首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used high definition radial, strain rate and intensity spatiotemporal mapping to quantify contractile movements of the body and associated structures of the rabbit caecum when the terminal ileum was being perfused with saline at a constant rate. This perfusion caused gradual distension of the caecum as a result of relative restriction of outflow from the ampulla caecalis. The body of the caecum exhibited two patterns of motility that appeared autonomous, i.e. occurred independently of any contractile activity at the inlet or outlet. Firstly, the pattern that we termed ladder activity consisted of an orderly sequential contraction of bundles of axially oriented circular muscle between the spiral turns of longitudinal muscle and proceeded either from base to tip or from tip to base at a similar frequency and velocity. Secondly, less-localised, rapidly propagating synchronous contractions of both circular and longitudinal muscle, which were more common when the caecum was distended, that were termed mass peristalsis. Movements of the ileum and sacculus rotundus occurred at the same frequency and were broadly coordinated. Distension of the distal sacculus occurred synchronously with contraction of the ileum and did not propagate in an orderly manner across the structure, i.e. was instantaneous. This pattern was consistent with hydrostatic distension. Contractions propagated through the ampulla caecalis in either an orad or an aborad direction at a similar frequency to, and broadly correlated with, those in the ileum. The frequencies of distension of the sacculus and of contraction in the ileum and ampulla were momentarily augmented during mass peristalsis. The authors conclude that there was some coordination between the contractile activity of the terminal ileum and the caecal ampulla during periods of ongoing inflow from the ileum and between these structures and the caecum during mass peristalsis.  相似文献   

2.
Longitudinal and radial movements during spontaneous contractions of isolated segments of terminal ileum of the brushtail possum, a species of arboreal folivore, were studied using high definition spatiotemporal maps. Segments obtained from specimens were continuously perfused with solutions of various apparent viscosities at 3 cm and 5 cm hydrostatic pressure. A series of sustained tetrodotoxin-sensitive peristaltic events occurred during perfusion. The leading edge of each peristaltic event progressed by a succession of rhythmic surges of circular contraction with concerted concurrent phasic longitudinal contractions. Three types of peristaltic event were observed, with differing durations of occlusion and patterns of cyclic, in phase, circular and longitudinal contractions. Each peristaltic event was preceded by a change of shade on the D map that indicated circumferential dilatation. Differences in the slopes of these phasic shade changes from those occurring during peristalsis indicate that this distension is passive and likely results from aboral displacement of fluid. Tetradotoxin insensitive longitudinal contraction waves of frequency 9.2 min−1 occurred during and in the absence of peristalsis, originating at a variety of sites, and propagating either in an orad or aborad direction but predominantly in the latter. Perfusion with 1% guar gum, at 5 cm hydrostatic pressure caused the lumen to become distended and the generation of peristaltic events to cease pending reduction of the hydrostatic head to 3 cm but longitudinal contractile activity was preserved. Neither the frequencies nor the rates of progression of circular and longitudinal contractile events, nor the temporal coordination between these events, varied with the apparent viscosity of the perfusate or altered in a manner that could facilitate mixing.  相似文献   

3.
Four types of contractile activity were identified and characterised in the isolated triple haustrated proximal colon of the rabbit using high-definition spatiotemporal mapping techniques. Mass peristalses were hexamethonium-sensitive deep circular contractions with associated taenial longitudinal contractile activity that occurred irregularly and propagated rapidly aborad, preceded by a zone of local lumen distension. They were sufficiently sustained for each event to occupy the length of the isolated colonic segment and the contraction persisted longer orally than aborally, the difference being more pronounced when lumen contents were viscous. Haustra were bounded by deep even-spaced ring contractions that progressed slowly aborad (haustral progression). Haustral formation and progression were hexamethonium-sensitive and coordinated across intertaenial domains. Ripples were hexamethonium-resistant phasic circular contractions that propagated predominantly orad at varying rates. In the presence of haustra, they were uncoordinated across intertaenial domains but were more coordinated when haustra were absent. Fast phasic contractions were relatively shallow hexamethonium-resistant contractions that propagated rapidly in a predominantly aborad direction. Fast phasic circular contractions were accompanied by taenial longitudinal muscle contractions which increased in amplitude prior to a mass peristaltic event and following the administration of hexamethonium. On the basis of the concurrence and interaction of these contractile activities, we hypothesise that dual pacemakers are present with fast phasic contractions being modulated by the interstitial cells of Cajal in the Auerbach’s plexus (ICC-MY) while ripples are due to the submucosal ICC (ICC-SM). Further, that ICC-SM mediate the enteric motor neurons that generate haustral progression, while the intramuscular ICC (ICC-IM) mediate mass peristalsis. The orad movement of watery fluid was possibly due to ripples in the absence of haustra.  相似文献   

