共查询到20条相似文献,搜索用时 9 毫秒
1.
Two papers in recent issue of Developmental Cell (Glise et al. 2005; Gorfinkiel et al. 2005) have shown that Shifted, a Drosophila ortholog of Wnt Inhibitory Factor (WIF), modulates the distribution of Hedgehog protein in the wing imaginal disc through a Wnt-independent mechanism. 相似文献
2.
Similarities between the Hedgehog and Wnt signaling pathways 总被引:8,自引:0,他引:8
Kalderon D 《Trends in cell biology》2002,12(11):523-531
3.
4.
5.
6.
7.
《Matrix biology》2020
We report here that Glypican-6 (GPC6)-null mice display at birth small intestines that are 75% shorter than those of normal littermates. Notably, we demonstrate that the role of GPC6 in intestinal elongation is mediated by both Hedgehog (Hh) and non-canonical Wnt signaling. Based on results from in vitro experiments, we had previously proposed that GPC6 stimulates Hh signaling by interacting with Hh and Patched1 (Ptc1), and facilitating/stabilizing their interaction. Here we provide strong support to this hypothesis by showing that GPC6 binds to Ptc1 in the mesenchymal layer of embryonic intestines. This study also provides experimental evidence that strongly suggests that GPC6 inhibits the activity of Wnt5a on the intestinal epithelium by binding to this growth factor, and reducing its release from the surrounding mesenchymal cells. Finally, we show that whereas the mesenchymal layer of GPC6-null intestines displays reduced cell proliferation and a thinner smooth muscle layer, epithelial cell differentiation is not altered in the mutant gut. 相似文献
8.
9.
Skvortsova I Skvortsov S Stasyk T Raju U Popper BA Schiestl B von Guggenberg E Neher A Bonn GK Huber LA Lukas P 《Proteomics》2008,8(21):4521-4533
Radiation therapy plays an important role in the management of prostate carcinoma. However, the problem of radioresistance and molecular mechanisms by which prostate carcinoma cells overcome cytotoxic effects of radiation therapy remains to be elucidated. In order to investigate possible intracellular mechanisms underlying the prostate carcinoma recurrences after radiotherapy, we have established three radiation-resistant prostate cancer cell lines, LNCaP-IRR, PC3-IRR, and Du145-IRR derived from the parental LNCaP, PC3, and Du145 prostate cancer cells by repetitive exposure to ionizing radiation. LNCaP-IRR, PC3-IRR, and Du145-IRR cells (prostate carcinoma cells recurred after radiation exposure (IRR cells)) showed higher radioresistance and cell motility than parental cell lines. IRR cells exhibited higher levels of androgen and epidermal growth factor (EGF) receptors and activation of their downstream pathways, such as Ras-mitogen-activated protein kinase (MAPK) and phosphatidyl inositol 3-kinase (PI3K)-Akt and Jak-STAT. In order to define additional mechanisms involved in the radioresistance development, we determined differences in the proteome profile of parental and IRR cells using 2-D DIGE followed by computational image analysis and MS. Twenty-seven proteins were found to be modulated in all three radioresistant cell lines compared to parental cells. Identified proteins revealed capacity to interact with EGF and androgen receptors related signal transduction pathways and were involved in the regulation of intracellular routs providing cell survival, increased motility, mutagenesis, and DNA repair. Our data suggest that radioresistance development is accompanied by multiple mechanisms, including activation of cell receptors and related downstream signal transduction pathways. Identified proteins regulated in the radioresistant prostate carcinoma cells can significantly intensify activation of intracellular signaling that govern cell survival, growth, proliferation, invasion, motility, and DNA repair. In addition, such analyses may be utilized in predicting cellular response to radiotherapy. 相似文献
10.
11.
12.
13.
14.
