首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The members of the Endo IV family of DNA repair enzymes, including Saccharomyces cerevisiae Apn1 and Escherichia coli endonuclease IV, possess the capacity to cleave abasic sites and to remove 3'-blocking groups at single-strand breaks via apurinic/apyrimidinic (AP) endonuclease and 3'-diesterase activities, respectively. In addition, Endo IV family members are able to recognize and incise oxidative base damages on the 5'-side of such lesions. We previously identified eight amino acid substitutions that prevent E. coli endonuclease IV from repairing damaged DNA in vivo. Two of these substitutions were glycine replacements of Glu145 and Asp179. Both Glu145 and Asp179 are among nine amino acid residues within the active site pocket of endonuclease IV that coordinate the position of a trinuclear Zn cluster required for efficient phosphodiester bond cleavage. We now report the first structure-function analysis of the eukaryotic counterpart of endonuclease IV, yeast Apn1. We show that glycine substitutions at the corresponding conserved amino acid residues of yeast Apn1, i.e., Glu158 and Asp192, abolish the biological function of this enzyme. However, these Apn1 variants do not exhibit the same characteristics as the corresponding E. coli mutants. Indeed, the Apn1 Glu158Gly mutant, but not the E. coli endonuclease IV Glu145Gly mutant, is able to bind DNA. Moreover, Apn1 Asp192Gly completely lacks enzymatic activity, while the activity of the E. coli counterpart Asp179Gly is reduced by approximately 40-fold. The data suggest that although yeast Apn1 and E. coli endonuclease IV exhibit a high degree of structural and functional similarity, differences exist within the active site pockets of these two enzymes.  相似文献   

2.
A dipeptidase was purified from cell extracts of Lactobacillus sake. This compound was a monomer having a molecular weight of 50,000 and a pI of 4.7 and exhibited broad specificity against all dipeptides except those with proline or glycine at the N terminus. The enzyme was inhibited by EDTA or 1,10-phenanthroline but could be reactivated with CoCl2 and MnCl2.  相似文献   

3.
The Saccharomyces cerevisiae APN1 gene encoding an AP endonuclease/3'-diesterase was engineered in vitro for expression in Escherichia coli. The expression vector directs the synthesis in E. coli of a Mr 40,500 protein that reacts with anti-Apn1 antibodies and has the DNA-repair activities characteristic of Apn1 isolated from yeast. A band corresponding to Apn1 was observed in DNA repair activity gels only with extracts of E. coli harbouring the APN1 expression plasmid. Expression of Apn1 conferred resistance to oxidants and alkylating agents in E. coli lacking exonuclease III and endonuclease IV. For H2O2 damage, this rescue effect was correlated with the repair of oxidative lesions in the bacterial chromosome by the Apn1 protein. Thus, Apn1 can function in bacteria in a manner similar to its proposed multiple functions in yeast.  相似文献   

4.
Mutagenic and cytotoxic apurinic/apyrimidinic (AP) sites are among the most frequent lesions in DNA. Repair of AP sites is initiated by AP endonucleases and most organisms possess two or more of these enzymes. Saccharomyces cerevisiae has AP endonuclease 1 (Apn1) as the major enzymatic activity with AP endonuclease 2 (Apn2) being an important backup. Schizosaccharomyces pombe also encodes two potential AP endonucleases, and Apn2 has been found to be the main repair activity, while Apn1 has no, or only a limited role in AP site repair. Here we have identified a new 5' exon (exon 1) in the apn1 gene and show that the inactivity of S. pombe Apn1 is due to a nonsense mutation in the fifth codon of this new exon. Reversion of this mutation restored the AP endonuclease activity of S. pombe Apn1. Interestingly, the apn1 nonsense mutation was only found in laboratory strains derived from L972 h(-) and not in unrelated isolates of S. pombe. Since all S. pombe laboratory strains originate from L972 h(-), it appears that all experiments involving S. pombe have been conducted in an apn1(-) mutant strain with a corresponding DNA repair deficiency. These observations have implications both for future research in S. pombe and for the interpretation of previously conducted epistatis analysis.  相似文献   