4.
A calcite canopy, which is permeated by the fine tubules of the caecal brush, covers the distal end of each punctum in living Terebratulida. At a very early stage in the growth of the caecum, the tubules comprising the brush probably accommodated the microvillous ends of core cells which normally hang within the caecal head. The perforate canopies, if considered as moulds of part of the core cells, reflect some of the morphological detail of the fleshy caeca.
Perforate calcite canopies have been discovered in the fossil terebratellacean Lobothiris punctata (Sowerby), and in the late spiriferinacean Spiriferina walcotti (Sowerby), both found in the Lower Liassic rocks of Somerset, England. The significance of such discoveries is discussed.  相似文献   

5.
In sheep with long-standing fistulae of the caecum, proximal loop of the colon and rumen the motor activity of these parts of the intestine was studied using the balloon method. Slow isoprenaline infusion caused first inhibition of caecal contractions, followed by gradually decreasing intensity of contractions of the colon and rumen. This inhibitory effect of isoprenaline was eliminated by propranolol. Intravenous infusion of phenylephrine failed to inhibit the colonic motor activity. A small dose of atropine, similarly as isoprenaline, caused an irregular inhibition of the contractions of the caecum, colon and rumen. In sheep, in contrast to other animal species, the effects inhibiting large intestine motility are mediated only by the beta-adrenergic receptors. The inhibitory effect of the beta-adrenergic receptors was strongest in the caecum.  相似文献   

6.
R D Rothstein  A Ouyang 《Life sciences》1989,45(16):1475-1482
Neurotensin, a neuropeptide identified in the distal small intestine, plays an unclear role in ileocecal sphincter regional function. The purpose of this study was to determine the effect and mechanism of action of neurotensin on the feline ileocecal sphincter (ICS), proximal colon, and distal ileum. Intraluminal pressures were recorded at these sites in anesthetized cats after superior mesenteric artery injection of neurotensin. Dose dependent tonic and phasic contractions were seen at all sites. Peak pressure responses were seen at the maximal dose used and were greater for the ICS than the distal ileum and the proximal colon. The threshold dose for peak pressures for neurotensin was 0.05 microgram/kg for all sites with the maximal peak pressures occurring at the maximal dose used (100 micrograms/kg). The motility index (MI [number of contractions x mean amplitude of contractions]) was determined for three minutes before and after neurotensin injection. The change in the motility index after neurotensin increased at doses above 0.05 micrograms/kg for the ileum and the ICS and 0.25 microgram/kg for the colon. Maximal responses for the motility index were seen at 1 microgram/kg for the distal ileum, and 10 micrograms/kg for the ICS and the proximal colon, with the greatest response seen at the ICS. Neurotensin-induced ICS relaxation was seen at 1 microgram/kg (50 +/- 10%, p less than 0.01) in 33% of cats. The contractile responses of the distal ileum and the proximal colon were not inhibited by naloxone, trimethaphan, tetrodotoxin, or atropine. The ICS contractile response was decreased by tetrodotoxin by 53%, p less than 0.05. The alpha 2 antagonist, yohimbine reduced the neurotensin induced ICS contraction from 31.6 +/- 3.4 to 21.9 +/- 3.3 mm Hg, p less than 0.05. Prazosin had no effect on neurotensin-induced contractions. In the presence of cimetidine and diphenhydramine, trimethaphan did not affect the neurotensin-induced contractile response at all three sites. However, neurotensin inhibited contractions induced by trimethaphan alone at all three sites. Conclusions: 1. Neurotensin causes a dose-dependent contractile response at the distal ileum, ICS, and proximal colon. 2. Neurotensin has an inhibitory effect at all three sites. 3. The contractile response at the distal ileum and the proximal colon is mediated via smooth muscle receptors. 4. The contractile response of neurotensin at the ICS is mediated partly via alpha 2 receptors and partly via smooth muscle receptors.  相似文献   