Musa A Haxhiu Prabha Kc Constance T Moore Sandra S Acquah Christopher G Wilson Syed I Zaidi V John Massari Donald G Ferguson 《Journal of applied physiology》2005,98(6):1961-1982
This review summarizes recent work on two basic processes of central nervous system (CNS) control of cholinergic outflow to the airways: 1) transmission of bronchoconstrictive signals from the airways to the airway-related vagal preganglionic neurons (AVPNs) and 2) regulation of AVPN responses to excitatory inputs by central GABAergic inhibitory pathways. In addition, the autocrine-paracrine modulation of AVPNs is briefly discussed. CNS influences on the tracheobronchopulmonary system are transmitted via AVPNs, whose discharge depends on the balance between excitatory and inhibitory impulses that they receive. Alterations in this equilibrium may lead to dramatic functional changes. Recent findings indicate that excitatory signals arising from bronchopulmonary afferents and/or the peripheral chemosensory system activate second-order neurons within the nucleus of the solitary tract (NTS), via a glutamate-AMPA signaling pathway. These neurons, using the same neurotransmitter-receptor unit, transmit information to the AVPNs, which in turn convey the central command to airway effector organs: smooth muscle, submucosal secretory glands, and the vasculature, through intramural ganglionic neurons. The strength and duration of reflex-induced bronchoconstriction is modulated by GABAergic-inhibitory inputs and autocrine-paracrine controlling mechanisms. Downregulation of GABAergic inhibitory influences may result in a shift from inhibitory to excitatory drive that may lead to increased excitability of AVPNs, heightened airway responsiveness, and sustained narrowing of the airways. Hence a better understanding of these normal and altered central neural circuits and mechanisms could potentially improve the design of therapeutic interventions and the treatment of airway obstructive diseases. 相似文献
15.
Argadine HM Mantilla CB Zhan WZ Sieck GC 《American journal of physiology. Cell physiology》2011,300(2):C318-C327
Unilateral denervation (DNV) of rat diaphragm muscle increases protein synthesis at 3 days after DNV (DNV-3D) and degradation at DNV-5D, such that net protein breakdown is evident by DNV-5D. On the basis of existing models of protein balance, we examined DNV-induced changes in Akt, AMP-activated protein kinase (AMPK), and ERK½ activation, which can lead to increased protein synthesis via mammalian target of rapamycin (mTOR)/p70S6 kinase (p70S6K), glycogen synthase kinase-3β (GSK3β), or eukaryotic initiation factor 4E (eIF4E), and increased protein degradation via forkhead box protein O (FoxO). Protein phosphorylation was measured using Western analyses through DNV-5D. Akt phosphorylation decreased at 1 h and 6 h after DNV compared with sham despite decreased AMPK phosphorylation. Both Akt and AMPK phosphorylation returned to sham levels by DNV-1D. Phosphorylation of their downstream effector mTOR (Ser2481) did not change at any time point after DNV, and phosphorylated p70S6K and eIF4E-binding protein 1 (4EBP1) increased only by DNV-5D. In contrast, ERK½ phosphorylation and its downstream effector eIF4E increased 1.7-fold at DNV-1D and phosphorylated GSK3β increased 1.5-fold at DNV-3D (P < 0.05 for both comparisons). Thus, following DNV there are differential effects on protein synthetic pathways with preferential activation of GSK3β and eIF4E over p70S6K. FoxO1 nuclear translocation occurred by DNV-1D, consistent with its role in increasing expression of atrogenes necessary for subsequent ubiquitin-proteasome activation evident by DNV-5D. On the basis of our results, increased protein synthesis following DNV is associated with changes in ERK½-dependent pathways, but protein degradation results from downregulation of Akt and nuclear translocation of FoxO1. No single trigger is responsible for protein balance following DNV. Protein balance in skeletal muscle depends on multiple synthetic/degradation pathways that should be studied in concert. 相似文献
16.
K N Jha D B Kameshwari S Shivaji 《Cellular and molecular biology, including cyto-enzymology》2003,49(3):329-340
Mammalian testicular spermatozoa are immotile and incompetent for fertilization. They acquire motility during epididymal maturation and fertilizing ability during a second phase of maturation in the female reproductive tract, termed as capacitation. Capacitation was discovered independently by Austin and Cang in early 1950s and was defined as the obligate period of residency of spermatozoa in the female reproductive tract, which confers on the spermatozoa the ability to fertilize an oocyte. Over the years, the definition of capacitation has changed and it has been recognized as a complex phenomenon, which is correlated with changes associated with the spermatozoa in the female tract. These alterations in metabolism, intracellular ion concentration, membrane fluidity, intracellular pH, cAMP concentration and concentration of reactive oxygen species, ultimately make the spermatozoa fertilization-competent. The molecular basis of capacitation is poorly understood despite the fact that it is an important event preceding fertilization. This review presents our current understanding of the signaling events involved in the process of capacitation. 相似文献
17.
