首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA interference (RNAi) is a fundamental mechanism of gene regulation in a variety of organisms. In Drosophila cells, long double-stranded RNAs (dsRNAs) are processed into 21- to 23-nucleotide double-stranded fragments, termed short interfering RNAs (siRNAs). The siRNAs trigger sequence-specific mRNA degradation, which results in the inhibition of gene expression. These phenomena can be recapitulated in vitro in lysates of Drosophila syncytial blastoderm embryos. In the present work, we used the common Drosophila cell line, Schneider Line 2 (S2), as a source to establish a cell-free translation system. We demonstrate here that the S2 cell-free translation system can recapitulate RNAi. Both long dsRNAs and siRNAs can trigger RNAi in this system, and the silencing effects are significant. This system should provide an important tool for biochemical analyses of the RNAi mechanism.  相似文献   

2.
RNA interference (RNAi) mediated by short interfering RNA (siRNA) is a powerful reverse genetics tool and holds enormous therapeutic potential for various diseases, including parasite infections. siRNAs bind their complementary mRNA and lead to degradation of their specific mRNA targets. RNAi has been widely used for functional analysis of specific genes in various cells and organisms. In this paper, we tested the potential of silencing the expression of the Mago nashi gene in Schistosoma japonicum by siRNAs derived from shRNA expressed by mammalian Pol III promoter H1. Schistosomula, transformed from cercariae by mechanical shearing of the tails, were electroporated with Mago nashi shRNA expression vector. Aliquots of parasites were harvested at days 1, 3, and 5 after electroporation, respectively. Levels of Mago nashi mRNA and protein were determined by RT-PCR and Western blotting analysis. The results showed that shRNA expressed from mammalian Pol III promoter H1 specifically reduced the levels of Mago nashi mRNA and proteins in S. japonicum. Changes in testicular lobes were apparent when parasites were introduced into mammalian hosts. Thus, vector-mediated gene silencing is applicable to S. japonicum, which provides a means for the functional analysis of genes in this organism.  相似文献   

3.
In vivo gene silencing in Plasmodium berghei--a mouse malaria model   总被引:3,自引:0,他引:3  
RNA interference (RNAi) has emerged as a specific and efficient tool to silence gene expression in a variety of organisms and cell lines. An important prospect for RNAi technology is its possible application in the treatment of diseases using short interfering RNAs (siRNAs). However, the effect of siRNAs in adult animals and their potential to treat or prevent diseases are yet to be fully investigated. The main goal of the present study is to find out whether it was possible to carry out RNAi on circulating malaria parasite in vivo. To trigger RNAi in mouse malaria parasite, we used siRNAs corresponding to cysteine protease genes of Plasmodium berghei (berghepain-1 & 2). Intravenous injections of berghepains' siRNAs in infected animal resulted in characteristic enlargement of food vacuole in circulating parasites. Protein analysis of these treated parasites showed substantial accumulation of hemoglobin, which is reminiscent of the effect observed upon treating Plasmodium falciparum with different cysteine protease inhibitors. Parasites treated with berghepain 1 & 2 siRNAs showed marked reduction in the levels of their cognate mRNAs, thereby suggesting specific inhibition of berghepains' gene expression in vivo. We also observed the generation of approximately 25 nt RNA species from berghepains' mRNAs in the treated parasites, which is a characteristic of an RNAi phenomenon. These results thus provide evidence that beyond its value for validation of gene functions, RNAi may provide a new approach for disease therapy.  相似文献   

