首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Ethylene is known to influence plant defense responses including cell death in response to both biotic and abiotic stress factors. However, whether ethylene acts alone or in conjunction with other signaling pathways is not clearly understood. Ethylene overproducer mutants, eto1 and eto3, produced high levels of ethylene and developed necrotic lesions in response to an acute O3 exposure that does not induce lesions in O3-tolerant wild-type Col-0 plants. Treatment of plants with ethylene inhibitors completely blocked O3-induced ethylene production and partially attenuated O3-induced cell death. Analyses of the responses of molecular markers of specific signaling pathways indicated a relationship between salicylic acid (SA)- and ethylene-signaling pathways and O3 sensitivity. Both eto1 and eto3 plants constitutively accumulated threefold higher levels of total SA and exhibited a rapid increase in free SA and ethylene levels prior to lesion formation in response to O3 exposure. SA pre-treatments increased O3 sensitivity of Col-0, suggesting that constitutive high SA levels prime leaf tissue to exhibit increased magnitude of O3-induced cell death. NahG and npr1 plants compromised in SA signaling failed to produce ethylene in response to O3 and other stress factors suggesting that SA is required for stress-induced ethylene production. Furthermore, NahG expression in the dominant eto3 mutant attenuated ethylene-dependent PR4 expression and rescued the O3-induced HR (hypersensitive response) cell death phenotype exhibited by eto3 plants. Our results suggest that both SA and ethylene act in concert to influence cell death in O3-sensitive genotypes, and that O3-induced ethylene production is dependent on SA.  相似文献   

3.
Tropospheric ozone levels are continuously rising due to human activities in the 21st century. Although the phytotoxic impact of ozone on plants has been well documented, the effect of ozone on plant emissions has received little attention. We have conducted a field-based investigation utilizing two clones of hybrid aspen ( Populus tremula L. × P . tremuloides Michx.) in a free-air ozone concentration enrichment (FACE) facility. The effects of chronic exposure to moderately increased concentrations of ozone on insect-induced terpene emissions by these trees were investigated. We used two herbivore species, Phyllobius piri , and Epirrita autumnata , both of which can reach outbreak levels on deciduous trees in Northern Europe. Our results indicated only very small changes in emissions due to increased ozone levels, but showed induction of some terpenes, particularly the monoterpene trans- β -ocimene and the homoterpene ( E )-4,8-dimethyl-1,3,7-nonatriene, in response to insect feeding. Here, we consider the positive aspects of conducting this type of study in the field and consider the possible influences of other field-based environmental factors.  相似文献   

4.
5.
Kopper BJ  Lindroth RL 《Oecologia》2003,134(1):95-103
The purpose of this study was to assess the independent and interactive effects of CO(2), O(3), and plant genotype on the foliar quality of a deciduous tree and the performance of a herbivorous insect. Two trembling aspen (Populus tremuloides Michaux) genotypes differing in response to CO(2) and O(3) were grown at the Aspen FACE (Free Air CO(2) Enrichment) site located in northern Wisconsin, USA. Trees were exposed to one of four atmospheric treatments: ambient air (control), elevated carbon dioxide (+CO(2); 560 microl/l), elevated ozone (+O(3); ambient x1.5), and elevated CO(2)+O(3). We measured the effects of CO(2) and O(3) on aspen phytochemistry and on performance of forest tent caterpillar (Malacosoma disstria Hübner) larvae. CO(2) and O(3) treatments influenced foliar quality for both genotypes, with the most notable effects being that elevated CO(2) reduced nitrogen and increased tremulacin levels, whereas elevated O(3) increased early season nitrogen and reduced tremulacin levels, relative to controls. With respect to insects, the +CO(2) treatment had little or no effect on larval performance. Larval performance improved in the +O(3) treatment, but this response was negated by the addition of elevated CO(2) (i.e., +CO(2)+O(3) treatment). We conclude that tent caterpillars will have the greatest impact on aspen under current CO(2) and high O(3) levels, due to increases in insect performance and decreases in tree growth, whereas tent caterpillars will have the least impact on aspen under high CO(2) and low O(3) levels, due to moderate changes in insect performance and increases in tree growth.  相似文献   

