首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil carbon distribution with depth, stable carbon isotope ratios in soil organic matter and their changes as a consequence of the presence of legume were studied in three 12-year-old tropical pastures (grass alone —Brachiaria decumbens (C4), legume alone —Pueraria phaseoloides (C3) and grass + legume) on an Oxisol in Colombia. The objective of this study was to determine the changes that occurred in the13C isotope composition of soil from a grass + legume pasture that was established by cultivation of a native savanna dominated by C4 vegetation. The13C natural abundance technique was used to estimate the amount of soil organic carbon originating from the legume. Up to 29% of the organic carbon in soil of the grass + legume pasture was estimated to be derived from legume residues in the top 0–2-cm soil depth, which decreased to 7% at 8–10 cm depth. Improvements in soil fertility resulting from the soil organic carbon originated from legume residues were measured as increased potential rates of nitrogen mineralization and increased yields of rice in a subsequent crop after the grass + legume pasture compared with the grass-only pasture. We conclude that the13C natural abundance technique may help to predict the improvements in soil quality in terms of fertility resulting from the presence of a forage legume (C3) in a predominantly C4 grass pasture.  相似文献   

2.
Management strategies for increasing ruminant legume consumption and mitigating methane emissions from tropical livestock production systems require further study. The aim of this work was to evaluate the herbage intake, animal performance and enteric methane emissions of cattle grazing dwarf elephant grass (DEG) (Pennisetum purpureum cv. BRS Kurumi) alone or DEG with peanut (Arachis pintoi cv. Amarillo). The experimental treatments were the following: DEG pastures receiving nitrogen fertilization (150 kg N/ha as ammonium nitrate) and DEG intercropped with peanut plus an adjacent area of peanut that was accessible to grazing animals for 5 h/day (from 0700 to 1200 h). The animals grazing legume pastures showed greater average daily gain and herbage intake, and shorter morning and total grazing times. Daily methane emissions were greater from the animals grazing legume pastures, whereas methane emissions per unit of herbage intake did not differ between treatments. Allowing animals access to an exclusive area of legumes in a tropical grass-pasture-based system can improve animal performance without increasing methane production per kg of dry matter intake.  相似文献   

3.
Current challenges to global food security require sustainable intensification of agriculture through initiatives that include more efficient use of nitrogen (N), increased protein self‐sufficiency through homegrown crops, and reduced N losses to the environment. Such challenges were addressed in a continental‐scale field experiment conducted over 3 years, in which the amount of total nitrogen yield (Ntot) and the gain of N yield in mixtures as compared to grass monocultures (Ngainmix) was quantified from four‐species grass–legume stands with greatly varying legume proportions. Stands consisted of monocultures and mixtures of two N2‐fixing legumes and two nonfixing grasses. The amount of Ntot of mixtures was significantly greater (P ≤ 0.05) than that of grass monocultures at the majority of evaluated sites in all 3 years. Ntot and thus Ngainmix increased with increasing legume proportion up to one‐third of legumes. With higher legume percentages, Ntot and Ngainmix did not continue to increase. Thus, across sites and years, mixtures with one‐third proportion of legumes attained ~95% of the maximum Ntot acquired by any stand and had 57% higher Ntot than grass monocultures. Realized legume proportion in stands and the relative N gain in mixture (Ngainmix/Ntot in mixture) were most severely impaired by minimum site temperature (R = 0.70, P = 0.003 for legume proportion; R = 0.64, P = 0.010 for Ngainmix/Ntot in mixture). Nevertheless, the relative N gain in mixture was not correlated to site productivity (P = 0.500), suggesting that, within climatic restrictions, balanced grass–legume mixtures can benefit from comparable relative gains in N yield across largely differing productivity levels. We conclude that the use of grass–legume mixtures can substantially contribute to resource‐efficient agricultural grassland systems over a wide range of productivity levels, implying important savings in N fertilizers and thus greenhouse gas emissions and a considerable potential for climate change mitigation.  相似文献   

