首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several factors have been proposed to explain female maintenance in gynodioecious populations. In this study, we propose and test a novel hypothesis: greater tolerance to herbivory through more beneficial interactions with plant fungal mutualists might also help to explain female maintenance. Herbivory limits the amount of carbon and nutrients available for the plants and has been shown to affect mycorrhizal colonization. We hypothesized that simulated herbivory would decrease reproductive output, mycorrhizal colonization intensity, and the phosphorus content relatively more in hermaphrodites, so females would achieve higher advantage over hermaphrodites when under herbivory pressure. We tested it in the field using the gynodioecious plant Geranium sylvaticum. We found that simulated herbivory had a negative effect on the reproductive output in both sexes and that there was a similar reduction in fruit set, seed set, and total seed number in both sexes. Defoliation did not affect any fungal parameter measured, but decreased phosphorus content relatively more in females. The plants had a sex-specific relationship with mycorrhizae, but this was not related to herbivory. Thus, we conclude that females do not gain any specific advantage under defoliation from its symbionts at short-term even though it seems that the plants have sex-specific relationship with their mycorrhizal symbionts.  相似文献   

2.
Tomasz Wyka 《Oecologia》1999,120(2):198-208
I tested hypotheses for ecological roles of storage carbohydrates in perennating organs (roots and branches) of alpine Oxytropis sericea, a leguminous herb. In naturally growing plants, total nonstructural carbohydrates achieved their maximal concentration in the fall, declined during winter, and reached minimal levels immediately after growth initiation in the spring. Experimental manipulation of carbon sink-source relations through shading of leaves of reproductive plants revealed that the normally unused portion of these carbohydrates is largely available for withdrawal. In another experiment, plants subjected to carbohydrate depletion through shading suffered decreased leaf growth after winter dormancy and had a lower probability of flowering and decreased inflorescence biomass. The dependence of reproductive growth on stored carbohydrates, however, was limited to its initial stages, because accumulation of storage carbohydrates occurred simultaneously with inflorescence expansion, flowering, and fruiting. Moreover, the whole-plant photosynthetic rate, estimated from gas exchange measurements also peaked at the time of inflorescence growth. To address whether stored reserves allow compensatory regrowth following defoliation, plants were subjected to experimental removal of leaves and inflorescences. Defoliated O. sericea partly regrew the lost leaves but withdrawal of stored carbohydrates was limited. Similarly, in a second defoliation experiment where infructescences were left intact, the plants used little stored carbohydrate and only partly compensated for fruit growth. However, carbohydrate accumulation was negatively affected by defoliation. While the ecological importance of stored nonstructural carbohydrates cannot be attributed to any function in isolation, winter respiration, leaf regrowth after winter, and early reproductive growth in O. sericea all depend to a significant extent on stored reserves. Maintaining a large storage pool may protect these functions in years when carbon status is less favorable than during this study. Received: 13 May 1998 / Accepted: 24 November 1998  相似文献   

3.
Theories of optimal resource allocation in flowering plants postulate that allocation to sexual functions are balanced. While many studies have found such evidence in hermaphroditic species among flowers, plants or populations, or at different phenological stages, it has not been supported by other studies. This has been explained by differences among genotypes in ability to acquire resources, resource partitioning among traits unrelated to reproduction or strong selection to maintain positive genetic correlation among traits. I studied how herbivory affected resource allocation to sexual functions in the perennial herb Paeonia broteroi (Paeoniaceae) by measuring a number of floral traits in control plants and in experimental plants under simulated herbivory. The species shows very little plasticity in resource allocation between sexual structures and functions, and appears to be highly sensitive to alterations in the balance of resource acquisition and allocation, with an immediate outcome in terms of seed production and a mid-term response in terms of sprouting and flowering. Plants' ability to collect resources for growth and reproduction before their senescence at the end of the reproductive season, are compromised. This may limit their reproductive potential, the maintenance and growth of their populations, and may influence their demographic state and the plants' ability to respond to selective pressures by external biotic agents.  相似文献   