7.
The aim of this study was to investigate the modulation of in vitro rat colonic circular muscle contractions by dextran sodium sulfate (DSS)-induced inflammation and in spontaneous inflammation in HLA-B27 rats. We also examined the potential role of hydrogen peroxide (H(2)O(2)) in modulating excitation-contraction coupling. The muscle strips from the middle colon generated spontaneous phasic contractions and giant contractions (GCs), the proximal colon strips generated primarily phasic contractions, and the distal colon strips were mostly quiescent. The spontaneous phasic contractions and GCs were not affected by inflammation, but the response to ACh was suppressed in DSS-treated rats and in HLA-B27 rats. H(2)O(2) production was increased in the muscularis of the inflamed colon. Incubation of colonic muscle strips with H(2)O(2) suppressed the spontaneous phasic contractions and concentration and time dependently reduced the response to ACh; in the middle colon, it also increased the frequency of GCs. We conclude that H(2)O(2) mimics the suppression of the contractile response to ACh in inflammation. H(2)O(2) also selectively suppresses phasic contractions and increases the frequency of GCs, as found previously in inflamed dog and human colons.  相似文献   

8.
To examine the connection between caecal size and urea concentration in the caecal contents urease inhibition was tested in conventional animals and urea and urease were administered to germ-free rats and mice. Administration of alloxan and barbituric acid and immunization with urease led to slightly larger caeca in conventional animals. Neomycin treatment caused a clear enlargement of the caecum. In germ-free animals urease administration led to a reduction in the caecal size, whereas urea in the drinking water caused enlargement. The urea concentration and the urease activity in the caecal contents correlated well with the caecal weights.  相似文献   

9.
Electrical and mechanical properties of the distal canine lower esophageal sphincter were studied in vitro to investigate possible means of inducing pacemaker activity. Both direct excitation and block of potassium conductance were investigated. The acetylcholine analog, carbachol, induced tissue depolarization and increase in tone but no electrical slow waves. Tetraethylammonium (TEA) chloride induced depolarization and evoked continuous spiking activity and increase in tone. BaCl did not depolarize the tissue but low amplitude spiking activity developed and increased tone. The putative potassium channel blocker, aminacrine at 2 X 10(-4) M, induced electrical slow wave activity in the distal lower esophageal sphincter, with or without superimposed spikes, accompanied by phasic contractile activity. This activity closely resembled the spontaneous pacemaker activity observed previously in the proximal lower esophageal sphincter. The aminacrine-induced activity was abolished by calcium influx blockers. Aminacrine, but not TEA or BaCl, abolished the nonadrenergic nerve-mediated inhibitory junction potentials. In conclusion, block of inhibitory innervation, and induction of electrical slow waves as a control mechanism for phasic contractile activity, seems to require blockade of an aminacrine- but not TEA-sensitive potassium conductance.  相似文献   

10.
The guinea-pig ileocaecal junction including the valve was studied by immunohistochemistry to clarify the organization of the muscle bundles, the enteric nerves and the interstitial cells of Cajal (ICC). This region clearly exhibited characteristic features in the distribution patterns of ICC in a proximal to distal direction: (1) the thickened portion of the terminal ileum immediately adjacent to the ileocecal junction contained many ICC throughout the circular (ICC-CM) and longitudinal (ICC-LM) muscle layers, but ICC were few or absent in the rest of the ileum; (2) the ileal side of the valve contained ICC associated with the deep muscular plexus (ICC-DMP) as in the small intestine, whereas ICC-DMP were absent in the caecal side as in the caecum; (3) the valve contained many ICC-CM and ICC-LM in both the ileal and caecal sides; (4) many ICC associated with the myenteric plexus were observed in both the ileal and caecal sides of the valve, whereas they were only sparsely found in the caecum; (5) ICC were also observed around the submucosal plexus in a confined area of the terminal ileum and the ileocaecal valve. These observations provide morphological evidence that the terminal ileum and ileocaecal valve are specially equipped for their active involvement in the movement of the junctional area.  相似文献   

