首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The postcranial sample ofA. afarensis can be divided into two size groups. Among the best preserved elements which are represented by both morphs are the distal femur, proximal ulna, and capitate. The difference between the large and small fossil femora is similar to the difference between average male and femaleG. gorilla andP. pygmaeus. The distal femora ofH. sapiens are less sexually dimorphic while those ofP. paniscus, P. troglodytes, andH. lar are not significantly dimorphic at all. Large and small capitates and proximal ulnae ofA. afarensis differ slightly more than the highly dimorphic species of extant Hominoidea. In my sample of Amerindians, the capitate and proximal ulna are also strongly dimorphic. The two species ofPan have insignificant sexual dimorphism in these traits. There results imply that strong sexual dimorphism in body size is the primitive condition for the large bodied hominoids.  相似文献   

2.
Among extant hominoids degrees of sexual dimorphism and combined-sex coefficients of variation of canine teeth dimensions are highly correlated. Based on this relationship and coefficients of variation of four species of the genus Australopithecus, we predict degrees of canine dimorphism for these extinct hominids. The estimates show that A. afarensis is as dimorphic as the pygmy chimpanzee, A. boisei slightly less dimorphic than the pygmy chimpanzee, A. robustus slightly more dimorphic than the lar gibbon, while A. africanus overiaps with the lar gibbon as well as a modern human sample. These estimates represent degrees of canine dimorphism substantially lower than results based upon prior sexing of individual specimens. The relationship between canine dimorphism and body weight dimorphism is also analyzed. All four species of Australopithecus are considerably less dimorphic in canine size for their body weight dimorphism than expected. This dissociation of canine size dimorphism and body weight dimorphism is shared with modern humans, and thus represents a unique hominid trait. We interpret the moderate to strong body weight dimorphism in australopithecines as the result of intra- and intersexual selection typical of a polygynous mating structure, while the rather mild canine dimorphism is interpreted in terms of the “developmental crowding” model for reduction in canine size.  相似文献   

3.
Canine tooth size reduction and the associated reduction in canine dimorphism is a basal hominin character that also provides important evidence for models of behavioral evolution. Two specimens of Australopithecus anamensis (KNM-KP 29287 and KNM-KP 29283) that do not preserve the canine crown, but do preserve the root or alveolus, appear to suggest that canine size variation and canine dimorphism in this species may have been greater than in other hominins. We evaluate canine root and crown dimensions in a series of extant hominoids, and estimate canine crown height in Australopithecus afarensis and A. anamensis. Our results demonstrate that it is possible to generate estimates of canine crown height from basal canine crown and root dimensions with a moderate degree of accuracy. Estimates of maxillary canine crown size for A. anamensis are slightly larger than those of A. afarensis, and are approximately the same size as canines of modern female chimpanzees. Estimated mandibular canine crown height is very similar in the two species. Variation within the A. anamensis sample of estimated canine crown heights is similar to that of modern humans, suggesting a low degree of sexual dimorphism. Inclusion of estimates for KNM-KP 29287 and KNM-KP 29283 does not substantially increase either the estimate of overall canine size or variation for A. anamensis.  相似文献   

4.
The hominin fossils of Dmanisi, Republic of Georgia, present an ideal means of assessing levels of skeletal size and shape variation in a fossil hypodigm belonging to the genus Homo because they have been recovered from a spatially and temporally restricted context. We compare variation in mandible size and shape at Dmanisi to that of extant hominoids and extinct hominins. We use height and breadth measurements of the mandibular corpus at the first molar and the symphysis to assess size, and analyze shape based on size-adjusted (using a geometric mean) versions of these four variables. We compare size and shape variation at Dmanisi relative to all possible pairs of individuals within each comparative taxon using an exact resampling procedure of the ratio of D2600 to D211 and the average Euclidean distance (AED) between D2600 and D211, respectively. Comparisons to extant hominoids were conducted at both the specific and subspecific taxonomic levels and to extinct hominins by adopting both a more, and less speciose, hominin taxonomy. Results indicate that the pattern of variation for the Dmanisi hominins does not resemble that of any living species: they exhibit significantly more size variation when compared to modern humans, and they have significantly more corpus shape variation and size variation in corpus heights and overall mandible size than any extant ape species. When compared to fossil hominins they are also more dimorphic in size (although this result is influenced by the taxonomic hypothesis applied to the hominin fossil record). These results highlight the need to re-examine expectations of levels of sexual dimorphism in members of the genus Homo and to account for marked size and shape variation between D2600 and D211 under the prevailing view of a single hominin species at Dmanisi.  相似文献   