4.
Summary Compensatory growth in response to simulated belowground herbivory was studied in the old-field clonal perennialSolidago canadensis. We grew rootpruned plants and plants with intact root systems in soil with or without fertilizer. For individual current shoots (aerial shoot with rhizome and roots) and for whole clones the following predictions were tested: a) root removal is compensated by increased root growth, b) fertilizer application leads to increased allocation to aboveground plant organs and increased leaf turnover, c) effects of fertilizer application are reduced in rootpruned plants. When most roots (90%) were removed current shoots quickly restored equilibrium between above-and belowground parts by compensatory belowground growth whereas the whole clone responded with reduced aboveground growth. This suggests that parts of a clone which are shared by actively growing shoots act as a buffer that can be used as source of material for compensatory growth in response to herbivory. Current shoots increased aboveground mass and whole clones reduced belowground mass in response to fertilizer application, both leading to increased allocation to aboverground parts. Also with fertilizer application both root-pruned and not root-pruned plants increased leaf and shoot turnover. Unfertilized plants, whether rootpruned or not, showed practically no aboveground growth and very little leaf and shoot turnover. Effects of root removal were as severe or more severe under conditions of high as under conditions of low nutrients, suggesting that negative effects of belowground herbivory are not ameliorated by abundant nutrients. Root removal may negate some effects of fertilizer application on the growth of current shoots and whole clones.  相似文献   

5.
Summary Four genotypes of P. lanceolata were grown to maturity at combinations of two levels of atmospheric CO2 concentrations and two temperature conditions. Seed weight was determined, and seed germination and seedling growth were measured for the progeny of each genotype under the same environmental conditions. Overall, high CO2 levels decreased seed weight, increased germination percentage and rate, and increased seedling size. Families differed in their response to CO2 enrichment, and to combinations of CO2 and temperature levels for several characters. These results suggest the existence of genetic variability in P. lanceolata in response to CO2 enrichment.  相似文献   

6.
Carbon allocation and N acquisition by plants following defoliation may be linked through plant-microbe interactions in the rhizosphere. Plant C allocation patterns and rhizosphere interactions can also be affected by rising atmospheric CO(2) concentrations, which in turn could influence plant and microbial responses to defoliation. We studied two widespread perennial grasses native to rangelands of western North America to test whether (1) defoliation-induced enhancement of rhizodeposition would stimulate rhizosphere N availability and plant N uptake, and (2) defoliation-induced enhancement of rhizodeposition, and associated effects on soil N availability, would increase under elevated CO(2). Both species were grown at ambient (400 μL L(-1)) and elevated (780 μL L(-1)) atmospheric [CO(2)] under water-limiting conditions. Plant, soil and microbial responses were measured 1 and 8 days after a defoliation treatment. Contrary to our hypotheses, we found that defoliation and elevated CO(2) both reduced carbon inputs to the rhizosphere of Bouteloua gracilis (C(4)) and Pascopyrum smithii (C(3)). However, both species also increased N allocation to shoots of defoliated versus non-defoliated plants 8 days after treatment. This response was greatest for P. smithii, and was associated with negative defoliation effects on root biomass and N content and reduced allocation of post-defoliation assimilate to roots. In contrast, B. gracilis increased allocation of post-defoliation assimilate to roots, and did not exhibit defoliation-induced reductions in root biomass or N content. Our findings highlight key differences between these species in how post-defoliation C allocation to roots versus shoots is linked to shoot N yield, but indicate that defoliation-induced enhancement of shoot N concentration and N yield is not mediated by increased C allocation to the rhizosphere.  相似文献   

7.

Background and Aims

Herbivory and plant defence differ markedly among seedlings and juvenile and mature plants in most species. While ontogenetic patterns of chemical resistance have been the focus of much research, comparatively little is known about how tolerance to damage changes across ontogeny. Due to dramatic shifts in plant size, resource acquisition, stored reserves and growth, it was predicted that tolerance and related underlying mechanisms would differ among ontogenetic stages.