5.
Agents that act via oxygen-derived free radicals form DNA strand breaks with fragmented sugar residues that block DNA repair synthesis. Using a synthetic DNA substrate with a single type of sugar fragment, 3'-phosphoglycolaldehyde esters, we show that in Escherichia coli extracts the only EDTA-resistant diesterase for these damages depends on the bacterial nfo (endonuclease IV) gene. Endonuclease IV was purified to physical homogeneity (Mr = 31,000) from an E. coli strain carrying the cloned nfo gene and in which the enzyme had been induced with paraquat. Although heat-stable and routinely assayed in the presence of EDTA, endonuclease IV was inactivated in the absence of substrate at 23-50 degrees C by either EDTA or 1,10-phenanthroline, suggesting the presence of an essential metal tightly bound to the protein. Purified endonuclease IV released phosphoglycolaldehyde, phosphate, and intact deoxyribose 5-phosphate from the 3'-end of DNA, all with apparent Km of 5-10 nM. The optimal KCl or NaCl concentration for 3'-phosphoglycolaldehyde release was 50-100 mM. The purified enzyme had endonuclease activity against partially depurinated DNA but lacked significant nonspecific nuclease activities. Endonuclease IV also activated H2O2-damaged DNA for repair synthesis by DNA polymerase I. Thus, endonuclease IV can act on a variety of oxidative damages in DNA, consistent with a role for the enzyme in combating free-radical toxicity.  相似文献   

6.
Apurinic/apyrimidinic (AP) endonucleases play a major role in the repair of AP sites, oxidative damage and alkylation damage in DNA. We employed Saccharomyces cerevisiae in an unbiased forward genetic screen to identify amino acid substitutions in the major yeast AP endonuclease, Apn1, that impair cellular DNA repair capacity by conferring sensitivity to the DNA alkylating agent methyl methanesulfonate. We report here the identification and characterization of the Apn1 V156E amino acid substitution mutant through biochemical and functional analysis. We found that steady state levels of Apn1 V156E were substantially decreased compared to wild type protein, and that this decrease was due to more rapid degradation of mutant protein compared to wild type. Based on homology to E. coli endonuclease IV and computational modeling, we predicted that V156E impairs catalytic ability. However, overexpression of mutant protein restored DNA repair activity in vitro and in vivo. Thus, the V156E substitution decreases DNA repair capacity by an unanticipated mechanism via increased degradation of mutant protein, leading to substantially reduced cellular levels. Our study provides evidence that the V156 residue plays a critical role in Apn1 structural integrity, but is not involved in catalytic activity. These results have important implications for elucidating structure-function relationships for the endonuclease IV family of proteins, and for employing simple eukaryotic model systems to understand how structural defects in the major human AP endonuclease APE1 may contribute to disease etiology.  相似文献   

7.
In Schizosaccharomyces pombe the repair of apurinic/apyrimidinic (AP) sites is mainly initiated by AP lyase activity of DNA glycosylase Nth1p. In contrast, the major AP endonuclease Apn2p functions by removing 3'-alpha,beta-unsaturated aldehyde ends induced by Nth1p, rather than by incising the AP sites. S. pombe possesses other minor AP endonuclease activities derived from Apn1p and Uve1p. In this study, we investigated the function of these two enzymes in base excision repair (BER) for methyl methanesulfonate (MMS) damage using the nth1 and apn2 mutants. Deletion of apn1 or uve1 from nth1Delta cells did not affect sensitivity to MMS. Exogenous expression of Apn1p failed to suppress the MMS sensitivity of nth1Delta cells. Although Apn1p and Uve1p incised the oligonucleotide containing an AP site analogue, these enzymes could not initiate repair of the AP sites in vivo. Despite this, expression of Apn1p partially restored the MMS sensitivity of apn2Delta cells, indicating that the enzyme functions as a 3'-phosphodiesterase to remove 3'-blocked ends. Localization of Apn1p in the nucleus and cytoplasm hints at an additional function of the enzyme other than nuclear DNA repair. Heterologous expression of Saccharomyces cerevisiae homologue of Apn1p completely restored the MMS resistance of the nth1Delta and apn2Delta cells. This result confirms a difference in the major pathway for processing the AP site between S. pombe and S. cerevisiae cells.  相似文献   

8.
We have developed simple and sensitive assays that distinguish the main classes of apurinic/apyrimidinic (AP) endonucleases: Class I enzymes that cleave on the 3' side of AP sites by beta-elimination, and Class II enzymes that cleave by hydrolysis on the 5' side. The distinction of the two types depends on the use of a synthetic DNA polymer that contains AP sites with 5'-[32P]phosphate residues. Using this approach, we now show directly that Escherichia coli endonuclease IV and human AP endonuclease are Class II enzymes, as inferred previously on the basis of indirect assays. The assay method does not exhibit significant interference by nonspecific nucleases or primary amines, which allows the ready determination of different AP endonuclease activities in crude cell extracts. In this way, we show that virtually all of the Class II AP endonuclease activity in E. coli can be accounted for by two enzymes: exonuclease III and endonuclease IV. In the yeast Saccharomyces cerevisiae, the Class II AP endonuclease activity is totally dependent on a single enzyme, the Apn1 protein, but there are probably multiple Class I enzymes. The versatility and ease of our approach should be useful for characterizing this important class of DNA repair enzymes in diverse systems.  相似文献   