11.
Microborings in the primary shell layer of Recent brachiopods are clearly seen to avoid endopunctamicroscopic canals pervading the shell fabric and housing papillose extcnlions of the mantle (the caeca). This avoidance confirms the suggestion that the caecal contents inhibit boring organisms (Owen & Williams 1969; Proc. R. Soc. Loud. B, 172 ), and as such the caecum can be considered as an important instrument in protecting the brachiopod shell. A comparison of the relative fecundity of co-habitating impunctate and cndopunctate New Zealand brachiopods provides indirect evidence that the caecum may indeed also function in a nutrient storage capacity. Brachiopods, microborings, primary shell layer, endopuncta, defence, storage.  相似文献   

12.
1. When studied in vitro, tissue from the caecum and the proximal colon of rabbits converted butyrate into ketone bodies. The conversion was similar to that observed with liver slices. The ketogenic activity was associated with the mucosa rather than the muscle of the gut wall and, in the colon, diminished as the distance from the caecal-colonic junction increased. 2. Tissue from the wall of the ileum, caecum, proximal colon and distal colon was also shown to metabolize [1-(14)C]butyrate to carbon dioxide. 3. Enzyme assays showed that in both liver tissue and caecal mucosa the activity of hydroxymethylglutaryl-CoA synthase was more than ten times that of acetoacetyl-CoA deacylase. Labelling experiments in vitro gave confirmation of the hydroxymethylglutaryl-CoA pathway. 4. The significance of the conversion of butyrate into ketone bodies is discussed.  相似文献   

13.
The mechanisms by which dopamine (DA) influences gastrointestinal (GI) tract motility are incompletely understood and complicated by tissue- and species-specific differences in dopaminergic function. To improve the understanding of DA action on GI motility, we used an organ tissue bath system to characterize motor function of distal colonic smooth muscle segments from wild-type and DA transporter knockout (DAT -/-) mice. In wild-type mice, combined blockade of D(1) and D(2) receptors resulted in significant increases in tone (62 +/- 9%), amplitude of spontaneous phasic contractions (167 +/- 24%), and electric field stimulation (EFS)-induced (40 +/- 8%) contractions, suggesting that endogenous DA is inhibitory to mouse distal colonic motility. The amplitudes of spontaneous phasic and EFS-induced contractions were lower in DAT -/- mice relative to wild-type mice. These differences were eliminated by combined D(1) and D(2) receptor blockade, indicating that the inhibitory effects of DA on distal colonic motility are potentiated in DAT -/- mice. Motility index was decreased but spontaneous phasic contraction frequency was enhanced in DAT -/- mice relative to wild-type mice. The fact that spontaneous phasic and EFS-induced contractile activity were altered by the lack of the DA transporter suggests an important role for endogenous DA in modulating motility of mouse distal colon.  相似文献   

14.
Intraluminal pressure microtransducers were placed at the uterotubal junction, the proximal isthmus, the ampullary-isthmic junction and the mid-ampulla. Spontaneous motility occurred throughout the oestrous cycle in all segments. During oestrus there were regular, high amplitude peristaltic waves in all segments, superimposed on basal activity. On Day 1 of the cycle the pattern was mostly antiperistaltic, presumably related to sperm transport. During the periovulatory period the number of peristaltic and antiperistaltic waves became equal, perhaps in relation to the transport of gametes to the fertilization site. During Day 3 there was no peristaltic activity; the motility patterns of the isthmus and ampullary-isthmic junction were similar (regular phasic contractions of high frequency and amplitude) while the ampullary motility was low. On Day 4, when the eggs enter the uterine lumen, the ampullary-isthmic junction and particularly the isthmus showed strong contraction waves (mostly peristaltic) superimposed on the basal phasic activity. This suggests an active role of the smooth muscle of the lower oviducal segments in ovum descent. During the mid- and late-luteal phases, the isthmus remained motile, with an irregular base line, but lost the pattern of basal contractions that dominated the activity during the first 4 days of the cycle. The ampulla showed low levels of spontaneous motility throughout the rest of the cycle.  相似文献   