4.
RNAi mechanisms in Caenorhabditis elegans   总被引:5,自引:0,他引:5  
Grishok A 《FEBS letters》2005,579(26):5932-5939
  相似文献   

5.
Noise amidst the silence: off-target effects of siRNAs?   总被引:22,自引:0,他引:22  
  相似文献   

6.
RNA interference (RNAi) has been recently employed as an effective experimental tool for both basic and applied biological studies in various organisms including plants. RNAi deploys small RNAs, mainly small interfering RNAs (siRNAs), to mediate the degradation of mRNA for regulating gene expression in plants. Here we report an efficient siRNA-mediated gene silencing of the omega-3 fatty acid desaturase (FAD3) gene family in a complex genome, the soybean (Glycine max). The FAD3 enzyme is responsible for the synthesis of alpha-linolenic acids (18:3) in the polyunsaturated fatty acid pathway. It is this fatty acid that contributes mostly to the instability of soybean and other seed oils. Therefore, a significant reduction of this fatty acid will increase the stability of the seed oil, enhancing the seed agronomical value. A conserved nucleotide sequence, 318-nt in length, common to the three gene family members was used as an inverted repeat for RNA interference. The RNAi expression cassette was driven by a seed-specific promoter. We show that the transgene-produced siRNA caused silencing of FAD3 that was comparable to the fad3 mutant phenotype and, furthermore, that such a silencing is stably inherited in engineered soybean lines. Since the pool size of the alpha-linolenic acids is small relative to the other polyunsaturated fatty acids in soybean, the significant reduction of this fatty acid suggests a role and great potential for the siRNA strategy in silencing gene families in a complex genome.  相似文献   

7.
8.
9.
RNA interference: biology, mechanism, and applications.   总被引:44,自引:0,他引:44  
Double-stranded RNA-mediated interference (RNAi) is a simple and rapid method of silencing gene expression in a range of organisms. The silencing of a gene is a consequence of degradation of RNA into short RNAs that activate ribonucleases to target homologous mRNA. The resulting phenotypes either are identical to those of genetic null mutants or resemble an allelic series of mutants. Specific gene silencing has been shown to be related to two ancient processes, cosuppression in plants and quelling in fungi, and has also been associated with regulatory processes such as transposon silencing, antiviral defense mechanisms, gene regulation, and chromosomal modification. Extensive genetic and biochemical analysis revealed a two-step mechanism of RNAi-induced gene silencing. The first step involves degradation of dsRNA into small interfering RNAs (siRNAs), 21 to 25 nucleotides long, by an RNase III-like activity. In the second step, the siRNAs join an RNase complex, RISC (RNA-induced silencing complex), which acts on the cognate mRNA and degrades it. Several key components such as Dicer, RNA-dependent RNA polymerase, helicases, and dsRNA endonucleases have been identified in different organisms for their roles in RNAi. Some of these components also control the development of many organisms by processing many noncoding RNAs, called micro-RNAs. The biogenesis and function of micro-RNAs resemble RNAi activities to a large extent. Recent studies indicate that in the context of RNAi, the genome also undergoes alterations in the form of DNA methylation, heterochromatin formation, and programmed DNA elimination. As a result of these changes, the silencing effect of gene functions is exercised as tightly as possible. Because of its exquisite specificity and efficiency, RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes.  相似文献   

10.
RNA Interference: Biology, Mechanism, and Applications   总被引:16,自引:0,他引:16       下载免费PDF全文
Double-stranded RNA-mediated interference (RNAi) is a simple and rapid method of silencing gene expression in a range of organisms. The silencing of a gene is a consequence of degradation of RNA into short RNAs that activate ribonucleases to target homologous mRNA. The resulting phenotypes either are identical to those of genetic null mutants or resemble an allelic series of mutants. Specific gene silencing has been shown to be related to two ancient processes, cosuppression in plants and quelling in fungi, and has also been associated with regulatory processes such as transposon silencing, antiviral defense mechanisms, gene regulation, and chromosomal modification. Extensive genetic and biochemical analysis revealed a two-step mechanism of RNAi-induced gene silencing. The first step involves degradation of dsRNA into small interfering RNAs (siRNAs), 21 to 25 nucleotides long, by an RNase III-like activity. In the second step, the siRNAs join an RNase complex, RISC (RNA-induced silencing complex), which acts on the cognate mRNA and degrades it. Several key components such as Dicer, RNA-dependent RNA polymerase, helicases, and dsRNA endonucleases have been identified in different organisms for their roles in RNAi. Some of these components also control the development of many organisms by processing many noncoding RNAs, called micro-RNAs. The biogenesis and function of micro-RNAs resemble RNAi activities to a large extent. Recent studies indicate that in the context of RNAi, the genome also undergoes alterations in the form of DNA methylation, heterochromatin formation, and programmed DNA elimination. As a result of these changes, the silencing effect of gene functions is exercised as tightly as possible. Because of its exquisite specificity and efficiency, RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes.  相似文献   