Methods

Ontogenetic patterns in the mechanisms of tolerance were investigated in Plantago lanceolata and P. major (Plantaginaceae) using the genetic sib-ship approach. Pot-grown plants were subjected to 50 % defoliation at the seedling, juvenile and mature stages and either harvested in the short-term to look at plasticity in growth and photosynthesis in response to damage or allowed to grow through seed maturation to measure phenology, shoot compensation and reproductive fitness.

Key Results

Tolerance to defoliation was high in P. lanceolata, but low in P. major, and did not vary among ontogenetic stages in either species. Mechanisms underlying tolerance did vary across ontogeny. In P. lanceolata, tolerance was significantly related to flowering (juveniles) and pre-damage shoot biomass (mature plants). In P. major, tolerance was significantly related to pre-damage root biomass (seedlings) and induction of non-photochemical quenching, a photosynthetic parameter (juveniles).

Conclusions

Biomass partitioning was very plastic in response to damage and showed associations with tolerance in both species, indicating a strong role in plant defence. In contrast, photosynthesis and phenology showed weaker responses to damage and were related to tolerance only in certain ontogenetic stages. This study highlights the pivotal role of ontogeny in plant defence and herbivory. Additional studies in more species are needed to determine how seedlings tolerate herbivory in general and whether mechanisms vary across ontogeny in consistent patterns.  相似文献   

8.
Compensatory growth responses of Leymus chinensis, a dominant species in Inner Mongolia steppe, to clipping defoliation were evaluated in a pot-cultivated experiment under different nutrient (N and P) and water availability conditions. Leymus chinensis exhibited over-compensatory growth at the light and moderate clipping intensities (20% and 40% aerial mass removed) with a greater accumulated aboveground biomass, higher relative growth rate (RGR), more rhizomatic tillers and a stimulation of compensatory photosynthesis to the remnant leaves as compared with those of the unclipped plants. Intense clipping (80% aerial mass removed), which removed most of the aboveground tissues, greatly reduced the growth of aboveground biomass in comparison with that of the unclipped plants. Nitrogen addition only slightly improved the biomass production and RGR in light and moderately clipped plants, and it did not allow plants in the intense clipping condition to over-compensate. Phosphorus addition had no obvious influences on the growth and physiological responses to clipping defoliation. These results indicated that nutrient addition could not compensate for the negative effects of severe clipping on the defoliated grass. On the other hand, there were no distinct positive responses under water deficiency condition for L. chinensis at all clipping intensities with a significant reduction of aboveground and belowground biomass, lower RGR, fewer rhizomatic tillers, and a lower net photosynthetic rate than other wet treatments. Additionally, the chlorophyll contents of remnant leaves gradually increased with the increase of clipping intensities in each treatment. In conclusion, although L. chinensis could compensate for tissues removal by some morphological and physiological responses, intense clipping and drought can result in a significant decrease of biomass and growth rate, even under enriched nutrition conditions.  相似文献   

9.
We compared above-ground allocation patterns in mature shrubs of Banksia hookeriana from three 13-year-old populations, growing on nutrient-impoverished sands to determine whether C (dry mass) could be a substitute for mineral nutrients (N, P, K, Ca, Mg and NA). The percentage of reproductive structures to total above-ground growth (reproductive effort; RE) was integrated over nine successive reproductive cycles. Only 0.5% of above-ground dry mass was allocated to seeds compared with 31% to total RE. Allocations of N (24%) and P (48%) to seeds, and N (44%) and P (65%) to RE were much higher. Allocations of K, Ca, Mg and Na to seeds (<1–3%), and RE (21–35%) were closer to that of dry mass. Relative allocation (RA) is defined as the proportion of a nutrient element allocated to a structure relative to its dry mass. RA of P to seeds was 91 and N was 44, but for K, Ca, Mg and Na ranged from only 6 for K to<1 for Na. Thus P, and to a lesser extent N, provide a much more sensitive measure of the relative cost of reproduction than C in this nutrient-limited system.  相似文献   