9.
A new species of orthophosphate repressible extracellular 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) was found to be released into mycelial culture media when a wild type strain of Neurospora crassa was grown on limiting amounts of phosphate. The production of 5'-nucleotidase and extracellular acid and alkaline phosphatase was inhibited by the addition of rifampicin when it was added at the later stage of mycelial growth, but not when it was added at a very early stage. The 5'-nucleotidase and extracellular alkaline phosphatase were partially purified and characterized. pH optimum of the former was 6.8 and that of the latter was higher than 10.0. The 5'-nucleotidase activity was inhibited by ethylenediaminetetraacetate (EDTA) and ZnCl2 at pH 6.8 and stimulated by MnCl2 and CoCl2 at pH 4.0. Alkaline phosphatase activity was stimulated by EDTA, MgCl2, CoCl2 and MnCl2. 5'-nucleotidase activity was stimulated by EDTA, MgCl2, CoCl2 and MnCl2. 5'-nucleotidase hydrolyzed various 5'-nucletides but not 3'-nucleotides or other various phosphomono- and diester compounds. Alkaline phosphatase hydrolyzed all the phosphomonoester compounds tested. Mutants, nuc-1 and nuc-2, which were originally isolated by the inability to utilize RNA or DNA as a sole source of phosphate, were unable to produce 5'-nucleotidase or six other repressible enzymes reported previously. These mutants showed no or significantly reduced growth on orthophosphate-free nucleotide media depending on the number of conidia inoculated, mainly because of loss of ability to produce these repressible extracellular phosphatases.  相似文献   

10.
An endonuclease, present in the microplasmodia of Physarum polycephalum, has been partially purified from isolated nuclei by DEAE-cellulose and Sephadex G-75 chromatography. 1. The endonuclease produced single-strand scissions in double-stranded DNA which resulted in the generation of 5'-phosphoryl and 3'-hydroxyl termini. No activity was observed with single-stranded DNA as substrate. 2. The pH optimum was approximately 8.5. 3. Divalent cations were essential for enzyme activity. MnCl2 and MgCl2 gave maximal activity. CaCl2, ZnCl2 or CoCl2 did not activate the enzyme. 4. The endonuclease activity was highly sensitive to monovalent cations. 5. Endonuclease activity was found in two forms after gel filtration: an activity in a homogeneous peak with a molecular weight of approx. 20 000, and an activity that had a heterogeneous molecular weight and which was isolated in a complex with DNA. A possible function of the endonuclease in DNA replication is discussed.  相似文献   

11.
Abasic (AP) sites are formed spontaneously and are inevitably intermediates during base excision repair of DNA base damages. AP sites are both mutagenic and cytotoxic and key enzymes for their removal are AP endonucleases. However, AP endonuclease independent repair initiated by DNA glycosylases performing β,δ-elimination cleavage of the AP sites has been described in mammalian cells. Here, we describe another AP endonuclease independent repair pathway for removal of AP sites in Schizosaccharomyces pombe that is initiated by a bifunctional DNA glycosylase, Nth1 and followed by cleavage of the baseless sugar residue by tyrosyl phosphodiesterase Tdp1. We propose that repair is completed by the action of a polynucleotide kinase, a DNA polymerase and finally a DNA ligase to seal the gap. A fission yeast double mutant of the major AP endonuclease Apn2 and Tdp1 shows synergistic increase in MMS sensitivity, substantiating that Apn2 and Tdp1 process the same substrate. These results add new knowledge to the complex cellular response to AP sites, which could be exploited in chemotherapy where synthetic lethality is a key strategy of treatment.  相似文献   

12.
Yeast Rad27 is a 5'-->3' exonuclease and a flap endo-nuclease. Apn1 is the major apurinic/apyrimidinic (AP) endonuclease in yeast. The rad27 deletion mutants are highly sensitive to methylmethane sulfonate (MMS). By examining the role of Rad27 in different modes of DNA excision repair, we wish to understand why the cytotoxic effect of MMS is dramatically enhanced in the absence of Rad27. Base excision repair (BER) of uracil-containing DNA was deficient in rad27 mutant extracts in that (i) the Apn1 activity was reduced, and (ii) after DNA incision by Apn1, hydrolysis of 1-5 nucleotides 3' to the baseless sugar phosphate was deficient. Thus, some AP sites may lead to unprocessed DNA strand breaks in rad27 mutant cells. The severe MMS sensitivity of rad27 mutants is not caused by a reduction of the Apn1 activity. Surprisingly, we found that Apn1 endonuclease sensitizes rad27 mutant cells to MMS. Deleting the APN1 gene largely restored the resistance of rad27 mutants to MMS. These results suggest that unprocessed DNA strand breaks at AP sites are mainly responsible for the MMS sensitivity of rad27 mutants. In contrast, nucleotide excision repair and BER of oxidative damage were not affected in rad27 mutant extracts, indicating that Rad27 is specifically required for BER of AP sites in DNA.  相似文献   