4.
Summary Isotope dilution provides a method for measuring plant competition for mineral N and transfer of biologically fixed N from a legume to a grass. A plant growth medium was enriched with15N, and used to grow Siratro (Macropitilium atropurpureum D.C. Urb.) and Kleingrass 75 (Panicum coloratum L.) in 20 liter pots for 98 days in a glasshouse. The plants were grown in pure stand and in mixtures. When grown in 50∶50 mixture the grass obtained 59% of the labelled N and the legume obtained 41%. The grass produced nearly as much root mass as the legume even though biomass of the shoots were less than half that of the legume. Reducing the proportion of either plant species in the mixture reduced the proportion of the mineralized N absorbed by that species. The shoots of the grass were significantly more enriched (1.166 atom%15N excess) than the roots (1.036). The grass received 12% of its N as biologically fixed N from the legume.  相似文献   

5.
Although fire is frequent in African savanna ecosystems and may cause considerable loss of nitrogen (N), N2-fixing herbaceous legumes—which could be expected to benefit from low N conditions—are usually not abundant. To investigate possible reasons for this scarcity, we conducted a pot experiment using two common plants of humid African savannas as model species, the legume Cassia mimosoides and the C4 grass Hyperthelia dissoluta. These species were grown at different levels of water, N and phosphorus (P), both in monoculture and in competition with each other. In the monocultures, yields were significantly increased by the combined addition of N and P in pots receiving high water supply. In pots with interspecific competition, the legume grew poorly unless P was added. Foliar δ15N values of legume plants grown in mixtures were considerably lower than those in monocultures, suggesting that rates of symbiotic N-fixation were higher in the presence of the grass. Grass δ15N values, however, were also lower in mixtures, while N concentrations were higher, indicating a rapid transfer of N from the legume to the grass. We conclude that the main reason for the low abundance of C. mimosoides is not low P availability as such, but a greater ability of H. dissoluta to compete for soil N and P, and a much higher N-use efficiency. If other C4 grasses have a similar competitive advantage, it could explain why herbaceous legumes are generally sparse in African savannas. We encourage others to test these findings using species from other types of savanna vegetation.  相似文献   

6.
It was the aim of this study to determine the way in which low temperature modifies the effect of a competing grass on nitrogen fixation of a forage legume. White clover (Trifolium repens L.) was grown in monoculture or in different planting ratios with timothy (Phleum pratense L.) or perennial ryegress (Lolium perenne L.) in growth chambers at either 7.5/5°C (LoT) or 15/10°C (HiT) average day/night temperatures, and with 2.5 or 7.5 mM 15N-labelled nitrate in the nutrient solution.Competition with grass led to a marked increase in the proportion of clover nitrogen derived from symbiosis (% Nsym). This increase was slower at LoT where % Nsym was reduced considerably; it was closely related to the reduction in the amount of available nitrate as a result of its being utilized by the grass.Nitrogen concentration in white clover herbage and dry matter yield per clover plant were reduced, for the most part, when a competing grass was present. The amount of nitrogen fixed per plant of white clover decreased markedly with temperature. Low temperature consequently accentuated competition for nitrate. The capacity of white clover to compete successfully was limited by its slower growth and nitrogen accumulation.  相似文献   

7.
The characteristic vegetation structure of arid savannas with a dominant layer of perennial grass is maintained by the putative competitive superiority of the C4 grasses. When this competitive balance is disturbed by weakening the grasses or favoring the recruitment of other species, trees, shrubs, single grass, or forb species can increase and initiate sudden dominance shifts. Such shifts involving woody species, often termed “shrub encroachment”, or the mass spreading of so‐called increaser species have been extensively researched, but studies on similar processes without obvious preceding disturbance are rare. In Namibia, the native herbaceous legume Crotalaria podocarpa has recently encroached parts of the escarpment region, seriously affecting the productivity of local fodder grasses. Here, we studied the interaction between seedlings of the legume and the dominant local fodder grass (Stipagrostis ciliata). We used a pot experiment to test seedling survival and to investigate the growth of Crotalaria in competition with Stipagrostis. Additional field observations were conducted to quantify the interactive effect. We found germination and growth of the legume seedlings to be facilitated by inactive (dead or dormant) grass tussocks and unhindered by active ones. Seedling survival was three times higher in inactive tussocks and Crotalaria grew taller. In the field, high densities of the legume had a clear negative effect on productivity of the grass. The C4 grass was unable to limit the recruitment and spread of the legume, and Crotalaria did outcompete the putative more competitive grass. Hence, the legume is able to spread and establish itself in large numbers and initiate a dominance shift in savannas, similar to shrub encroachment.  相似文献   