15.
The hepatopancreatic caeca of the freshwater amphipod Gummarus minus are four tapered blind pouches lined with a simple columnar epithelium bearing an apical surface of regular microvilli and resting on a basement membrane. This epithelium is enclosed by a tonic, striated muscularis. Each caecum consists of three regions. The distal zone is formed of embryonic cells having a high nuclear to cytoplasmic ratio and giving rise to the other cell types. The second or differentiation zone consists of regular tall columnar cells of two morphological types:(1) light staining R-cells which have a large number of lipid droplets and few Golgi bodies; (2) basophilic F-cells which have numerous distended Golgi bodies. The more proximal secretory zone forms the majority of each diverticulum. This mature zone is formed from R-cells and large, basophilic, vacuolated B-cells which differentiate from F-cells. The secretory cell sequence appears to be E-cell — F-cell — B-cell with secretion being apocrine in nature. The exact relationship of Rcells to the other cell types is questionable, but the R-, F - and B-cells all appear to be able to absorb and store nutrients. Within the Malacostraca the hepatopancreatic epithelium of Amphipoda more closely approximates that of Decapoda than that of the Isopoda.  相似文献   

16.
Electrical and contractile activities of smooth muscle strips isolated from the circular muscle layer of cat gastric antrum were studied using the sucrose gap technique. Bombesin (10(-8) mol/l) depolarized the gastric muscle; this was accompanied by an increase in the strip tone, in the plateau action potential frequency and in both the frequency and the amplitude of the spike potentials as well as by a shortening of the plateau action potential duration. Both the frequency and the amplitude of the phasic contractions increased thereafter. The changes in the frequency of the plateau action potentials and contractions were not influenced either by antagonists of cholinergic and adrenergic receptors or by TTX. In the presence of the Ca antagonists D600 (10(-6) mol/l) and nifedipine (10(-7) mol/l) or in Ca-free medium containing EGTA the effect of bombesin on the frequency of the plateau action potentials and phasic contractions remained unchanged; however, spike potentials were not observed and no increase in the amplitude of phasic contractions occurred. UV-light inactivation of nifedipine restored the typical bombesin effect on the electrical and contractile activities of the gastric smooth muscle. The present data suggest that the effect of bombesin on the frequency of both plateau action potentials and phasic contractions is not linked with Ca2+ influx.  相似文献   

17.
《Cellular signalling》2014,26(5):1001-1010
Activation of the cyclic AMP (cAMP) pathway reduces bladder contractility. However, the role of phosphodiesterase (PDE) families in regulating this function is poorly understood. Here, we compared the contractile function of the cAMP hydrolyzing PDEs in neonatal rat bladder smooth myocytes. RT-PCR and Western blotting analysis revealed that several isoforms of PDE1–4 were expressed in neonatal rat bladder. While 8-methoxymethyl-3-isobutyl-1-methylxanthine (a PDE1 inhibitor) and BAY-60-7550 (a PDE2 inhibitor) had no effect on the carbachol-enhanced phasic contractions of bladder strips, cilostamide (Cil, a PDE3 inhibitor) and Ro-20-1724 (Ro, a PDE4 inhibitor) significantly reduced these contractions. This inhibitory effect of Ro was blunted by the PKA inhibitor H-89, while the inhibitory effect of Cil was strongly attenuated by the PKG inhibitor KT 5823. Application of Ro in single bladder smooth myocytes resulted in an increase in Ca2 + spark frequency but a decrease both in Ca2 + transients and in sarcoplasmic reticulum (SR) Ca2 + content. In contrast, Cil had no effect on these events. Furthermore, Ro-induced inhibition of the phasic contractions was significantly blocked by ryanodine and iberiotoxin. Taken together, PDE3 and PDE4 are the main PDE isoforms in maintaining the phasic contractions of bladder smooth myocytes, with PDE4 being functionally more active than PDE3. However, their roles are mediated through different mechanisms.  相似文献   

