formed by small diameter axons and consisting of varicosities separated by thin interconnectives became apparent during this period. Such varicose arborizations responded to nerve stimulation and released acetylcholine in proportion to their terminal length as did the nonvaricose arborizations. In addition, the number of morphological and physiological inputs at one endplate site was well correlated throughout the first phase of synapse elimination.  相似文献   

13.
The effects of functional disuse and overload on the morphology of neuromuscular junctions (NMJ) in masseter muscles of 8 month old C57BL/6J mice were studied. In order to stimulate disuse caused by tooth loss, teeth were extracted from one upper quadrant of 10 mice. The side where teeth were removed was functionally disused (D), since occlusion could not be achieved. Similarly, the intact contralateral (CL) side experienced overload. Morphological measurements were taken of zinc iodide osmium (ZIO)-stained NMJs from control animals, and treated animals at 7 days (7D) and 4 months (4M) post-extraction. Data was analyzed with repeated measures multivariate analysis of covariance (MANCOVA). Test animals did not lose weight, which indicated that sufficient food was consumed after tooth extraction. Fiber diameters from the 7D group were smaller than the controls, while those from the 4M animals were larger. In both the 7D and 4M animals, the CL fibers were larger than the D fibers. There was a trend towards larger NMJs in the 4M animals than in control animals of the same age. NMJs from the CL side of the 4M animals had 14% larger nerve terminal areas (p<0. 1), while on the 4M D side they were 6% larger (p<0.10). NMJs from the 4M D group had 5% longer nerve terminals (p<0.07), while the 4M CL NMJs were 6% longer (p<0.05). NMJs from the D side of the 7D animals were 5% smaller in area while on the CL side they were 11% smaller (p<0.1). Nerve terminals in 7D animals were 6% longer (p<0.05) than in controls. Changes in NMJ morphology following tooth extraction were probably due to differences in degeneration -regeneration of nerve terminals. Acute disuse and overload probably produced greater nerve terminal retraction, whereas chronic changes consisted of a recovery characterized by NMJ plasticity similar to that observed in exercise, disuse and aging studies.  相似文献   

14.
Neuromuscular decline occurs with aging. The neuromuscular junction (NMJ), the interface between motor nerve and muscle, also undergoes age‐related changes. Aging effects on the NMJ components—motor nerve terminal, acetylcholine receptors (AChRs), and nonmyelinating terminal Schwann cells (tSCs)—have not been comprehensively evaluated. Sirtuins delay mammalian aging and increase longevity. Increased hypothalamic Sirt1 expression results in more youthful physiology, but the relationship between NMJ morphology and hypothalamic Sirt1 was previously unknown. In wild‐type mice, all NMJ components showed age‐associated morphological changes with ~80% of NMJs displaying abnormalities by 17 months of age. Aged mice with brain‐specific Sirt1 overexpression (BRASTO) had more youthful NMJ morphologic features compared to controls with increased tSC numbers, increased NMJ innervation, and increased numbers of normal AChRs. Sympathetic NMJ innervation was increased in BRASTO mice. In contrast, hypothalamic‐specific Sirt1 knockdown led to tSC abnormalities, decreased tSC numbers, and more denervated endplates compared to controls. Our data suggest that hypothalamic Sirt1 functions to protect NMJs in skeletal muscle from age‐related changes via sympathetic innervation.  相似文献   

15.

Background

The unconventional motor protein, myosin Va, is crucial for the development of the mouse neuromuscular junction (NMJ) in the early postnatal phase. Furthermore, the cooperative action of protein kinase A (PKA) and myosin Va is essential to maintain the adult NMJ. We here assessed the involvement of myosin Va and PKA in NMJ recovery during muscle regeneration.

Methodology/Principal Findings

To address a putative role of myosin Va and PKA in the process of muscle regeneration, we used two experimental models the dystrophic mdx mouse and Notexin-induced muscle degeneration/regeneration. We found that in both systems myosin Va and PKA type I accumulate beneath the NMJs in a fiber maturation-dependent manner. Morphologically intact NMJs were found to express stable nicotinic acetylcholine receptors and to accumulate myosin Va and PKA type I in the subsynaptic region. Subsynaptic cAMP signaling was strongly altered in dystrophic muscle, particularly in fibers with severely subverted NMJ morphology.

Conclusions/Significance

Our data show a correlation between the subsynaptic accumulation of myosin Va and PKA type I on the one hand and NMJ regeneration status and morphology, AChR stability and specificity of subsynaptic cAMP handling on the other hand. This suggests an important role of myosin Va and PKA type I for the maturation of NMJs in regenerating muscle.  相似文献   

16.
The neuromuscular junction (NMJ) displays considerable morphological plasticity as a result of differences in activity level, as well as aging. This is true of both presynaptic and postsynaptic components of the NMJ. Yet, despite these variations in NMJ structure, proper presynaptic to postsynaptic coupling must be maintained in order for effective cell‐to‐cell communication to occur. Here, we examined the NMJs of muscles with different activity profiles (soleus and EDL), on both slow‐ and fast‐twitch fibers in those muscles, and among young adult and aged animals. We used immunofluorescent techniques to stain nerve terminal branching, presynaptic vesicles, postsynaptic receptors, as well as fast/slow myosin heavy chain. Confocal microscopy was used to capture images of NMJs for later quantitative analysis. Data were subjected to a two‐way ANOVA (main effects for myofiber type and age), and in the event of a significant (p < 0.05) F ratio, a post hoc analysis was performed to identify pairwise differences. Results showed that the NMJs of different myofiber types routinely displayed differences in presynaptic and postsynaptic morphology (although the effect on NMJ size was reversed in the soleus and the EDL), but presynaptic to postsynaptic relationships were tightly maintained. Moreover, the ratio of presynaptic vesicles relative to nerve terminal branch length also was similar despite differences in muscles, their fiber type, and age. Thus, in the face of considerable overall structural differences of the NMJ, presynaptic to postsynaptic coupling remains constant, as does the relationship between presynaptic vesicles and the nerve terminal branches that support them. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 744–753, 2013  相似文献   