10.
Previous lines of investigation assuming potential advantage of clonal integration generally have neglected its plasticity in complex heterogeneous environments. Clonal plants adaptively respond to abiotic heterogeneity (patchy resource distribution) and herbivory‐induced heterogeneity (within‐clone heterogeneity in ramet performance), but to date little is known about how resource heterogeneity and simulated herbivory jointly affect the overall performance of clones. Partial damage within a clone caused by herbivory might create herbivory‐induced heterogeneity in a resource‐homogeneous environment, and might also decrease or increase the extent of heterogeneity under resource‐heterogeneous conditions. We conducted a greenhouse experiment in which target‐ramets of Leymus chinensis segments within homogeneous or heterogeneous nutrient treatments were subject to clipping (0% or 75% shoot removal). In homogeneous environments with high (9:9) nutrient availability, ramet biomass of L. chinensis with intact or severed rhizomes is 0.70 or 0.69 g. Conversely, target‐ramet biomass with intact rhizomes is obviously lower than that of the severed target‐ramets in the homogeneous environments with medium (5:5) and low (1:1) nutrient availability. High resource availability and the presence of herbivory can alleviate negative effects of rhizome connection under homogeneous conditions, by providing copious resource or creating herbivory‐induced heterogeneity respectively. Herbivory tolerance of clonal fragments with connected rhizomes was higher than that of fragments with severed rhizomes under heterogeneous conditions. These findings confirmed the unconditional advantage of clonal integration on reproduction under the combined influence of resource heterogeneity and simulated herbivory. Moreover, our results made clear the synergistically interactive effects of resource heterogeneity and simulated herbivory on costs and benefits of clonal integration. This will undoubtedly advance our understanding on the plasticity of clonal integration under complex environmental conditions.  相似文献   

11.
Vergés A  Pérez M  Alcoverro T  Romero J 《Oecologia》2008,155(4):751-760
Herbivory can induce changes in plant traits that may involve both tolerance mechanisms that compensate for biomass loss and resistance traits that reduce herbivore preference. Seagrasses are marine vascular plants that possess many attributes that may favour tolerance and compensatory growth, and they are also defended with mechanisms of resistance such as toughness and secondary metabolites. We quantified phenotypic changes induced by herbivore damage on the temperate seagrass Posidonia oceanica in order to identify specific compensatory and resistance mechanisms in this plant, and to assess any potential trade-offs between these two strategies of defence. We simulated three natural levels of fish herbivory by repeatedly clipping seagrass leaves during the summer period of maximum herbivory. Compensatory responses were determined by measuring shoot-specific growth, photosynthetic rate, and the concentration of nitrogen and carbon resources in leaves and rhizomes. Induced resistance was determined by measuring the concentration of phenolic secondary metabolites and by assessing the long-term effects of continued clipping on herbivore feeding preferences using bioassays. Plants showed a significant ability to compensate for low and moderate losses of leaf biomass by increasing aboveground growth of damaged shoots, but this was not supported by an increase in photosynthetic capacity. Low levels of herbivory induced compensatory growth without any measurable effects on stored resources. In contrast, nitrogen reserves in the rhizomes played a crucial role in the plant’s ability to compensate and survive herbivore damage under moderate and high levels of herbivory, respectively. We found no evidence of inducibility of long-term resistance traits in response to herbivory. The concentration of phenolics decreased with increasing compensatory growth despite all treatments having similar carbon leaf content, suggesting reallocation of these compounds towards primary functions such as cell-wall construction.  相似文献   