13.
The APN1 gene of Saccharomyces cerevisiae encodes the major apurinic/apyrimidinic endonuclease and 3'-repair DNA diesterase in yeast cell extracts. The Apn1 protein is a homolog of Escherichia coli endonuclease IV, which functions in the repair of some oxidative and alkylation damages in that organism. We show here that yeast strains lacking Apn1 (generated by targeted gene disruption or deletion-replacement) are hypersensitive to both oxidative (hydrogen peroxide and t-butylhydroperoxide) and alkylating (methyl- and ethylmethane sulfonate) agents that damage DNA. These cellular hypersensitivities are correlated with the accumulation of unrepaired damages in the chromosomal DNA of apn1 mutant yeast cells. Hydrogen peroxide-treated APN1+ but not apn1 mutant cells regenerate high-molecular-weight DNA efficiently after the treatment. The DNA strand breaks that accumulate in the Apn1-deficient mutant contain lesions that block the action of DNA polymerase but can be removed in vitro by purified Apn1. An analogous result with DNA from methylmethane sulfonate-treated cells corresponded to the accumulation of unrepaired DNA apurinic sites in the apn1 mutant cells. The rate of spontaneous mutation in apn1 mutant S. cerevisiae was 6- to 12-fold higher than that measured for wild-type yeast cells. This increase indicates that under normal growth conditions, the production of DNA damages that are targets for Apn1 is substantial and that such lesions can be mutagenic when left unrepaired.  相似文献   

14.
15.
Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG, or G°), thus reducing G:C to T:A mutations. The resulting apurinic/apyrimidinic (AP) site is processed by an AP-endonuclease or a bifunctional glycosylase/lyase. We show here that the major Schizosaccharomyces pombe AP endonuclease, Apn2, binds to the inter-domain connector located between the N- and C-terminal domains of Myh1. This Myh1 inter-domain connector also interacts with the Hus1 subunit of the Rad9–Rad1–Hus1 checkpoint clamp. Mutagenesis studies indicate that Apn2 and Hus1 bind overlapping but different sequence motifs on Myh1. Mutation on I261 of Myh1 reduces its interaction with Hus1, but only slightly attenuates its interaction with Apn2. However, E262 of Myh1 is a key determinant for both Apn2 and Hus1 interactions. Like human APE1, Apn2 has 3′-phosphodiesterase activity. However, unlike hAPE1, Apn2 has a weak AP endonuclease activity which cleaves the AP sites generated by Myh1 glycosylase. Functionally, Apn2 stimulates Myh1 glycosylase activity and Apn2 phosphodiesterase activity is stimulated by Myh1. The cross stimulation of Myh1 and Apn2 enzymatic activities is dependent on their physical interaction. Thus, Myh1 and Apn2 constitute an initial BER complex.  相似文献   

16.
In Saccharomyces cerevisiae, the apurinic/apyrimidinic (AP) endonucleases Apn1 and Apn2 act as alternative pathways for the removal of various 3'-terminal blocking lesions from DNA strand breaks and in the repair of abasic sites, which both result from oxidative DNA damage. Here we demonstrate that Tpp1, a homologue of the 3' phosphatase domain of polynucleotide kinase, is a third member of this group of redundant 3' processing enzymes. Unlike Apn1 and Apn2, Tpp1 is specific for the removal of 3' phosphates at strand breaks and does not possess more general 3' phosphodiesterase, exonuclease, or AP endonuclease activities. Deletion of TPP1 in an apn1 apn2 mutant background dramatically increased the sensitivity of the double mutant to DNA damage caused by H2O2 and bleomycin but not to damage caused by methyl methanesulfonate. The triple mutant was also deficient in the repair of 3' phosphate lesions left by Tdp1-mediated cleavage of camptothecin-stabilized Top1-DNA covalent complexes. Finally, the tpp1 apn1 apn2 triple mutation displayed synthetic lethality in combination with rad52, possibly implicating postreplication repair in the removal of unrepaired 3'-terminal lesions resulting from endogenous damage. Taken together, these results demonstrate a clear role for the lesion-specific enzyme, Tpp1, in the repair of a subset of DNA strand breaks.  相似文献   