6.
7.
环境臭氧(O3)已成为影响植物生长发育的重要生态因子。为探究地面O3污染对蔬菜形态学特征及营养指标的影响,选罗马直立生菜(Lactuca sativa var. roman)为实验材料,采用开顶式气室开展熏蒸实验。实验设置4个O3熏蒸浓度(NF:未过滤的环境空气;NF40:环境空气+40 nmol/mol;NF80:环境空气+80 nmol/mol;NF120:环境空气+120 nmol/mol),每个处理设置3个重复组,分析评价O3污染对植物造成的可见伤害、生产量、叶片解剖学特征以及食用部位营养指标的影响。研究表明:(1)O3熏蒸对生菜叶片产生不可逆的可见伤害,叶片出现浅黄色斑点和棕色斑点,且随着熏蒸时间延长,叶片出现黄化,大面积的坏死斑块,衰老加速。(2)高浓度O3胁迫显著降低了生长阶段的株高(P<0.05)。与NF组相比,NF40、NF80、NF120组分别使生物量下降5.90%、14.99%、39.21%。(3)随着O3熏蒸浓度升高,气孔密度增加,气孔开度减小。叶片厚度、海绵组织厚度、栅栏组织厚度与O3暴露剂量AOT40呈显著负相关关系(P<0.05)。(4)高浓度O3暴露使蔬菜中Ca、Na、Fe、Zn、Mg等元素含量显著降低,脂肪和蛋白质含量增加,生菜的营养指标发生改变。研究表明,罗马直立生菜对环境O3污染敏感,其生长发育及营养指标在O3胁迫条件下发生明显变化。目前,关于O3污染对蔬菜形态学特征影响的研究较少,研究系统探讨蔬菜的叶片厚度、栅栏组织、海绵组织、气孔密度及开度等形态学指标在臭氧污染条件下的变化。蔬菜的品质是关系到"三农"问题的重要方面,研究探讨了臭氧污染对蔬菜的产量及营养指标的影响,可为O3污染条件下蔬菜的生产提供科学参考。  相似文献   

8.
9.
Polyamine metabolism was examined in tobacco (Nicotiana tabacum L.) exposed to a single ozone treatment (5 or 7 hours) and then postcultivated in pollutant-free air. The levels of free and conjugated putrescine were rapidly increased in the ozone-tolerant cultivar Bel B and remained high for 3 days. This accumulation was preceded by a transient rise of l-arginine decar-boxylase (ADC, EC 4.1.1.19) activity. The ozone-sensitive cultivar Bel W3 showed a rapid production of ethylene and high levels of 1-aminocyclopropane-1-carboxylic acid after 1 to 2 hours of exposure. Induction of putrescine levels and ADC activity was weak in this cultivar and was observed when necrotic lesions developed. Leaf injury occurred in both lines when the molar ratio of putrescine to 1-aminocyclopropane-1-carboxylic acid or ethylene fell short of a certain threshold value. Monocaffeoyl-putrescine, an effective scavenger for oxyradicals, was detected in the apo-plastic fluid of the leaves of cv Bel B and increased upon exposure to ozone. This extracellular localization could allow scavenging of ozone-derived oxyradicals at the first site of their generation. Induction of either polyamine or ethylene pathways may represent a control mechanism for inhibition or promotion of lesion formation and thereby contribute to the disposition of plants for ozone tolerance.  相似文献   

10.
In tobacco, two mitogen-activated protein (MAP) kinases, designated salicylic acid (SA)-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK) are activated in a disease resistance-specific manner following pathogen infection or elicitor treatment. To investigate whether nitric oxide (NO), SA, ethylene, or jasmonic acid (JA) are involved in this phenomenon, the ability of these defense signals to activate these kinases was assessed. Both NO and SA activated SIPK; however, they did not activate WIPK. Additional analyses with transgenic NahG tobacco revealed that SA is required for the NO-mediated induction of SIPK. Neither JA nor ethylene activated SIPK or WIPK. Thus, SIPK may function downstream of SA in the NO signaling pathway for defense responses, while the signals responsible for resistance-associated WIPK activation have yet to be determined.  相似文献   

11.
Two aspen (Populus tremuloides Michx.) clones, differing in O3 tolerance, were grown in a free-air CO2 enrichment (FACE) facility near Rhinelander, Wisconsin, and exposed to ambient air, elevated CO2, elevated O3 and elevated CO2+O3. Leaf instantaneous light-saturated photosynthesis (PS) and leaf areas (A) were measured for all leaves of the current terminal, upper (current year) and the current-year increment of lower (1-year-old) lateral branches. An average, representative branch was chosen from each branch class. In addition, the average photosynthetic rate was estimated for the short-shoot leaves. A summing approach was used to estimate potential whole-plant C gain. The results of this method indicated that treatment differences were more pronounced at the plant- than at the leaf- or branch-level, because minor effects within modules accrued in scaling to plant level. The whole-plant response in C gain was determined by the counteracting changes in PS and A. For example, in the O3-sensitive clone (259), inhibition of PS in elevated O3 (at both ambient and elevated CO2) was partially ameliorated by an increase in total A. For the O3-tolerant clone (216), on the other hand, stimulation of photosynthetic rates in elevated CO2 was nullified by decreased total A.  相似文献   