12.
Paweł Olejniczak 《Plant Ecology》2011,212(11):1927-1935
A positive effect of herbivory on plant reproduction (overcompensation) has been documented mostly in monocarpic plants. Iteroparous perennials can be used to test whether enhanced reproduction in 1 year has negative future consequences as predicted by optimal allocation models. This study was intended to verify this prediction in the iteroparous herb Sedum maximum, applying mechanically simulated herbivory. I monitored 132 labelled S. maximum individuals during 2 years of study. They were randomly assigned to two groups: clipped and control. Infructescence dry mass, total seed dry mass, seed size, germination rate and an increase of root dry mass during the season were assessed in the experimental plants. Since only roots can survive to the next season, root dry mass was considered a reliable measure of allocation to future performance. Clipped plants showed increased fruit and seed dry mass versus the controls, with no other aspect of reproduction affected. Apical bud removal also had a positive effect on increase of root dry mass. The results indicate true overcompensation in response to simulated herbivory with no future costs of increased reproduction. Moreover, increased plant reproduction as a result of herbivory is likely to persist in the following years: clipping increased not only seed production but also root growth. This response is inconsistent with the results of optimal allocation models and the discrepancy is probably due to violation of the resource limitation assumption. Plants adapted to tolerate herbivory seem not to reproduce at the maximum rate when undamaged, but rather withhold resources to be allocated to reproduction after herbivory.  相似文献   

13.
Abstract. In order to explore whether seed size affects plant response to elevated CO2, plants grown from red oak (Quercus rubra L.) acorns were studied for differences in their first year response to CO2 concentrations of 350 and 700 μl/l. Overall, at final harvest, total biomass of plants grown in elevated CO2 were 47 % larger than that of plants grown in ambient CO2. There were significant interactions between CO2 treatments and initial acorn mass for total biomass, as well as for root, leaf, and stem biomass. Although total biomass increased with increasing initial acorn mass for both high and ambient CO2 plants, high CO2 plants exhibited a greater increase than ambient CO2 plants, as indicated by a steeper slope in high CO2 plants. However, CO2 levels did not affect biomass partitioning traits, such as root/shoot ratio, leaf, stem, and root weight ratios, and leaf area ratio. These results suggest that variation in seed size or initial plant size can cause intraspecific variation in response to elevated CO2.  相似文献   

14.
15.
16.
Gynodioecy is a breeding system in which hermaphrodites coexist with male steriles. Theoretical models predict that without any compensation in female fitness male steriles will disappear from a population due to their reproductive disadvantage. In the present study I investigated whether male-sterile (MS), partially male-sterile (IN), and hermaphroditic (H) plants of Plantago lanceolata differed in reproductive growth and allocation. Offspring of three interpopulation crosses segregating all three sex morphs were grown under nitrogen-limited conditions in a growth chamber. Independent of the genetic background MS plants attained a higher vegetative and reproductive dry mass and a higher reproductive output than H plants, whereas IN plants had intermediate values. When corrected for the mass of the pollen, the dry mass differences between the sex morphs were much reduced but still present. However, when whole-plant allocation was expressed on the basis of nitrogen, the differences between the sex morphs disappeared. Thus the sex morphs took up similar amounts of nitrogen but distributed them differently. The MS and IN plants used the nitrogen saved by not producing pollen for additional vegetative as well as reproductive growth. The data presented in this study suggest that resource compensation is one of the main mechanisms responsible for the maintenance of MS and IN plants in gynodioecious P. lanceolata.  相似文献   

17.
Both the length of the growing season and the intensity of herbivory often vary along climatic gradients, which may result in divergent selection on plant phenology, and on resistance and tolerance to herbivory. In Sweden, the length of the growing season and the number of insect herbivore species feeding on the perennial herb Lythrum salicaria decrease from south to north. Previous common‐garden experiments have shown that northern L. salicaria populations develop aboveground shoots earlier in the summer and finish growth before southern populations do. We tested the hypotheses that resistance and tolerance to damage vary with latitude in L. salicaria and are positively related to the intensity of herbivory in natural populations. We quantified resistance and tolerance of populations sampled along a latitudinal gradient by scoring damage from natural herbivores and fitness in a common‐garden experiment in the field and by documenting oviposition and feeding preference by specialist leaf beetles in a glasshouse experiment. Plant resistance decreased with latitude of origin, whereas plant tolerance increased. Oviposition and feeding preference in the glasshouse and leaf damage in the common‐garden experiment were negatively related to damage in the source populations. The latitudinal variation in resistance was thus consistent with reduced selection from herbivores towards the northern range margin of L. salicaria. Variation in tolerance may be related to differences in the timing of damage in relation to the seasonal pattern of plant growth, as northern genotypes have developed further than southern have when herbivores emerge in early summer.  相似文献   