8.
Low input legume-based agriculture exists in a continuum between subsistence farming and intensive arable and pastoral systems. This review covers this range, but with most emphasis on temperate legume/grass pastures under grazing by livestock. Key determinants of nitrogen (N) flows in grazed legume/grass pastures are: inputs of N from symbiotic N2 fixation which are constrained through self-regulation via grass/legume interactions; large quantities of N cycling through grazing animals with localised return in excreta; low direct conversion of pasture N into produce (typically 5–20%) but with N recycling under intensive grazing the farm efficiency of product N: fixed N can be up to 50%; and regulation of N flows by mineralisation/immobilisation reactions. Pastoral systems reliant solely on fixed N are capable of moderate-high production with modest N losses e.g. average denitrification and leaching losses from grazed pastures of 6 and 23 kg N ha–1 yr–1. Methods for improving efficiency of N cycling in legume-based cropping and legume/grass pasture systems are discussed. In legume/arable rotations, the utilisation of fixed N by crops is influenced greatly by the timing of management practices for synchrony of N supply via mineralisation and crop N uptake. In legume/grass pastures, the spatial return of excreta and the uptake of excreta N by pastures can potentially be improved through dietary manipulation and management strategies. Plant species selection and plant constituent modification also offer the potential to increase N efficiency through greater conversion into animal produce, improved N uptake from soil and manipulation of mineralisation/immobilisation/nitrification reactions.  相似文献   

9.
The effects of adding two legumes, Gliricidia sepium and Leucaena leucocephala, cv. Cunningham, and molasses on the fermentation characteristics of silages made from two tropical grasses (Pangola grass, Digitaria decumbens, and Setaria sphacelata cv. Kazungula) were investigated. Pangola grass silages contained significantly higher contents of water-soluble carbohydrates and lactic acid than did setaria silages after 100 days fermentation, but there were no significant differences between the two silages in populations of lactic acid bacteria and contents of total N and NH3–N. Addition of either species of legume had no significant effect on fermentation acids and NH3–N contents, and numbers of lactic acid bacteria. Addition of both legumes reduced NH3–N production in the silages by 59% after 5 days' fermentation. Numbers of lactic acid bacteria were not significantly affected by the different treatments. Enterococcus faecalis represented 60% of the lactic acid bacteria isolated from the treated herbages prior to ensiling. By 100 days of fermentation, only lactobacilli were isolated: 82% homo-fermenters and 18% hetero-fermenters. Lactobacillus mesenteroides subsp. dextranicum was found only in the silage supplemented with 33% (w/w) legume. It was concluded that the low quality of tropical grasses used as feeds for ruminants may be significantly improved by ensiling these grasses with small amounts of molasses and with high-protein tree leaves.M. Tjandraatmadja and B.W. Norton are with the Department of Agriculture. The University of Queensland, Queensland, 4072, Australia; I.C. Mac Rae is with the Department of Microbiology, The University of Queensland, Queensland, 4072, Australia.  相似文献   

10.
A study was conducted of grass selectivity shown by four herbivores on open range lands of Kenya Masailand. At four seasons over one year, wildebeest, zebra and kongoni (Coke's hartebeest) were taken. Stomach materials and faeces were sampled from each animal. Faecal samples were collected from cattle that had been grazing in the same area. Simultaneously, vegetation availability assessments were made. A comparison of techniques for determining the food selectivity indicates that faecal and stomach-content analyses provide similar results when the diets are almost entirely grass. The selectivity exhibited by the four herbivores was determined by faecal analyses. Three grass species were preponderant in all diets as well as in the available menu. In comparing the selectivity shown for the three dominant grasses there is a high degree of similarity even though statistical differences are demonstrated. All animals favoured Themeda triandra over Pennisetum mezianum and Digitaria macroblephara. Kongoni displayed the highest degree of selectivity and cattle and zebra had the greatest similarity in diets. Each animal species had a wide spectrum of grasses in their diets: these contained a greater number of species during the drier seasons than during the rainy seasons. Wild animals had a greater diet variation between seasons than did cattle, the diet of the latter remaining much more consistent than the combination of available grasses.  相似文献   