17.
One of the most frequent lesions formed in cellular DNA are abasic (apurinic/apyrimidinic, AP) sites that are both cytotoxic and mutagenic, and must be removed efficiently to maintain genetic stability. It is generally believed that the repair of AP sites is initiated by the AP endonucleases; however, an alternative pathway seems to prevail in Schizosaccharomyces pombe. A mutant lacking the DNA glycosylase/AP lyase Nth1 is very sensitive to the alkylating agent methyl methanesulfonate (MMS), suggesting a role for Nth1 in base excision repair (BER) of alkylation damage. Here, we have further evaluated the role of Nth1 and the second putative S.pombe AP endonuclease Apn2, in abasic site repair. The deletion of the apn2 open reading frame dramatically increased the sensitivity of the yeast cells to MMS, also demonstrating that the Apn2 has an important function in the BER pathway. The deletion of nth1 in the apn2 mutant strain partially relieves the MMS sensitivity of the apn2 single mutant, indicating that the Apn2 and Nth1 act in the same pathway for the repair of abasic sites. Analysis of the AP site cleavage in whole cell extracts of wild-type and mutant strains showed that the AP lyase activity of Nth1 represents the major AP site incision activity in vitro. Assays with DNA substrates containing base lesions removed by monofunctional DNA glycosylases Udg and MutY showed that Nth1 will also cleave the abasic sites formed by these enzymes and thus act downstream of these enzymes in the BER pathway. We suggest that the main function of Apn2 in BER is to remove the resulting 3′-blocking termini following AP lyase cleavage by Nth1.  相似文献   

18.
The chronological life span of yeast, the survival of stationary (G0) cells over time, provides a model for investigating certain of the factors that may influence the aging of non-dividing cells and tissues in higher organisms. This study measured the effects of defined defects in the base excision repair (BER) system for DNA repair on this life span. Stationary yeast survives longer when it is pre-grown on respiratory, as compared to fermentative (glucose), media. It is also less susceptible to viability loss as the result of defects in DNA glycosylase/AP lyases (Ogg1p, Ntg1p, Ntg2p), apurinic/apyrimidinic (AP) endonucleases (Apn1p, Apn2p) and monofunctional DNA glycosylase (Mag1p). Whereas single BER glycosylase/AP lyase defects exerted little influence over such optimized G0 survival, this survival was severely shortened with the loss of two or more such enzymes. Equally, the apn1delta and apn2delta single gene deletes survived as well as the wild type, whereas a apn1delta apn2delta double mutant totally lacking in any AP endonuclease activity survived poorly. Both this shortened G0 survival and the enhanced mutagenicity of apn1delta apn2delta cells were however rescued by the over-expression of either Apn1p or Apn2p. The results highlight the vital importance of BER in the prevention of mutation accumulation and the attainment of the full yeast chronological life span. They also reveal an appreciable overlap in the G0 maintenance functions of the different BER DNA glycosylases and AP endonucleases.  相似文献   

19.
20.
Guillet M  Boiteux S 《The EMBO journal》2002,21(11):2833-2841
In Saccharomyces cerevisiae, mutations in APN1, APN2 and either RAD1 or RAD10 genes are synthetic lethal. In fact, apn1 apn2 rad1 triple mutants can form microcolonies of approximately 300 cells. Expression of Nfo, the bacterial homologue of Apn1, suppresses the lethality. Turning off the expression of Nfo induces G(2)/M cell cycle arrest in an apn1 apn2 rad1 triple mutant. The activation of this checkpoint is RAD9 dependent and allows residual DNA repair. The Mus81/Mms4 complex was identified as one of these back-up repair activities. Furthermore, inactivation of Ntg1, Ntg2 and Ogg1 DNA N-glycosylase/AP lyases in the apn1 apn2 rad1 background delayed lethality, allowing the formation of minicolonies of approximately 10(5) cells. These results demonstrate that, under physiological conditions, endogenous DNA damage causes death in cells deficient in Apn1, Apn2 and Rad1/Rad10 proteins. We propose a model in which endogenous DNA abasic sites are converted into 3'-blocked single-strand breaks (SSBs) by DNA N-glycosylases/AP lyases. Therefore, we suggest that the essential and overlapping function of Apn1, Apn2, Rad1/Rad10 and Mus81/Mms4 is to repair 3'-blocked SSBs using their 3'-phosphodiesterase activity or their 3'-flap endonuclease activity, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号