18.
19.
Herbivory and water shortage are key ecological factors affecting plant performance. While plant compensatory responses to herbivory include reallocation of biomass from below‐ground to above‐ground structures, plant responses to reduced soil moisture involve increased biomass allocation to roots and a reduction in the number and size of leaves. In a greenhouse study we evaluated the effects of experimental drought and leaf damage on biomass allocation in Convolvulus demissus (Convolvulaceae), a perennial herb distributed in central Chile, where it experiences summer drought typical of Mediterranean ecosystems and defoliation by leaf beetles and livestock. The number of leaves and internode length were unaffected by the experimental treatments. The rest of plant traits showed interaction of effects. We detected that drought counteracted some plant responses to damage. Thus, only in the control watering environment was it observed that damaged plants produced more stems, even after correcting for main stem length (index of architecture). In the cases of shoot : root ratio, relative shoot biomass and relative root biomass we found that the damage treatment counteracted plant responses to drought. Thus, while undamaged plants under water shortage showed a significant increase in root relative biomass and a significant reduction in both shoot : root ratio and relative shoot biomass, none of these responses to drought was observed in damaged plants. Total plant biomass increased in response to simulated herbivory, apparently due to greater shoot size, and in response to drought, presumably due to greater root size. However, damaged plants under experimental drought had the same total biomass as control plants. Overall, our results showed counteractive biomass allocation responses to drought and damage in C. demissus. Further research must address the fitness consequences under field conditions of the patterns found. This would be of particular importance because both current and expected climatic trends for central Chile indicate increased aridity.  相似文献   

20.
Results from laboratory feeding experiments have shown that elevated atmospheric carbon dioxide can affect interactions between plants and insect herbivores, primarily through changes in leaf nutritional quality occurring at elevated CO2. Very few data are available on insect herbivory in plant communities where insects can choose among species and positions in the canopy in which to feed. Our objectives were to determine the extent to which CO2-induced changes in plant communities and leaf nutritional quality may affect herbivory at the level of the entire canopy. We introduced equivalent populations of fourth instar Spodoptera eridania, a lepidopteran generalist, to complex model ecosystems containing seven species of moist tropical plants maintained under low mineral nutrient supply. Larvae were allowed to feed freely for 14 days, by which time they had reached the seventh instar. Prior to larval introductions, plant communities had been continuously exposed to either 340 l CO2 l–1 or to 610 l CO2 l–1 for 1.5 years. No major shifts in leaf nutritional quality [concentrations of N, total non-structural carbohydrates (TNC), sugar, and starch; ratios of: C/N, TNC/N, sugar/N, starch/N; leaf toughness] were observed between CO2 treatments for any of the species. Furthermore, no correlations were observed between these measures of leaf quality and leaf biomass consumption. Total leaf area and biomass of all plant communities were similar when caterpillars were introduced. However, leaf biomass of some species was slightly greater-and for other species slightly less (e.g. Cecropia peltata)-in communities exposed to elevated CO2. Larvae showed the strongest preference for C. peltata leaves, the plant species that was least abundant in all communites, and fed relatively little on plants species which were more abundant. Thus, our results indicate that leaf tissue quality, as described by these parameters, is not necessarily affected by elevated CO2 under relatively low nutrient conditions. Hence, the potential importance of CO2-induced shifts in leaf nutritional quality, as determinants of herbivory, may be overestimated for many plant communities growing on nutrient-poor sites if estimates are based on traditional laboratory feeding studies. Finally, slight shifts in the abundance of leaf tissue of various species occurring under elevated CO2 will probably not significantly affect herbivory by generalist insects. However, generalist insect herbivores appear to become more dependent on less-preferred plant species in cases where elevated CO2 results in reduced availability of leaves of a favoured plant species, and this greater dependency may eventually affect insect populations adversely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号