11.
The present investigation was carried out to assess the transfer of copper element from the soil to forage plants consumed by the ruminants in two different pastures at the Livestock Experimental Station at Sargodha, Punjab, Pakistan. Soil and forage samples were collected periodically from two different pastures and analyzed after wet digestion. The survey of copper flow from forage from both pastures in the grazing period exhibited a consistent pattern of decrease from sampling periods 1 to 4 across all the sampling periods. In the legumes and grass pastures, it was decreased regularly and reduced up to 50% to that at the beginning across all the samplings. The copper concentration was higher in the legume pasture than that of grass pasture and sufficient to fulfill the requirement of grazing animals, while in grass pasture, it was higher at the first two sampling periods but dropped to a marginal deficient level at sampling period 3 and reached at the severe deficient level at the fourth sampling period during this investigation. The soil–plant transfer factor for Cu was higher in legume pasture compared to its counterpart. It was found that with the increase of forage maturity, a significant reduction in the forage Cu concentration was observed reaching its minimum level at the last sampling period in the grass pasture. These concentrations were within the marginal and severe deficient levels and provide for only 76% of the ruminant requirements. The naturally upset balance of Cu offers a potential hazard not only to both pastures, but also to the Cu status of grazing ruminants therein. This necessitates the provision of additional amount of Cu mixture in the nutrition of livestock for health and reproduction potential enhancement of the animals being reared at that farm. Supplementing the deficient mineral with locally available Cu feed sources like green fodders, cakes, and brans or providing region-specific mineral supplements would alleviate the deficiency of copper during the late season at the livestock farm.  相似文献   

12.
Fox  Aaron  Suter  Matthias  Widmer  Franco  Lüscher  Andreas 《Plant and Soil》2020,447(1-2):497-506
Aims

We investigated the legacy effects of a previous ley’s legume proportion on the performance of a following grass crop in a rotation.

Methods

In April 2015, a pure Lolium multiflorum L. crop was sown after the removal of legume containing swards (0–100% legumes), and was harvested four times over the following one-year period (3 times in 2015 and once the following April 2016). Labeled 15N fertilizer (50 kg N ha−1) was applied during the 2nd and 3rd re-growth periods to determine N fluxes.

Results

Across the one-year period, a significant legume-legacy induced increase in biomass yield of L. multiflorum was observed over the entire range of previous legume proportions when compared against the non-legume ley, the effect being 2.15 and 1.73 t ha−1 (P ≤ 0.001 each) in swards with 50% and 100% previous legume proportion, respectively, or up to +31%. The legume-legacy effect on biomass yield was most pronounced at the 1st harvest (June) and persisted into the 2nd harvest in August (P ≤ 0.05 both, over the entire range of previous legume proportion), though was no longer evident at the 3rd harvest (September). Importantly, the legume-legacy effect returned in the 4th harvest in April (P ≤ 0.05). Examining the source of N contributing to N yield confirmed that more N was derived from the soil at harvest 1 and 2 for previous legume containing leys (P ≤ 0.001) compared to those which contained no legumes, with a significant increase still seen for legume mixtures at harvest 3 (P ≤ 0.01).

Conclusions

The results demonstrate a sustained soil-transferred performance-enhancing legacy effect on a following crop in a rotation, with previous legume proportions of 50% having a comparable effect compared with that of a previous legume monoculture.