18.
This trial studied the effect of including mannanoligosaccharides (MOS, Bio-Mos®, Alltech Inc., USA) in the diet on the caecal volatile fatty acids (VFA) and pH of rabbits from 34 to 90 days of age. Three experimental diets were compared: control diet, zinc bacitracin (ZnBac) diet (control diet with 0.1 g ZnBac/kg feed) and MOS diet (control diet with 2.0 g MOS/kg feed). Rabbits were slaughtered at 34, 48, 69 and 90 days of age and caecal contents were collected and analyzed for dry matter, pH and VFA concentration. The empty caecum and caecal contents weights relative to live weight were also determined.Age affected (P<0.0001) VFA concentration and pH values in the caecum. The pH decreased with age whereas VFA concentration increased. Rabbits fed MOS had higher (P<0.05) VFA and tended (P=0.098) to had lower pH in the caecum than rabbits fed ZnBac and control diets. Acetic, propionic and butyric acids concentrations in the caecum increased with MOS but its molar proportions were similar among diets. Diet had no effect on empty caecum weight and caecal contents weight and dry matter concentration. There was no interaction effect between diet and age. From 34 to 90 days of age, VFA production was higher (P<0.05) in the caecum of rabbits fed MOS than in those fed ZnBac diet and control diet.The addition of MOS to the diet increased the VFA concentration in the caecum of growing rabbits from 34 to 90 days of age.  相似文献   

19.
To escape from starfish predators, giant scallops, Placopecten magellanicus, swim using series of strong phasic contractions interrupted by tonic contractions. To investigate whether these tonic contractions allow metabolic recuperation of the adductor muscle, we sampled scallops at rest (Control), after an initial series of phasic contractions (Phasic) and after 1 min of tonic contraction following their initial phasic contractions (Phasic + Tonic) and compared muscle levels of phosphoarginine, adenylate nucleotides (ATP, ADP and AMP) and adenylate energy charge (AEC). Scallops in the two active groups did not differ in the numbers of phasic contractions or the mean phasic force production. Phosphoarginine concentrations in the adductor muscle decreased with phasic activity and remained low after 1 min of tonic contraction. ATP and ADP and total adenylate levels did not differ between the three groups, but AMP levels were higher in the scallops sampled after phasic contractions than in control scallops. The AEC was reduced by phasic contractions but returned to control levels after 1 min of tonic contraction. A significant negative correlation between AEC and the number of claps in the Phasic group disappeared in the Phasic + Tonic group. Thus, tonic contractions following phasic contractions allow partial metabolic recovery of the adductor muscle by returning AEC to control levels. However, phosphoarginine levels did not recover during tonic contractions, and a negative correlation between the number of claps and phosphoarginine levels remained in the Phasic + Tonic group. By interspersing tonic contractions between series of phasic contractions, scallops improved muscle energetic status, which should help maintain phasic force production during the remainder of the escape response.  相似文献   

20.
Experiments were performed on four cats to characterize fasting gastric and small bowel motility and to assess the role of extrinsic vagal innervation in the control of that motor activity. A multilumen manometry tube was positioned to record pressure changes from the proximal small bowel and stomach. Transient vagal nerve blockade was accomplished by cooling the cervical vagosympathetic nerve trunks, previously isolated in skin loops on each side of the neck. Two characteristic patterns of basal activity were documented in the stomach: (i) regular phasic contractions of variable amplitude in the body of the stomach; and (ii) infrequent, irregular contractions of high amplitude in the distal antrum. In the duodenum, two predominant activity patterns were noted: (i) periods of continuous irregular activity; and (ii) irregular clusters of contractions separated by quiescent intervals. No typical migrating motor complex activity was seen in the basal gastric or small bowel recordings. Bilateral vagal blockade did not consistently change the general pattern of gastric or small bowel activity, but did appear to reduce gastric contractile activity, as measured by motility indices. We conclude that extrinsic vagal innervation does not play a major role in the control of fasting feline gastric and duodenal motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号