5.
Previous analyses of hand morphology in Australopithecus afarensis have concluded that this taxon had modern human‐like manual proportions, with relatively long thumbs and short fingers. These conclusions are based on the A.L.333 composite fossil assemblage from Hadar, Ethiopia, and are premised on the ability to assign phalanges to a single individual, and to the correct side and digit. Neither assignment is secure, however, given the taphonomy and sample composition at A.L.333. We use a resampling approach that includes the entire assemblage of complete hand elements at Hadar, and takes into account uncertainties in identifying phalanges by individual, side and digit number. This approach provides the most conservative estimates of manual proportions in Au. afarensis. We resampled hand long bone lengths in Au. afarensis and extant hominoids, and obtained confidence limits for distributions of manual proportions in the latter. Results confirm that intrinsic manual proportions in Au. afarensis are dissimilar to Pan and Pongo. However, manual proportions in Au. afarensis often fall at the upper end of the distribution in Gorilla, and very lower end in Homo, corresponding to disproportionately short thumbs and long medial digits in Homo. This suggests that manual proportions in Au. afarensis, particularly metacarpal proportions, were not as derived towards Homo as previously described, but rather are intermediate between gorillas and humans. Functionally, these results suggest Au. afarensis could not produce precision grips with the same efficiency as modern humans, which may in part account for the absence of lithic technology in this fossil taxon. Am J Phys Anthropol 152:393–406, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
The mandibular third premolar (P3) of Australopithecus afarensis is notable for extensive morphological variability (e.g., metaconid presence/absence, closure of the anterior fovea, root number) and temporal trends in crown length and shape change over its 700 Ka time range. Hominins preceding A. afarensis have unicuspid, mesiodistally elongated P3s with smaller talonids, and subsequent australopiths have bicuspid, more symmetrically-shaped P3 crowns with expanded talonids. For these features, A. afarensis is intermediate and, thus, evinces the incipient stages of P3 molarization. Here, we examine A. afarensis P3 Phase II microwear and compare it with that of Australopithecus africanus and Cercocebus atys, an extant hard-object specialist, to assess whether the role of the P3 in food processing changed over time in A. afarensis. Premolar Phase II microwear textures are also compared with those of the molars to look for evidence of functional differentiation along the tooth row (i.e., that foods with different mechanical properties were processed by separate regions of the postcanine battery). Microwear textures were also examined along the mesial protoconid crest, the site of occlusion with the maxillary canine, of the A. afarensis P3 and compared with the same region in Pan troglodytes to determine whether microwear can be useful for identifying changes in the occlusal relationship between the P3 and maxillary canine in early Australopithecus. Finally, temporal trends in P3 Phase II and mesial microwear are considered. Results indicate that 1) both the P3 and molar Phase II facets of A. afarensis have less complex microwear textures than in A. africanus or C. atys; 2) A. afarensis P3 and molar Phase II textures differ, though not to the extent seen in taxa that eat hard and tough items; 3) microwear along the A. afarensis mesial protoconid crest is clearly distinct from that of the P. troglodytes, indicating that there is no honing equivalent in A. afarensis; and 4) there is little evidence of change over time in A. afarensis P3 microwear on either the mesial or Phase II facet. In sum, these results provide no evidence that A. afarensis routinely loaded either its premolars or molars to process hard objects or that A. afarensis P3 function changed over time.  相似文献   