  相似文献   

13.
The coexistence of symbionts with different functional roles in co‐occurring plants is highly probable in terrestrial ecosystems. Analyses of how plants and microbes interact above‐ and belowground in multi‐symbiotic systems are key to understand community structure and ecosystem functioning. We performed an outdoor experiment in mesocosms to investigate the consequences of the interaction of a provider belowground symbiont of legumes (nitrogen‐fixing bacteria) and a protector aerial fungal symbiont of grasses (Epichloё endophyte) on nitrogen dynamics and aboveground net primary productivity. Four plants of Trifolium repens (Trifolium, a perennial legume) either inoculated or not with Rhizobium leguminosarum, grew surrounded by 16 plants of Lolium multiflorum (Lolium, an annual grass), with either low or high levels of the endophyte Neotyphodium occultans. After five months, we quantified the number of nodules in Trifolium roots, shoot biomass of both plant species, and the contribution of atmospheric nitrogen fixation vs. soil nitrogen uptake to above ground nitrogen in each plant species. The endophyte increased grass biomass production (+ 16%), and nitrogen uptake from the soil – the main source for the grass. Further, it reduced the nodulation of neighbour Trifolium plants (?50%). Notably, due to a compensatory increase in nitrogen fixation per nodule, this reduced neither its atmospheric nitrogen fixation – the main source of nitrogen for the legume – nor its biomass production, both of which were doubled by rhizobial inoculation. In consequence, the total amount of nitrogen in aboveground biomass and aboveground productivity were greatest in mesocosms with both symbionts (i.e. high rhizobia + high endophyte). These results show that, in spite of the deleterious effect of the endophyte on the establishment of the rhizobia–legume symbiosis, the coexistence of these symbionts, leading to additive effects on nitrogen capture and aboveground productivity, can generate complementarity on the functioning of multi‐symbiotic systems.  相似文献   

14.
Because legumes are a very important feed source for ruminants, the aim of this study was to evaluate the ideal inclusion level of hay Arachis pintoi cv. Belmonte in sheep diets by measuring the dry matter intake (DMI), concentration of volatile fatty acids, ammonia–nitrogen concentration, ruminal pH and the in situ degradability of dry matter (DM) and crude protein (CP). In the experiment with four sheep, a 4 × 4 Latin Square design was used with four periods and four treatments (0%, 30%, 60% and 100% Arachis replacing grass hay). Significant interactions were observed between treatments and sampling times for ammonia–nitrogen and acetate, propionate and butyrate concentration and the acetate:propionate ratio. The ruminal pH and total volatile fatty acids concentration were not affected by interaction between treatments and sampling time. The degradation of DM and CP was similar, rising with the increasing content of Arachis, showing a linear effect. The treatment containing 60% of Arachis showed best results, with good levels of daily weight gain and higher ruminal concentrations of volatile fatty acids. The legume showed high levels of CP, high digestibility and appropriate levels of fibre, with excellent standards of degradation and ruminal characteristics. The use of the legume Arachis for ruminants is a promising option of nutrient supply to meet production demands of these animals.  相似文献   