12.
Two modern cultivars [Yangmai16 (Y16) and Yangfumai 2 (Y2)] of winter wheat (Triticum aestivum L.) with almost identical phenology were investigated to determine the impacts of elevated ozone concentration (E‐O3) on physiological characters related to photosynthesis under fully open‐air field conditions in China. The plants were exposed from the initiation of tillering to final harvest, with E‐O3 of 127% of the ambient ozone concentration (A‐O3). Measurements of pigments, gas exchange rates, chlorophyll a fluorescence and lipid oxidation were made in three replicated plots throughout flag leaf development. In cultivar Y2, E‐O3 significantly accelerated leaf senescence, as indicated by increased lipid oxidation as well as faster declines in pigment amounts and photosynthetic rates. The lower photosynthetic rates were mainly due to nonstomatal factors, e.g. lower maximum carboxylation capacity, electron transport rates and light energy distribution. In cultivar Y16, by contrast, the effects of E‐O3 were observed only at the very last stage of flag leaf ageing. Since the two cultivars had almost identical phenology and very similar leaf stomatal conductance before senescence, the greater impacts of E‐O3 on cultivars Y2 than Y16 cannot be explained by differential ozone uptake. Our findings will be useful for scientists to select O3‐tolerant wheat cultivars against the rising surface [O3] in East and South Asia.  相似文献   

13.
14.
Obesity is an important risk factor for asthma. We recently reported increased ozone (O(3))-induced hyperresponsiveness to methacholine in obese mice (Shore SA, Rivera-Sanchez YM, Schwartzman IN, and Johnston RA. J Appl Physiol 95: 938-945, 2003). The purpose of this study was to determine whether this increased hyperresponsiveness is the result of changes in the airways, the lung tissue, or both. To that end, we examined the effect of O(3) (2 parts/million for 3 h) on methacholine-induced changes in lung mechanics with the use of a forced oscillation technique in wild-type C57BL/6J mice and mice obese because of a genetic deficiency in leptin (ob/ob mice). In ob/ob mice, O(3) increased baseline values for all parameters measured in the study: airway resistance (Raw), lung tissue resistance (Rtis), lung tissue damping (G) and elastance (H), and lung hysteresivity (eta). In contrast, no effect of O(3) on baseline mechanics was observed in wild-type mice. O(3) exposure significantly increased Raw, Rtis, lung resistance (Rl), G, H, and eta responses to methacholine in both groups of mice. For G, Rtis, and Rl there was a significant effect of obesity on the response to O(3). Our results demonstrate that both airways and lung tissue contribute to the hyperresponsiveness that occurs after O(3) exposure in wild-type mice. Our results also demonstrate that changes in the lung tissue rather than the airways account for the amplification of O(3)-induced hyperresponsiveness observed in obese mice.  相似文献   

15.
《Journal of bryology》2013,35(4):611-616
Abstract

Fontinalis squamosa and Fontinalis antipyretica explants were cultured with 0, 10?4, and 10?3 M ACC, an ethylene precursor. Synlptoms of ethylene effects included truncated apices, loss of growth capability in the apical bud, colour changes, leaf undulations, inhibition of rhizoid production, and crumpled branches and leaves. The two species responded differently to treatment, and a mode of control of morphological expression relating to currently used taxonomic characters is implicated.  相似文献   