7.
Renewed fieldwork from 2003 through 2008 at the Australopithecus anamensis type-site of Kanapoi, Kenya, yielded nine new fossils attributable to this species. These fossils all date to between 4.195 and 4.108 million years ago. Most were recovered from the lower fluvial sequence at the site, with one from the lacustrine sequence deltaic sands that overlie the lower fluvial deposits but are still below the Kanapoi Tuff. The new specimens include a partial edentulous mandible, partial maxillary dentition, two partial mandibular dentitions, and five isolated teeth. The new Kanapoi hominin fossils increase the sample known from the earliest Australopithecus, and provide new insights into morphology within this taxon. They support the distinctiveness of the early A. anamensis fossils relative to earlier hominins and to the later Australopithecus afarensis. The new fossils do not appreciably extend the range of observed variation in A. anamensis from Kanapoi, with the exception of some slightly larger molars, and a canine tooth root that is the largest in the hominin fossil record. All of the Kanapoi hominins share a distinctive morphology of the canine–premolar complex, typical early hominin low canine crowns but with mesiodistally longer honing teeth than seen in A. afarensis, and large, probably dimorphic, canine tooth roots. The new Kanapoi specimens support the observation that canine crown height, morphology, root size and dimorphism were not altered from a primitive ape-like condition as part of a single event in human evolution, and that there may have been an adaptive difference in canine function between A. anamensis and A. afarensis.  相似文献   

8.
Renewed fieldwork at Hadar, Ethiopia, from 1990 to 2007, by a team based at the Institute of Human Origins, Arizona State University, resulted in the recovery of 49 new postcranial fossils attributed to Australopithecus afarensis. These fossils include elements from both the upper and lower limbs as well as the axial skeleton, and increase the sample size of previously known elements for A. afarensis. The expanded Hadar sample provides evidence of multiple new individuals that are intermediate in size between the smallest and largest individuals previously documented, and so support the hypothesis that a single dimorphic species is represented. Consideration of the functional anatomy of the new fossils supports the hypothesis that no functional or behavioral differences need to be invoked to explain the morphological variation between large and small A. afarensis individuals. Several specimens provide important new data about this species, including new vertebrae supporting the hypothesis that A. afarensis may have had a more human-like thoracic form than previously appreciated, with an invaginated thoracic vertebral column. A distal pollical phalanx confirms the presence of a human-like flexor pollicis longus muscle in A. afarensis. The new fossils include the first complete fourth metatarsal known for A. afarensis. This specimen exhibits the dorsoplantarly expanded base, axial torsion and domed head typical of humans, revealing the presence of human-like permanent longitudinal and transverse arches and extension of the metatarsophalangeal joints as in human-like heel-off during gait. The new Hadar postcranial fossils provide a more complete picture of postcranial functional anatomy, and individual and temporal variation within this sample. They provide the basis for further in-depth analyses of the behavioral and evolutionary significance of A. afarensis anatomy, and greater insight into the biology and evolution of these early hominins.  相似文献   

9.
An important debate has been taking place during the last few years concerningAustralopithecus afarensis: can the Hadar sample be ascribed to one highly dimorphic species or should it be separated into two distinct taxa? A similar problem occurs with the Middle Miocene cercopithecoids from East Africa: does this material belong to one dimorphic group or can we recognize two different taxa? The study of the long bones of the upper limb of many extant primates suggests that the extremities in different taxa are very distinctive but that within taxa the joints are weakly or are not morphologically dimorphic although they can be markedly size dimorphic. The main shape and size differences which can be ascribed to sexual dimorphism occur in the shafts of the long bones. Examinations have been made inHomo, Pan, Gorilla, Pongo, Hylobates, Alouatta, Cebus, Saimiri, Ateles, Nasalis, Presbytis and some Cercopithecinae. It appears, then, that the extremities of the bones are shape monomorphic. If the same relationships occurred in the fossil record, then the differences observed in the hominid fossil elbow joints at Hadar suggest that at least two different taxa are represented in the collection. In addition, among the cercopithecoid material assigned toVictoriapithecus from Maboko and Nyakach in East Africa, we recognize two distinct elbow morphologies indicating that two different taxa occur in the localities.  相似文献   