15.
Oribatid mite densities in the topsoil and their activity at the soil surface were monitored under three species of perennial legume cover crops namely, Arachis pintoi, Macroptilium atropupureum and Pueraria phaseoloides, grass (Panicum maximum) and bare plots on three occasions in 1998 and 1999 in a derived savanna zone in Brazil. Both densities and activity at the soil surface were higher in the early but cool dry season in April 1998 than in the early wet but warm season in November 1998 and 1999. Three taxonomic groups of macropyline oribatid mites, namely Nothrus, Archegozetes and Masthermannia as well as a brachypyline taxon, Scheloribates were suggested as possible indicators of effect of legumes on soil biota because their populations increased under the legumes and/or their residues. Nothrus in particular increased in abundance more than any other taxon in the presence of residues of A. pintoi. Each legume supported a unique oribatid mite community in terms of species composition and relative abundance. The large numbers of Archegozetes trapped from all the legume and grass plots in April and November 1998 were also attributed to highly conducive conditions provided by the vegetation cover and their residues. The results suggest that the oribatid mite community of the study area was numerically stable as the peak populations of different species were not synchronized. Many taxonomic groups of pycnonotic brachypyline mites were absent. Legume cover crops, especially A. pintoi, and their residues have potential in restoring oribatid mite populations to precultivation levels. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Clostridium perfringens is an anaerobic, gram-positive, spore-forming bacterium that ubiquitously inhabits a wide variety of natural environments including the gastrointestinal tract of humans and animals. C. perfringens is an opportunistic enteropathogen capable of producing at least 20 different toxins in various combinations. Strains of C. perfringens are currently categorized into 7 toxinotypes (A, B, C, D, E, F, and G) based on the presence or absence of 6 typing-toxins (α, β, epsilon, iota, enterotoxin, and netB). Each toxinotype is associated with specific histotoxic and enteric diseases. Spontaneous enteritis due to C. perfringens has been reported in laboratory animals; however, the source of the bacteria was unknown. The Quality Assurance Laboratory (QAL) at the National Institute of Environmental Health Sciences (NIEHS) routinely screens incoming animal feeds for aerobic, enteric pathogens, such as Salmonella spp. and E. coli. Recently, QAL incorporated anaerobic screening of incoming animal feeds. To date, the lab has isolated numerous Clostridium species, including C. perfringens, from 23 lots of natural ingredient laboratory animal diets. Published reports of C. perfringens isolation from laboratory animal feeds could not be found in the literature. Therefore, we performed a toxin profile screen of our isolated strains of C. perfringens using PCR to determine which toxinotypes were present in the laboratory animal diets. Our results showed that most C. perfringens strains we isolated from the laboratory animal feed were toxinotype A with most strains also possessing the theta toxin. Two of the C. perfringens strains also possessed the β toxin. Our results demonstrated the presence of C. perfringens in nonsterile, natural ingredient feeds for laboratory animals which could serve as a source of this opportunistic pathogen.  相似文献   

17.
Two experiments were carried out to determine the nutrient contents and relative preferences of maize stover and three legumes forages and their feeding on intake and digestibility of sheep. Maize stover was blended with three legumes, stylo (Stylosanthes guainensis), siratro (Macroptilium atropurpureum) and centro (Centrocema pubescens), to produce four treatments, namely, only maize stover (control), stover/stylo, stover/siratro and stover/centro mixtures. The first experiment evaluated the relative preference of the stover and the various stover/legume mixtures when offered to sheep. Six rams were offered pair combinations of the treatments in a 6×6 Latin square with a split plot arrangement such that each ram had access to two feeds at a time in each period of 6 days. The second experiment included measurements of intake and digestibility of the stover and stover/legume mixtures. Four intact and four castrated male sheep were used in two, 4×4 Latin squares with 21-day periods. The least (P<0.05) preferred feed was maize stover when it was offered as the sole feed. There were no significant differences in preference among the stover/legume mixtures. Dry matter intake (DMI) was highest (P<0.05) when sheep were offered the stover/centro mixture and lowest (P<0.05) when maize stover was fed as the sole feed. Dry matter digestibility did not differ significantly among treatments. Sheep that were offered maize stover only lost weight, those fed stover/centro gained weight and those that were fed either stover/siratro or stover/stylo maintained weight. However, these short-term weight changes may reflect changes in fill as much as changes in body tissue. Addition of legumes to maize stover improved the nutritive value, possibly by increasing the nitrogen content of the stover. The results suggest that maize stover, which is normally left to rot in the field, could be better utilised by intercropping with legumes and allowing animals access after grain harvest.  相似文献   

18.
Observations of the diet of cattle and buffalo grazing three different pastures of known composition and history were made at the height of the rainy season in Acacia-Cymbopogon/Themeda dry savanna in Ankole, Uganda. Brachiara decumbens, Chloris gayana, Cynodon dactylon, Digitaria melanochila and Setaria aequalis were frequent species which were highly acceptable to both buffalo and cattle. Themeda triandra was highly acceptable to cattle but less so to buffalo. Leersia hexandra, a swamp grass, was eaten by buffalo but the cattle did not graze in wet areas. Loudetia kagerensis and Cymbopogon afronardus were largely unacceptable to both species of animal, although buffalo showed a greater tolerance of C. afronardus than did the cattle. It is suggested that both species of animal showed a need to vary their diet periodically and buffalo chose C. afronardus whereas the cattle browsed A cacia bushes for this purpose. The quantities ingested were small. Preferences of both species of animal varied with choice available and its physical condition. The pretreatment of herbage by other species of animals is considered important in affecting its acceptability. Cattle and buffalo appeared to be competitive for food in the three environments in this study but the buffalo utilized certain environments e.g. standing water, tree shade, to a greater extent than the cattle and so represented an overall improvement in the secondary productivity from the area.  相似文献   