17.
MuSK (muscle-specific kinase) is a receptor tyrosine kinase that plays a central signaling role in the formation of neuromuscular junctions (NMJs). MuSK is activated in a complex spatio-temporal manner to cluster acetylcholine receptors on the postsynaptic (muscle) side of the synapse and to induce differentiation of the nerve terminal on the presynaptic side. The ligand for MuSK is LRP4 (low-density lipoprotein receptor-related protein-4), a transmembrane protein in muscle, whose binding affinity for MuSK is potentiated by agrin, a neuronally derived heparan-sulfate proteoglycan. In addition, Dok7, a cytoplasmic adaptor protein, is also required for MuSK activation in vivo. This review focuses on the physical interplay between these proteins and MuSK for activation and downstream signaling, which culminates in NMJ formation. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.  相似文献   

18.
To examine whether the 200-kDa neurofilament protein (200K NFP) is involved in mechanically stabilizing axons, we studied the developmental appearance of immunoreactivity to nonphosphorylated and phosphorylated 200K NFP at the neuromuscular junction. Polyinnervated rat muscle fibers become singly innervated during the first 3 weeks of postnatal life through the process of synapse elimination. If production or post-translational modification of the 200K NFP is actively involved in imparting mechanical stability on neuromuscular synapses, then the selective presence of this protein in only one of several axons at each developing end plate region might make that one axon selectively resistant to elimination. The remaining axons would then be eliminated. Immunoreactivity to the 200K NFP is present on Gestational Day 14 and can be seen in more than one preterminal axon in the end plate region of a muscle fiber during the period of synapse elimination. These results suggest that the 200K NFP is present and phosphorylated early in development and, although the 200K NFP may increase the mechanical stability of axons, this increased stability does not determine the final outcome of synapse elimination.  相似文献   

19.
In adult skeletal muscles, exogenous ciliary neurotrophic factor (CNTF) induces axons and their nerve terminals to sprout. CNTF also regulates the amount of multiple innervation in developing skeletal muscles during synapse elimination, maintaining multiple innervation of muscle fibers. While CNTF may maintain multiple innervation by regulating developmental synapse elimination, it is also possible that CNTF induces the formation of new multiple innervation through a sprouting response. In this study I examined morphologically the effects of CNTF during synapse elimination in the extensor digitorum longus (EDL) muscle. Rat pups received injections of CNTF in one leg and vehicle in the other either early [postnatal day 7 (P7)-P13] or late (P14–P20) in development. The early treatment period corresponds to that time when the pattern of innervation in the EDL is converted from predominantly multiple to single innervation. The late treatment period is at the end of synapse elimination for the EDL but corresponds to the major period of synapse elimination in the levator ani (LA), allowing a comparison of effects on these two muscles from the same animals. On the day after the final injection, EDL muscles were dissected and stained with tetranitroblue tetrazolium and the resulting pattern of innervation was assessed. The present findings indicate that only the early CNTF treatment regulates the level of multiple innervation in the EDL. Moreover, the effect of early CNTF treatment was local, affecting multiple innervation only in the EDL from the CNTF-treated leg. CNTF injected during the late treatment period had no apparent effects on the EDL but had a potent effect on the pattern of innervation in the LA, significantly increasing the level of multiple innervation in this muscle. Thus, CNTF affected multiple innervation in these two muscles only if provided during the period when single innervation normally develops. There was no evidence to indicate that CNTF induced axons or their terminals to sprout during either treatment period. In conclusion, CNTF increases the level of multiple innervation, probably by regulating synapse elimination, and skeletal muscles themselves may be an important target site for CNTF action. Presumably, the sprouting response to CNTF found in adult muscle develops sometime after P21. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
The coordinated movement of many organisms relies on efficient nerve–muscle communication at the neuromuscular junction (NMJ), a peripheral synapse composed of a presynaptic motor axon terminal, a postsynaptic muscle specialization, and non-myelinating terminal Schwann cells. NMJ dysfunctions are caused by traumatic spinal cord or peripheral nerve injuries as well as by severe motor pathologies. Compared to the central nervous system, the peripheral nervous system displays remarkable regenerating abilities; however, this capacity is limited by the denervation time frame and depends on the establishment of permissive regenerative niches. At the injury site, detailed information is available regarding the cells, molecules, and mechanisms involved in nerve regeneration and repair. However, a regenerative niche at the final functional step of peripheral motor innervation, i.e. at the mature neuromuscular synapse, has not been deciphered. In this review, we integrate classic and recent evidence describing the cells and molecules that could orchestrate a dynamic ecosystem to accomplish successful NMJ regeneration. We propose that such a regenerative niche must ensure at least two fundamental steps for successful NMJ regeneration: the proper arrival of incoming regenerating axons to denervated postsynaptic muscle domains, and the resilience of those postsynaptic domains, in morphological and functional terms. We here describe and combine the main cellular and molecular responses involved in each of these steps as potential targets to help successful NMJ regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号