10.
Cranial base morphology differs among hominoids in ways that are usually attributed to some combination of an enlarged brain, retracted face and upright locomotion in humans. The human foramen magnum is anteriorly inclined and, with the occipital condyles, is forwardly located on a broad, short and flexed basicranium; the petrous elements are coronally rotated; the glenoid region is topographically complex; the nuchal lines are low; and the nuchal plane is horizontal. Australopithecus afarensis (3.7–3.0 Ma) is the earliest known species of the australopith grade in which the adult cranial base can be assessed comprehensively. This region of the adult skull was known from fragments in the 1970s, but renewed fieldwork beginning in the 1990s at the Hadar site, Ethiopia (3.4–3.0 Ma), recovered two nearly complete crania and major portions of a third, each associated with a mandible. These new specimens confirm that in small-brained, bipedal Australopithecus the foramen magnum and occipital condyles were anteriorly sited, as in humans, but without the foramen''s forward inclination. In the large male A.L. 444-2 this is associated with a short basal axis, a bilateral expansion of the base, and an inferiorly rotated, flexed occipital squama—all derived characters shared by later australopiths and humans. However, in A.L. 822-1 (a female) a more primitive morphology is present: although the foramen and condyles reside anteriorly on a short base, the nuchal lines are very high, the nuchal plane is very steep, and the base is as relatively narrow centrally. A.L. 822-1 illuminates fragmentary specimens in the 1970s Hadar collection that hint at aspects of this primitive suite, suggesting that it is a common pattern in the A. afarensis hypodigm. We explore the implications of these specimens for sexual dimorphism and evolutionary scenarios of functional integration in the hominin cranial base.  相似文献   

11.
Previous studies have recognized two patterns of distal femoral morphology among the specimens from Hadar (Ethiopia) assigned to Australopithecus afarensis. Size and shape differences between the well-preserved large (AL 333-4) and small (AL 129-1a) distal femora have been used to invoke both taxonomic and functional differences within the A. afarensis hypodigm. Nevertheless, prior studies have not analyzed these specimens in a multivariate context, nor have they compared the pattern of shape differences between the fossils to patterns of sexual dimorphism among extant taxa (i.e., the manner in which males and females differ). This study reexamines morphometric differences between the above specimens in light of observed levels of variation and patterns of sexual dimorphism among extant hominoids. Eight extant reference populations were sampled to provide a standard by which to consider size and shape differences between the fossils. Samples include three populations of modern humans, two subspecies of Pan troglodytes, three subspecies of Gorilla gorilla, Pan paniscus, and Pongo pygmaeus. Using size ratios and scale-free "shape" data (both derived from 2-D coordinate landmarks), size and shape differences between the fossils were evaluated against variation within each reference population using an exact randomization procedure. Growth Difference Matrix Analysis (GDMA) was used to test whether the pattern of morphological differences between the fossils differs significantly from patterns of sexual dimorphism observed among the ten extant groups. Overall morphometric affinities of the fossils to extant taxa were explored using canonical variates analysis (CVA).Results of the randomization tests indicate that the size difference between the Hadar femora can be easily accommodated within most hominoid taxa at the subspecific level (though not within single-sex samples). In addition, the magnitude of shape differences between the fossils can be commonly sampled even within most single-sex samples of a single hominoid subspecies. The pattern of morphological differences between the fossils does not differ statistically from any average pattern of femoral shape dimorphism observed among living hominoids. Moreover, contrary to prior claims, and despite a size disparity between the fossils greater than is typically observed within some chimpanzee and human populations, the two Hadar fossils appear to be much more similar to one another in overall shape than either specimen is to any extant hominoid group.  相似文献   