Sabina E. Winograd-Katz Michal C. Brunner Natalia Mirlas Benjamin Geiger 《European journal of cell biology》2011,90(2-3):143-156
Cell adhesion to the extracellular matrix is mediated by adhesion receptors, mainly integrins, which upon interaction with the extracellular matrix, bind to the actin cytoskeleton via their cytoplasmic domains. This association is mediated by a variety of scaffold and signaling proteins, which control the mechanical and signaling activities of the adhesion site. Upon transformation of fibroblasts with active forms of Src (e.g., v-Src), focal adhesions are disrupted, and transformed into dot-like contacts known as podosomes, and consisting of a central actin core surrounded by an adhesion ring. To clarify the mechanism underlying Src-dependent modulation of the adhesive phenotype, and its influence on podosome organization, we screened for the effect of siRNA-mediated knockdown of tyrosine kinases, MAP kinases and phosphatases on the reorganization of the adhesion-cytoskeleton complex, induced by a constitutively active Src mutant (SrcY527F). In this screen, we discovered several genes that are involved in Src-induced remodeling of the actin cytoskeleton. We further showed that knockdown of Src in osteoclasts abolishes the formation of the podosome-based rings and impairs cell spreading, without inducing stress fiber development. Our work points to several genes that are involved in this process, and sheds new light on the molecular plasticity of integrin adhesions. 相似文献
18.
Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization 总被引:12,自引:0,他引:12
Adult bone marrow is a rich reservoir of hematopoietic and vascular stem and progenitor cells. Mobilization and recruitment of these cells are essential for tissue revascularization. Physiological stress, secondary to tissue injury or tumor growth, results in the release of angiogenic factors, including vascular endothelial growth factor (VEGF), which promotes mobilization of stem cells to the circulation, contributing to the formation of functional vasculature. VEGF interacts with its receptors, VEGFR2 and VEGFR1, expressed on endothelial and hematopoietic stem cells, and thereby promotes recruitment of these cells to neo-angiogenic sites, accelerating the revascularization process. The mobilization of stem cells from marrow is a dynamic process, regulated by shear stress imparted by blood flow, and the activation of metalloproteinases that induce the release of 'Kit ligand', facilitating egress from the marrow to the circulation. Identification of the molecular pathways that support the proliferation and differentiation of vascular stem and progenitor cells will open up new avenues for the design of clinical trials to accelerate tissue vascularization and organogenesis. 相似文献
19.
The Hedgehog (Hh) and Notch signal transduction pathways control a variety of developmental processes including cell fate choice, differentiation, proliferation, patterning and boundary formation. Because many components of these pathways are conserved, it was predicted and confirmed that pathway components are largely intact in the sea urchin genome. Spatial and temporal location of these pathways in the embryo, and their function in development offer added insight into their mechanistic contributions. Accordingly, all major components of both pathways were identified and annotated in the sea urchin Strongylocentrotus purpuratus genome and the embryonic expression of key components was explored. Relationships of the pathway components, and modifiers predicted from the annotation of S. purpuratus, were compared against cnidarians, arthropods, urochordates, and vertebrates. These analyses support the prediction that the pathways are highly conserved through metazoan evolution. Further, the location of these two pathways appears to be conserved among deuterostomes, and in the case of Notch at least, display similar capacities in endomesoderm gene regulatory networks. RNA expression profiles by quantitative PCR and RNA in situ hybridization reveal that Hedgehog is produced by the endoderm beginning just prior to invagination, and signals to the secondary mesenchyme-derived tissues at least until the pluteus larva stage. RNA in situ hybridization of Notch pathway members confirms that Notch functions sequentially in the vegetal-most secondary mesenchyme cells and later in the endoderm. Functional analyses in future studies will embed these pathways into the growing knowledge of gene regulatory networks that govern early specification and morphogenesis. 相似文献
20.