16.
Content and activity of Rubisco and concentrations of leaf nitrogen, chlorophyll and total non-structural carbohydrates (TNC) were determined at regular intervals during the 1993 and 1994 growing seasons to understand the effects and interactions of [O3] and elevated [CO2] on biochemical limitations to photosynthesis during ontogeny. Soybean (Glycine max var. Essex) was grown in open-top field chambers in either charcoal-filtered air (CF, 20 nmol mol-1) or non-filtered air supplemented with 1.5 x ambient [O3] (c. 80 nmol mol-1) at ambient (AA, 360 mol mol-1) or elevated [CO2] (700 mol mol-1). Sampling period significantly affected all the variables examined. Changes included a decrease in the activity and content of Rubisco during seed maturation, and increased nitrogen (N), leaf mass per unit area (LMA) and total non-structural carbohydrates (TNC, including starch and sucrose) through the reproductive phases. Ontogenetic changes were most rapid in O2-treated plants. At ambient [CO2], O3 decreased initial activity (14-64% per unit leaf area and 14-29% per unit Rubisco) and content of Rubisco (9-53%), and N content per unit leaf area. Ozone decreased LMA by 17-28% of plants in CF-AA at the end of the growing season because of a 24-41% decrease in starch and a 59-80% decrease in sucrose. In general, elevated CO2], in CF or O3-fumigated air, reduced the initial activity of Rubisco and activation state while having little effect on Rubisco content, N and the chlorophyll content, per unit leaf area. Elevated CO2 decreased Rubisco activity by 14-34% per unit leaf area and 15-25% per unit Rubisco content of plants in grown CF-AA, nd increases LMA by 27-74% of the leaf mass per unit area in CF-AA because of a 23-148% increase in starch. However, the data suggest that, at elevated [CO2], increases in starch and sucrose are not directly responsible for the deactivation of Rubisco. Also, there was little evidence of an adjustment of Rubisco activity in response to starch and sucrose metabolism. Significant interactions between elevated [CO2] and [O3] on all variables examined generally resulted in alleviation or amelioration of the O3 effects at elevated CO2. These data provide further support to the idea that elevated atmospheric CO2 will reduce or prevent damage from pollutant O3.  相似文献   

17.
18.
Ethylene concentration in the culture tubes of peach rootstock regenerants of three genotypes (Cadaman, GF-677, Myrobalan 29C) was increased by the inclusion of 20 µM salicylic acid (SA), methionine (METH) and ethephon (ETH) in the MS medium whereas it was decreased in regenerants exposed up to 20 µM AgNO3. In leaves of the regenerants the increase of ethylene concentration was accompanied with an increase of non-enzymatic antioxidant activity while remarkable genotype-depended changes in the activities of catalase, peroxidase and their isoenzymes were recorded suggesting that ethylene accumulation imposes oxidative stress responses. However, the results showed that some differences could be observed in the activity of isoenzymes in regenerants exposed to SA in respect to METH and ETH-treated ones.A. Molassiotis is grateful to the State Scholarship’s Foundation of Greece for a fellowship during this work.  相似文献   

19.
Differential expression of catalase isozymes in different genotypes of chickpea resistant genotypes- A1, JG-315, JG-11, WR-315, R1-315, Vijaya, ICCV-15017, GBS-964, GBM-10, and susceptible genotypes- JG-62, MNK, ICCV-08321, ICCV-08311, KW-104, ICCV-08123, ICC-4951, ICC-11322, ICC-08116 for wilt disease caused by Fusarium oxysporum. f. sp. ciceri (Foc) was analyzed. Salicylic acid (SA) and H2O2 concentrations were determined in control as well as in plants infected with F. ciceri and found that the high and low levels of salicylic acid and H2O2 in resistant and susceptible genotypes of chickpea respectively. Catalase isozyme activities were detected in the gel and found that no induction of new catalases was observed in all the resistant genotypes and their some of the native catalase isozymes were inhibited; whereas, induction of multiple catalase isozymes was observed in all the screened susceptible genotypes and their activities were not inhibited upon Foc or SA treatments. The above results support the possible role of these isozymes as a marker to identify which genotype of chickpea is expressing systemic acquired resistance.  相似文献   

20.
Phytohormones, such as salicylic acid (SA), ethylene (ET) and jasmonic acid (JA), play key roles in plant defence following pathogen attack. The involvement of these hormones in susceptibility following Fusarium oxysporum (Fo) infection has mostly been studied in Arabidopsis thaliana. However, Fo causes vascular wilt disease in a broad range of crops, including tomato (Solanum lycopersicum). Surprisingly little is known about the involvement of these phytohormones in the susceptibility of tomato towards Fo f. sp. lycopersici (Fol). Here, we investigate their involvement by the analysis of the expression of ET, JA and SA marker genes following Fol infection, and by bioassays of tomato mutants affected in either hormone production or perception. Fol inoculation triggered the expression of SA and ET marker genes, showing the activation of these pathways. NahG tomato, in which SA is degraded, became hypersusceptible to Fol infection and showed stronger disease symptoms than wild‐type. In contrast, ACD and Never ripe (Nr) mutants, in which ET biosynthesis and perception, respectively, are impaired, showed decreased disease symptoms and reduced fungal colonization on infection. The susceptibility of the def1 tomato mutant, and a prosystemin over‐expressing line, in which JA signalling is compromised or constitutively activated, respectively, was unaltered. Our results show that SA is a negative and ET a positive regulator of Fol susceptibility. The SA and ET signalling pathways appear to act synergistically, as an intact ET pathway is required for the induction of an SA marker gene, and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号