19.
Guo Z G  Li X F  Liu X Y 《农业工程》2012,32(1):44-49
Plateau pika (Ochotona curzoniae) is a key component of alpine meadow ecosystem in the Qinghai- Tibetan Plateau, and the increase of its number leads plant components of alpine meadow ecosystem to adaptively response. A field survey was carried out to determine the response of alpine meadow community to population densities of plateau pika by using available burrow density to replace the population density of plateau pika. This study showed that the height of alpine meadow communities gradually increased, and the cover of alpine meadow communities firstly decreased, and then increased as the available burrow density increased. With the increase of available burrow density, the richness index of alpine meadow communities firstly decreased and then increased, and the evenness index of alpine meadow communities firstly increased and then decreased, however, the diversity index of alpine meadow communities firstly increased, and then decreased, finally increased. In the increasing process of available burrow density, the total plant biomass and the unpalatable plant biomass firstly decreased and then increased, and the palatable plant biomass firstly increased and then decreased, indicating that the palatable plant biomass was the highest and the unpalatable plant biomass was the lowest at 14 available burrow per 625 m2. In the economic groups of plant biomass, the weed biomass was the highest and the legume biomass was the lowest at any available burrow densities, and the grass biomass and the sedge biomass were related to available burrow densities, indicating that the sedge biomass were bigger than the grass biomass at 3 available burrow per 625 m2, inverse at 54 available burrow per 625 m2, similar between 3 and 34 available burrow per 625 m2. Accompanying by the increase of available burrow densities, the legume biomass and the sedge biomass significantly decreased (P < 0.05) and the legume became disappearance at 54 available burrow per 625 m2; the grass biomass firstly increased and then decreased, peaking at 14 available burrow per 625 m2. The weed biomass firstly decreased and then increased, and was the lowest at 14 available burrow per 625 m2. This study suggested that the responses of alpine meadow communities to population density of plateau pika at 14 available burrows per 625 m2 were more sensitive than that at other available burrow per 625 m2 from plant species diversity, biomass, height, cover and economic group.  相似文献   

20.
The aim of this meta-analysis was to compare feed intake, milk production, milk composition and organic matter (OM) digestibility in dairy cows fed different grass and legume species. Data from the literature was collected and different data sets were made to compare families (grasses v. legumes, Data set 1), different legume species and grass family (Data set 2), and different grass and legume species (Data set 3+4). The first three data sets included diets where single species or family were fed as the sole forage, whereas the approach in the last data set differed by taking the proportion of single species in the forage part into account allowing diets consisting of both grasses and legumes to be included. The grass species included were perennial ryegrass, annual ryegrass, orchardgrass, timothy, meadow fescue, tall fescue and festulolium, and the legume species included were white clover, red clover, lucerne and birdsfoot trefoil. Overall, dry matter intake (DMI) and milk production were 1.3 and 1.6 kg/day higher, respectively, whereas milk protein and milk fat concentration were 0.5 and 1.4 g/kg lower, respectively, for legume-based diets compared with grass-based diets. When comparing individual legume species with grasses, only red clover resulted in a lower milk protein concentration than grasses. Cows fed white clover and birdsfoot trefoil yielded more milk than cows fed red clover and lucerne, probably caused by a higher OM digestibility of white clover and activity of condensed tannins in birdsfoot trefoil. None of the included grass species differed in DMI, milk production, milk composition or OM digestibility, indicating that different grass species have the same value for milk production, if OM digestibility is comparable. However, the comparison of different grass species relied on few observations, indicating that knowledge regarding feed intake and milk production potential of different grass species is scarce in the literature. In conclusion, different species within family similar in OM digestibility resulted in comparable DMI and milk production, but legumes increased both DMI and milk yield compared with grasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号