11.
Small interfering RNA-mediated gene silencing in T lymphocytes   总被引:32,自引:0,他引:32  
Introduction of small interfering RNAs (siRNAs) into a cell can cause a specific interference of gene expression known as RNA interference (RNAi). However, RNAi activity in lymphocytes and in normal primary mammalian cells has not been thoroughly demonstrated. In this report, we show that siRNAs complementary to CD4 and CD8alpha specifically reduce surface expression of these coreceptors and their respective mRNA in a thymoma cell line model. We show that RNAi activity is only caused by a subset of siRNAs complementary to the mRNA target and that ineffective siRNAs can compete with effective siRNAs. Using primary differentiated T lymphocytes, we provide the first evidence of siRNA-mediated RNAi gene silencing in normal nontransformed somatic mammalian lymphocytes.  相似文献   

12.
13.
The first evidence for gene disruption by double-stranded RNA (dsRNA) came from careful analysis in Caenorhabditis elegans. This phenomenon, called RNA interference (RNAi), was observed subsequently in various organisms, including plants, nematodes, Drosophila, and protozoans. Very recently, it has been reported that in mammalian cells, 21- or 22-nucleotide (nt) RNAs with 2-nt 3' overhangs (small inhibitory RNAs, siRNAs) exhibit an RNAi effect. This is because siRNAs are not recognized by the well-characterized host defense system against viral infections, involving dsRNA-dependent inhibition of protein synthesis. However, the current method for introducing synthetic siRNA into cells by lipofection restricts the range of applications of RNAi as a result of the low transfection efficiencies in some cell types and/or short-term persistence of silencing effects. Here, we report a vector-based siRNA expression system that can induce RNAi in mammalian cells. This technical advance for silencing gene expression not only facilitates a wide range of functional analysis of mammalian genes but might also allow therapeutic applications by means of vector-mediated RNAi.  相似文献   

14.
In RNA interference (RNAi), guide RNAs direct RNA-induced silencing complexes (RISC) to their mRNA targets, thus enabling the cleavage that leads to gene silencing. We describe a strong inverse correlation between the degree of guide-RNA secondary structure formation and gene silencing by small interfering (si)RNA. Unstructured guide strands mediate the strongest silencing whereas structures with base-paired ends are inactive. Thus, the availability of terminal nucleotides within guide structures determines the strength of silencing. A to G and C to U base exchanges, which involve wobble base-pairing with the target but preserve complementarity, turned inactive into active guide structures, thereby expanding the space of functional siRNAs. Previously observed base degenerations among mature micro (mi)RNAs together with the data presented here suggest a crucial role of the guide-RNA structures in miRNA action. The analysis of the effect of the secondary structures of guide-RNA sequences on RNAi efficiency provides a basis for better understanding RNA silencing pathways and improving the design of siRNAs.  相似文献   

15.
16.
Small interfering RNAs (siRNAs) have become the most powerful and widely used gene silencing reagents for reverse functional genomics and molecular therapeutics. The key challenge for achieving effective gene silencing in particular for the purpose of the therapeutics is primarily dependent on the effectiveness and specificity of the RNAi targeting sequence. However, only a limited number of siRNAs is capable of inducing highly effective and sequence-specific gene silencing by RNA interference (RNAi) mechanism. In addition, the efficacy of siRNA-induced gene silencing can only be experimentally measured based on inhibition of the target gene expression. Therefore, it is important to establish a fully robust and comparative validating system for determining the efficacy of designed siRNAs. In this study, we have developed a reliable and quantitative reporter-based siRNA validation system that consists of a short synthetic DNA fragment containing an RNAi targeting sequence of interest and two expression vectors for targeting reporter and triggering siRNA expression. The efficacy of the siRNAs is measured by their abilities to inhibit expression of the targeting reporter gene with easily quantified readouts including enhanced green fluorescence protein (EGFP) and firefly luciferase. Using fully analyzed siRNAs against human hepatitis B virus (HBV) surface antigen (HBsAg) and tumor suppressor protein p53, we have demonstrated that this system could effectively and faithfully report the efficacy of the corresponding siRNAs. In addition, we have further applied this system for screening and identification of the highly effective siRNAs that could specifically inhibit expression of mouse matrix metalloproteinase-7 (MMP-7), Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1), and human serine/threonine kinase AKT1. Since only a readily available short synthetic DNA fragment is needed for constructing this novel reporter-based siRNA validation system, this system not only provides a powerful strategy for screening highly effective siRNAs but also implicates in the use of RNAi for studying novel gene function in mammals.  相似文献   