12.
One of the first and most important tasks of the paleontologist is classifying specimens into species. Species recognition commonly involves sorting specimens on the basis of qualitative and quantitative similarities and differences. Often, however, variation in simple metric characters like tooth size or jaw length plays an important role in debates about whether a sample comprises a single species or more than one morphologically similar species. For example, Simpson, Roe, and Lewontin 1 suggested that a fossil sample showing a coefficient of variation greater than 10.0 was likely to comprise more than one species. Well‐known controversies over species recognition in which metric sample variation has been important have simmered for years, focusing on hominids, hominoids, and other extinct primates. Some of these have been resolved; others have not. For example, Pilbeam and Zwell 2 convincingly demonstrated multiple species among South African hominids by showing that metric tooth size variation was too great to be reasonably interpreted as sexual dimorphism. But metric variation continues to play a role in debates about whether Australopithecus afarensis 3 , 4 and Homo habilis 5 - 9 each comprise a single species or two or more separate species. Similarly, there has been steady debate about the number of species present in African Proconsul. Some favor an interpretation of a single extremely dimorphic species, 10 - 12 while others favor an interpretation of two or more species. 13  相似文献   

13.
Morotopithecus bishopi and Afropithecus turkanensis are two large-bodied hominoid primates from early Miocene deposits of eastern Africa. Researchers have used both cranial and postcranial characters to distinguish these two species. Unfortunately, of the fossil material attributed to each, only the face, palate, and upper dentition are preserved well enough in both species for direct comparisons. There are currently no known directly comparable postcranial elements. In this study, we reevaluated dental characters argued to distinguish the type specimens of Morotopithecus from Afropithecus: relative size of the upper premolars and M3. Exact randomization methods were used to address two questions. First, is it possible to find the degree of dental-size difference observed between Morotopithecus (UMP 62-11) and Afropithecus (KNM-WK 16999) within extant African hominoids? Second, what is the probability of observing the levels of difference found between the fossils among pairs of extant individuals? Metric differences in relative premolar and M3 size were calculated between all possible pairs within the extant sample and the observed difference of the fossil pair was then compared to the resulting distribution of extant pairs. The observed size differences for all comparisons in the fossil teeth were well within the variation observed in the extant African hominoid samples (p>0.05). In light of these results and other currently available cranial evidence, we suggest that the type specimens of Morotopithecus and Afropithecus are not different enough to support taxonomic distinction.  相似文献   

14.
Forelimb proportions have been used to infer locomotor adaptation in Australopithecus afarensis. However, little is known about proportions among individual forelimb segments in extant or fossil hominoids. The partial A. afarensis skeleton A.L. 438-1 and the more complete skeleton A.L. 288-1 provide the opportunity to assess relative length of the arm, forearm, wrist, and palm. We compare scaling relationships between pairs of forelimb bones of extant hominoids and A. afarensis, and length of individual forelimb elements to a body size surrogate. Hylobatids, and to a lesser extent orangutans, have the longest forelimb bones relative to size, although the carpus varies little among taxa, perhaps due to functional constraints of the wrist. Pan species are unique in having long metacarpals relative to ulnar length, demonstrating that they probably differ from the common chimp-human ancestor, and also that developmental mechanisms can be altered to results in differential growth of individual forelimb segments. A. afarensis has no forelimb bones that are significantly longer than those of humans for its size. It falls within the range of variation seen in modern humans for all comparisons relative to size, but appears to differ from the typical human brachial index due to a slightly shorter humerus and/or slightly longer ulna. It has short metacarpals like humans only among hominoids. Thus, while Pan may have elongated its metacarpus relative to ulnar length, A. afarensis may have reduced the length of its metacarpals and possibly its humerus relative to body size from the primitive condition.  相似文献   

15.
The early Miocene catarrhine fossil record of East Africa represents a diverse and extensive adaptive radiation. It is well accepted that these taxa encompass a dietary range similar to extant hominoids, in addition to some potentially novel dietary behaviour. There have been numerous attempts to infer diet for these taxa from patterns of dental allometry and incisor and molar microwear, however, morphometric analyses until now have been restricted to the post-canine dentition. It has already been demonstrated that given the key functional role of the incisors in pre-processing food items prior to mastication, there is a positive correlation between diet and incisal curvature (Deane, A.S., Kremer, E.P., Begun, D.R., 2005. A new approach to quantifying anatomical curvatures using High Resolution Polynomial Curve Fitting (HR-PCF). Am. J. Phys. Anthropol. 128(3), 630-638.; Deane, A.S., 2007. Inferring dietary behaviour for Miocene hominoids: A high-resolution morphometric approach to incisal crown curvature. Ph.D. Dissertation. The University of Toronto.). This study seeks to re-examine existing dietary hypotheses for large-bodied early Miocene fossil catarrhines by contrasting the incisal curvature for these taxa with comparative models derived from prior studies of the correlation between extant hominoid incisor curvature and feeding behaviour. Incisor curvature was quantified for 78 fossil incisors representing seven genera, and the results confirm that early Miocene fossil catarrhines represent a dietary continuum ranging from more folivorous (i.e., Rangwapithecus) to more frugivorous (i.e., Proconsul) diets, as well as novel dietary behaviours that are potentially similar to extant ceboids (i.e., Afropithecus). Additionally, early Miocene fossil catarrhine incisors are less curved than extant hominoid incisors, indicating a general pattern of increasing mesio-distal and labial curvature through time. This pattern of morphological shifting is consistent with the Red Queen Effect (Van Valen, L., 1973. A new evolutionary law. Evol. Theory 1, 1-30), which predicts that taxa that are removed from one another by geological time, although potentially having similar diets, may exhibit differing degrees of a similar dietary adaptation (i.e., differing degrees of incisal curvature).  相似文献   

16.
The Pliocene hominins Australopithecus anamensis and Australopithecus afarensis likely represent ancestor-descendent taxa—possibly an anagenetic lineage—and capture significant change in the morphology of the canine and mandibular third premolar (P3) crowns, dental elements that form the canine honing complex in nonhuman catarrhines. This study focuses on the P3 crown, highlighting plesiomorphic features in A. anamensis. The A. afarensis P3 crown, in contrast, is variable in its expression of apomorphic features that are characteristic of geologically younger hominins. Temporal variation characterizes each taxon as well. The A. anamensis P3 from Allia Bay, Kenya expresses apomorphic character states, shared with A. afarensis, which are not seen in the older sample of A. anamensis P3s from Kanapoi, Kenya, while spatiotemporal differences in shape exist within the A. afarensis hypodigm. The accumulation of derived features in A. afarensis results in an increased level of P3 molarisation. P3 molarisation did not evolve concurrent with postcanine megadontia and neither did the appearance of derived aspects of P3 occlusal form coincide with the loss of canine honing in hominins, which is apparent prior to the origin of the genus Australopithecus. A. afarensis P3 variation reveals the independence of shape, size, and occlusal form. The evolution of the P3 crown in early Australopithecus bridges the wide morphological gap that exists between geologically younger hominins on the one hand and extant apes and Ardipithecus on the other.  相似文献   

17.
Relative cheek-tooth size in Australopithecus   总被引:1,自引:0,他引:1  
Until the discovery of Australopithecus afarensis, cheek-tooth megadontia was unequivocally one of the defining characteristics of the australopithecine grade in human evolution along with bipedalism and small brains. This species, however, has an average postcanine area of 757 mm2, which is more like Homo habilis (759 mm2) than A. africanus (856 mm2). But what is its relative cheek-tooth size in comparison to body size? One approach to this question is to compare postcanine tooth area to estimated body weight. By this method all Australopithecus species are megadont: they have cheek teeth 1.7 to 2.3 times larger than modern hominoids of similar body size. The series from A. afarensis to A. africanus to A. robustus to A. boisei shows strong positive allometry indicating increasing megadontia through time. The series from H. habilis to H. erectus to H. sapiens shows strong negative allometry which implies a sharp reduction in the relative size of the posterior teeth. Postcanine megadontia in Australopithecus species can also be demonstrated by comparing tooth size and body size in associated skeletons: A. afarensis (represented by A.L. 288–1) has a cheek-tooth size 2.8 times larger than expected from modern hominoids; A. africanus (Sts 7) and A. robustus (TM 1517) are over twice the expected size. The evolutionary transition from the megadont condition of Australopithecus to the trend of decreasing megadontia seen in the Homo lineage may have occurred between 3.0 and 2.5 m.y. from A. afarensis to H. habilis but other evidence indicates that it is more likely to have occurred between 2.5 to 2.0 m.y. from an A. africanus-like form to H. habilis.  相似文献   