17.
Post-transcriptional gene silencing by siRNAs and miRNAs   总被引:23,自引:0,他引:23  
Recent years have seen a rapid increase in our understanding of how double-stranded RNA (dsRNA) and 21- to 25-nucleotide small RNAs, microRNAs (miRNAs) and small interfering RNAs (siRNAs), control gene expression in eukaryotes. This RNA-mediated regulation generally results in sequence-specific inhibition of gene expression; this can occur at levels as different as chromatin modification and silencing, translational repression and mRNA degradation. Many details of the biogenesis and function of miRNAs and siRNAs, and of the effector complexes with which they associate have been elucidated. The first structural information on protein components of the RNA interference (RNAi) and miRNA machineries is emerging, and provides some insight into the mechanism of RNA-silencing reactions.  相似文献   

18.
Methods that allow the specific silencing of a desired gene are invaluable tools for research. One of these is based on RNA interference (RNAi), a process by which double-stranded RNA (dsRNA) specifically suppresses the expression of a target mRNA. Recently, it has been reported that RNAi also works in mammalian cells if small interfering RNAs (siRNAs) are used to avoid activation of the interferon system by long dsRNA. Thus, RNAi could become a major tool for reverse genetics in mammalian systems. However, the high cost and the limited availability of the short synthetic RNAs and the lack of certainty that a designed siRNA will work present major drawbacks of the siRNA technology. Here we present an alternative method to obtain cheap and large amounts of siRNAs using T7 RNA polymerase. With multiple transfection procedures, including calcium phosphate co-precipitation, we demonstrate silencing of both exogenous and endogenous genes.  相似文献   

19.
RNA interference (RNAi) is the sequence-specific gene silencing induced by double-stranded RNA. RNAi is mediated by 21-23 nucleotide small interfering RNAs (siRNAs) which are produced from long double-stranded RNAs by RNAse II-like enzyme Dicer. The resulting siRNAs are incorporated into a RNA-induced silencing complex (RISC) that targets and cleaves mRNA complementary to the siRNAs. Since its inception in 1998, RNAi has been demonstrated in organisms ranging from trypanosomes to nematodes to vertebrates. Potential uses already in progress include the examination of specific gene function in living systems, the development of anti-viral and anti-cancer therapies, and genome-wide screens. In this review, we discuss the landmark discoveries that established the contextual framework leading up to our current understanding of RNAi. We also provide an overview of current developments and future applications.  相似文献   

20.
RNA interference (RNAi) is now widely used for gene silencing in mammalian cells. The mechanism uses the RNA-induced silencing complex, in which Dicer, Ago2, and the human immunodeficiency virus type 1 (HIV-1) TAR RNA binding protein (TRBP) are the main components. TRBP is a protein that increases HIV-1 expression and replication by inhibition of the interferon-induced protein kinase PKR and by increasing translation of viral mRNA. After HIV infection, TRBP could restrict the viral RNA through its activity in RNAi or could contribute more to the enhancement of viral replication. To determine which function will be predominant in the virological context, we analyzed whether the inhibition of its expression could enhance or decrease HIV replication. We have generated small interfering RNAs (siRNAs) against TRBP and found that they decrease HIV-1 long terminal repeat (LTR) basal expression 2-fold, and the LTR Tat transactivated level up to 10-fold. In the context of HIV replication, siRNAs against TRBP decrease the expression of viral genes and inhibit viral production up to fivefold. The moderate increase in PKR expression and activation indicates that it contributes partially to viral gene inhibition. The moderate decrease in micro-RNA (miRNA) biogenesis by TRBP siRNAs suggests that in the context of HIV replication, TRBP functions other than RNAi are predominant. In addition, siRNAs against Dicer decrease viral production twofold and impede miRNA biogenesis. These results suggest that, in the context of HIV replication, TRBP contributes mainly to the enhancement of virus production and that Dicer does not mediate HIV restriction by RNAi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号