18.
Recent discussions of the pedal morphology of Australopithecus afarensis have led to conflicting interpretations of australopithecine locomotor behavior. We report the results of a study using computer aided design (CAD) software that provides a quantitative assessment of the functional morphology of australopithecine metatarsophalangeal joints. The sample includes A. afarensis, Homo sapiens, Pan troglodytes, Gorilla gorilla, and Pongo pygmaeus. Angular measurements of the articular surfaces relative to the long axes of the metatarsals and phalanges were taken to determine whether the articular surfaces are plantarly or dorsally oriented. Humans have the most dorsally oriented articular surfaces of the proximal pedal phalanges. This trait appears to be functionally associated with dorsiflexion during bipedal stride. Pongo has the most plantarly oriented articular surfaces of the proximal pedal phalanges, probably reflecting an emphasis on plantarflexion in arboreal positional behaviors, while the African hominoids are intermediate between Pongo and Homo for this characteristic. A. afarensis falls midway between the African apes and humans. Results from an analysis of metatarsal heads are inconclusive with regard to the functional morphology of A. afarensis. Overall, the results are consistent with other evidence indicating that A. afarensis was a capable climber. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Many researchers have suggested that Australopithecus anamensis and Australopithecus afarensis were among the earliest hominins to have diets that included hard, brittle items. Here we examine dental microwear textures of these hominins for evidence of this. The molars of three Au. anamensis and 19 Au. afarensis specimens examined preserve unobscured antemortem microwear. Microwear textures of these individuals closely resemble those of Paranthropus boisei, having lower complexity values than Australopithecus africanus and especially Paranthropus robustus. The microwear texture complexity values for Au. anamensis and Au. afarensis are similar to those of the grass-eating Theropithecus gelada and folivorous Alouatta palliata and Trachypithecus cristatus. This implies that these Au. anamensis and Au. afarensis individuals did not have diets dominated by hard, brittle foods shortly before their deaths. On the other hand, microwear texture anisotropy values for these taxa are lower on average than those of Theropithecus, Alouatta or Trachypithecus. This suggests that the fossil taxa did not have diets dominated by tough foods either, or if they did that directions of tooth–tooth movement were less constrained than in higher cusped and sharper crested extant primate grass eaters and folivores.  相似文献   

20.
Australopithecus anamensis is the earliest known species of the Australopithecus–human clade and is the likely ancestor of Australopithecus afarensis. Investigating possible selective pressures underlying these changes is key to understanding the patterns of selection shaping the origins and early evolution of the Australopithecus–human clade. During the course of the Au. anamensis–afarensis lineage, significant changes appear to occur particularly in the anterior dentition, but also in jaw structure and molar form, suggesting selection for altered diet and/or food processing. Specifically, canine tooth crown height does not change, but maxillary canines and P3s become shorter mesiodistally, canine tooth crowns become more symmetrical in profile and P3s less unicuspid. Canine roots diminish in size and dimorphism, especially relative to the size of the postcanine teeth. Molar crowns become higher. Tooth rows become more divergent and symphyseal form changes. Dietary change involving anterior dental use is also suggested by less intense anterior tooth wear in Au. afarensis. These dental changes signal selection for altered dietary behaviour and explain some differences in craniofacial form between these taxa. These data identify Au. anamensis not just as a more primitive version of Au. afarensis, but as a dynamic member of an evolving lineage leading to Au. afarensis, and raise intriguing questions about what other evolutionary changes occurred during the early evolution of the Australopithecus–human clade, and what characterized the origins of the group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号